
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Enabling and Analyzing Natural Interaction with
Functional Virtual Prototypes

Frank Gommlich, Guido Heumer, Bernhard Jung,
Matthias Lenk and Arnd Vitzthum

Technical University Bergakademie Freiberg
Germany

1. Introduction

Functional validations of virtual prototypes are a promising application area of immersive
Virtual Reality (Moehring & Froehlich, 2011). Through the interactive simulation of operating
procedures such analyses aim at providing insight about virtual prototypes, e. g. concerning
visibility aspects, reachability of control elements, and ergonomics. A key requirement is the
enabling of natural interaction defined by Zachmann as "interaction which imitates that same
interaction in the real world as close as possible" (Zachmann & Rettig, 2001). In immersive VR,
natural interaction can be realized through data gloves and motion tracking devices.
However, a challenging task remains in the modeling and simulation of interactions with
dynamic control elements such as sliders, switches etc. (Moehring & Fröhlich, 2010). We have
devised and implemented a framework that not only aims at simplifying the specification of
such control actuators for interactive virtual environments but also facilitates the recording,
automated classification, and analysis of natural interactions with such control actuators. The
presented approach builds on the European Standard EN 894-3 (DIN894-3, 2006) and covers
all types of control actuators defined therein. This standard defines systematic guidelines for
the choice and configuration of control actuators to ergonomically design machinery.
A characterizing feature of control actuators in the real world is given by their function:
Controlling the behavior of machines and other appliances. In order to model the triggering of
changes of environment objects in the simulation, our framework allows to associate control
actuators with interaction events. Interaction events may be fired continuously, e. g. during
movement of sliders, or when discrete states are reached, e. g. switches. Besides making
interactive simulations more realistic, interaction events can also be recorded to allow later
playback and analysis of the interaction. For this, detailed timing information is stored in the
interaction events. For example, interaction events may be used for the animation of virtual
humans that imitate the user interactions when operating virtual prototypes.
Contributions of our research include an XML-based modeling language for control
actuators that can be seen as both an abstraction layer and an extension to lower-level
rigid body physics modeling capabilities provided e. g. by Collada (Khronos Group, 2008)
and X3D (International Organization for Standardization, 2008). Further, we produce a
reference implementation of control actuators with direct object manipulation, an interaction
database for analyzing interaction events including recognizing basic interactions and grasp
classification, and a powerful graphical analysis tool. Through this, the process of adding
interactive elements to virtual prototypes can be drastically simplified.

11

www.intechopen.com

2 Will-be-set-by-IN-TECH

Fig. 1. Selection of control actuators defined in the European standard EN 894-3.

2. Control actuators

This subchapter introduces the concept of control actuators, our XML based modeling
language and a reference implementation of control actuators. An easy way to include
different control actuators into a dynamic environment is to use an extended version of
annotated objects (Weber et al., 2006). They are declared and managed in an XML-based
representation structure, which combines all information about types of scene objects in a
common database. Such information includes graphical model, type, component references,
physical parameters, joint definitions, etc. Annotated objects are similar to the concept of
smart objects (Kallmann & Thalmann, 1999). In contrast to smart objects, they do not contain
any form of behavior description, neither for object nor for actor behavior. The object behavior
of annotated objects is totally dependent on their physical simulation.

2.1 Concept

Structurally, control actuators are compound objects where a movable part can change its
position or orientation w.r.t. a static part, the fitting. The relative movement is constrained by
the degrees of freedom (DOFs) of a joint connecting the static and the movable part. Here, the
composition of both is called control actuator. In Figure 2 an emergency button is shown. In
this example the button takes the role of the actuator. Multiple actuators with the same fitting
are also conceivable and are used, e. g., in the case of cockpit instruments, keyboards or other
operational controls. Thus, control actuators share many similarities with rigid bodies from
the Collada and X3D specifications. However, the definition of control actuators requires
additional capabilities not available in basic Collada or X3D. In particular, many types of
control actuators such as switches and gear shifts exhibit lock states which correspond to
discrete values along a continuous DOF of joints. A control actuator will snap to a discrete
state when no further force is exerted on the actuator.
Our concept of control actuators covers all types of control actuators and guidelines defined
in the European standard EN 894-3 (see fig. 1).

2.2 Declaration

Annotated objects with their attributes are represented in a compact and easy to use XML
structure. To check the correct syntax of annotated objects and their actuators there is an
XML schema. To ensure extensibility of the format, all object attributes are denoted by an
all-purpose parameter format consisting of name, type and value, represented by the param
element.

262 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 3

(a) Fitting (b) Actuator (c) Control Actuator

Fig. 2. Composition of a control actuator. Each control actuator consists of a fitting and at
least one actuator.

Fig. 3. The XML schema for annotated objects within our framework.

The element physics and its subelement joint (see figure 3) contains the major characteristics
of control actuators regarding their representation in the dynamics simulation. The fitting
references one or more actuators with the children element. These actuators are also annotated
objects with the difference that they have specified information about joints and their
constraints. A joint definition contains at least the joint type (e. g. DoubleAxisHinge for a
joystick, or Slider for a volume control), the specification of the DOF axes and the constraints
along these axes.
In case of discrete actuators it is necessary to define at least one discrete state which is
represented by an angular or translational offset from the neutral position. Additional it is
possible to specify unsteady intermediate states. When a control actuator reaches an unsteady
state, it will automatically move to a defined successor state. This is useful for realizing
complex actuator movements, e. g. a gear shift. Figure 4 shows the gears of a car with steady
gear states and intermediate discrete states. States A© and B© are unsteady with 5© as the
successor state. Listing 1 shows an example for discrete states of an actuator definition.
It proved possible to implement all presented control actuators in the European standard EN
894-3 with at most two DOFs for either translation or rotation. A combination or mixture of

263Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

4 Will-be-set-by-IN-TECH

translation and rotation is not intended by the standard. Therefore it was effectual to divide
the standard actuators into four different types according to their DOFs. We called these four
joint types Slider, Hinge, DoubleAxisSlider and DoubleAxisHinge. The slider and the hinge type
have one DOF each whereas the DoubleAxisSlider and the DoubleAxisHinge type have two
DOFs.

2.3 Implementation

The implementation of control actuators is based on an open-source physics engine called
Newton Game Dynamics (Jerez & Suero, 2011).
In order to effect an actuator manipulation by a VR user, forces are calculated from the user’s
hand movements and applied to the actuator (see Section 3). The actuator can be continuously
moved within its degrees of freedom, constrained by its joint limits and subject to possible
collisions with other geometries. When the actuator is released by the VR user, the engine
realizes a snap to the closest discrete lock state. The flow of this automatic snap mechanism is
shown in Figure 5 and is realized with the help of forces applied to the actuator to reach the
calculated position. This results in a smooth and continuous movement to the new position.
Finally, if the reached position is unsteady, then the cycle starts again and the force for the
following state will be calculated. This action will be repeated until the first steady state is
reached or until the actuator is grasped again.
In order to restrict the actuator movements, e. g. to special tracks in a two dimensional
layer (see figure 4, left column) we used the automatic collision response mechanism of the
dynamics engine. This mechanism ensures a realistic movement of the stick inside the tracks
of the fitting, without explicitly modeling the permissible pathways.

Fig. 4. Overview of the different joint types. first row: Slider and Hinge. second row:
DoubleAxisSlider and DoubleAxisHinge.

264 Modeling and Simulation in Engineering

www.intechopen.com

Listing 1. XML code example of an emergency button, shown in figure 2.

Fig. 5. Flowchart for the snap in behavior of control actuators. If the user releases the
actuator, the system moves them to the nearest discrete state.

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 5

<annotatedobject>

<name>emergencyFitting</name>

<model>emergencyFitting.iv</model>

<children>

<child type="string">emergencyActuator</child>

</children>

</annotatedobject>

<annotatedobject>

<name>emergencyActuator</name>

<model>emergencyActuator.iv</model>

<physics>

<joint>

<param name="jointtype" type="string">slider</param>

<param name="pinDir" type="array3">0 0 -1</param>

<param name="minValue" type="double">0</param>

<param name="maxValue" type="double">0.1</param>

<discrete-state>

<state>

<param name="name" type="string">deactivated</param>

<param name="value" type="double">0</param>

</state>

<state>

<param name="name" type="string">activated</param>

<param name="value" type="double">0.05</param>

</state>

</discrete-state>

</joint>

</physics>

</annotatedobject>

265Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

6 Will-be-set-by-IN-TECH

3. Direct object manipulation

The simulation of realistic manual object manipulation by a user in virtual environments is an
important feature in virtual prototyping, ergonomics analysis and virtual training scenarios.
To differentiate this kind of natural interaction from other, more commonly used types of
object manipulation where the user either selects, grabs and moves an object by help of a
pointing geometry (akin to a 3D mouse pointer) or picking ray we refer to it as "direct object
manipulation". The discriminating factor is that a user directly controls virtual models of
his hands that (more or less) exactly follow his real arm and finger movements (isomorphic
control). With the help of these hand models, which act as the representations of the user’s
real hands in the virtual world, the user is able to touch, push, pick up and drop objects as he
would in reality.
Clearly, the functional hand model is an important feature in this kind of interaction
technique. The properties of contacts – their location, direction and forces – that exist between
a hand and an object determines which kind of manipulation is taking place. E. g. mere
touching vs. forceful pushing, prehensile (grabbing) vs. non-prehensile (pushing, dragging,
sliding) manipulation, the various types of grasping an object, etc.
To be able to discriminate which parts of the hand are in contact with the object, we work
with a setting that uses virtual sensors fitted on the finger segments of the hand model (see
figure 6 left). These sensors can detect collision with annotated objects, including the control
actuators described in the previous section. Each phalanx (finger segment) is represented by
four box-shaped sensors (one on the top, the bottom, the left and the right side) allowing
for discrimination of which part of the phalanx collides with the object. Similarly, the palm
is represented by differently shaped collision primitives. This approach in constructing the
hand model has two advantages. First, it allows for a rather close approximation of collision
geometry to the real anatomical shape of the hand while still enabling efficient collision
detection by only using convex collision primitives which are supported by many modern
implementations of dynamics engines. Second, it provides information about possible contact
configurations and whether they form a valid grasp or not, e. g. it is not possible to form
a grasp with the inside of the palm and the upside of the thumb. Further, knowing which
segment of the hand touches the object helps inform the classification of grasp types (see
section 4.2). The sensors themselves are mere collision detectors and have no simulated
physical properties. To effect real manipulations on the object, resulting forces are calculated,
based on collision centers, collision normals and penetration depths of the sensors and applied
to the physical simulation of the annotated objects (see figure 6 right).
Since object behavior is simulated by a rigid body dynamics engine, this approach to
implement direct object manipulation simulation enables the user to pick up and release
objects and to manipulate them in prehensile and non-prehensile ways.
This allows for natural interaction with functional virtual prototypes. Our approach also
supports the integration of haptic devices into the hardware setup for an even more realistic
interaction experience (Abate et al., 2009; Zorriassatine et al., 2003).

4. Interaction analysis

To be useful in interactive VR applications, a mere simulation of the behavior of control
actuators and their interaction with a virtual hand model is in many cases not enough.
Additionally, information about interactions of the user with virtual objects and the resulting
state changes need to be processed. An important first step is to record all interaction data
that is generated during direct object manipulation.

266 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 7

Fig. 6. left: Articulated virtual hand model fitted with collision sensors (depicted in green).
right: Sensors of hand model detecting collisions with object and generating respective forces
for physical simulation (blue lines).

4.1 Interaction recording

Most importantly, arm trajectory, hand posture and collision data during grasping is recorded. In
our system all interaction data is stored persistently in an interaction database organized by
recording sessions. Recording sessions are subdivided into channels each of which represents
a certain single stream or constituent of the interaction data (see figure 7). This could be an
input device like an optical tracker or a data glove, or motion data of a certain part of the body
like hand postures or hand trajectories.

Fig. 7. Examples for channels of the interaction database and their division into to different
levels.

Recording channels are organized into different levels, based on the type of data they contain:

Level 0 - Raw data: This level contains the raw data, captured from the different input
devices at certain sampling times denoted by timestamps. This data is continuous and
homogeneous, i.e. each input device sends the same amount of data at a time step and
continues producing data from the start of the application till the end.

Level 1 - Motion data: On this level, each channel contains motion data of a specific part of
the user’s body, e. g. hand trajectory, elbow swivel angle, gaze direction, etc. This data also
contains time stamps but is additionally segmented into intervals of motion, separated by
pauses or by object contact. Each interval can be referenced by higher levels of data via

267Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

8 Will-be-set-by-IN-TECH

a unique identifier (UUID), thus enabling playback of interaction events with high visual
fidelity while the motion intervals as a whole can be rearranged in time arbitrarily. Thus,
in terms of the structure of this data, level 1 channels are described as homogeneous and
interval-based.

Level 2 - Interaction data: Data on this level is the result of detection and classification
processes. These are primarily interaction and control actuator events (see section 4.3)
which are stored in XML format. The amount and length of data contained in these events
is quite variable and they always refer to certain points in time. Thus, data on this level is
described as selective and nonhomogeneous.

Through this multi-level database architecture, persistence of the whole interaction session,
from the fine-grained raw data to the abstracted results of the analysis process, is achieved.
Further, the data captured in the interaction database can be played back in a modular way.
It is possible to play back only a selection of channels, depending on the purpose of the
playback. This is where the subdivision into channels and levels becomes valuable. If only
level 0 rawdata is played back, the interaction can be simulated again and also the analyses
process can be repeated. This allows for training and testing of e. g. the involved classification
algorithms. Conversely, if only data from higher levels is played back, animations can be
generated reproducing the recognized interactions in effect, that is, they can be flexibly adapted
to changed scenes or different body model proportions.

4.2 Grasp classification

Hand posture data during hand-object contact is automatically classified w.r.t. its grasp type
(Heumer et al., 2008).
During the course of the virtual workers project several grasp taxonomies from the medical,
e. g. (Schlesinger, 1919), and robotics literature, e. g. (Cutkosky, 1989), have been explored.
Since some significant shortcomings in relation to applicability in virtual environments have
been identified, additionally a new taxonomy has been proposed in (Heumer, 2010) which
as a unique feature provides support for different types of non-prehensile grasps. The latter
play an important role in the operation of control actuators in application domains like virtual
prototyping, ergonomics evaluations and simulation of machine operation procedures.

4.3 Recognition of basic interactions

Fed by a multilayer classification and recognition scheme, thoroughly described in (Heumer,
2010), the continuous stream of body movements and scene interactions is segmented and
analyzed. As a result, interaction events are generated which contain information about
smallest semantically meaningful constituents called basic interactions, e. g. grasp, touch,
push, reach, etc. All basic interactions are characterized by one specific aspect that is
modified by the respective type of interaction, such as hand-object distance, hand-object
contact, forces, prehension, and object position or orientation. Besides its distinct type or
category, a basic interaction is further qualified by a type-specific set of parameters. Figure 8
shows the different types of basic interactions that are currently distinguished. Regarding
implementation, the interaction events are realized as observer pattern, so arbitrary other
parts of the system can subscribe as listeners to these events such as storage, visualization,
action recognition, etc.
A subclass of interaction events are control actuator events (CAEs). These are generated under
certain conditions when a control actuator changes its state. The exact condition of generation
and the granularity of information contained in the events is configurable. Generally, CAEs
are fired when the user interaction with a control actuator ends (see figure 9 for an example).

268 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 9

Fig. 8. Taxonomy of basic interactions.

In this case, the event contains the state (rotation around rotational DOFs, translation along
translational DOFs) quantified between a minimum and a maximum value. For control
actuators with discrete states, the name of the final state is also included. Furthermore,
intermediate states during the interaction can also generate events when they are passed
before the interaction ends. All state names and DOF information is referenced as specified in
the XML actuator declaration (cf. 2.2) thus rendering the event format also human-readable.
See listing 2 for an example.

Fig. 9. Automatic recognition of basic interactions while manipulating the control actuators
of a virtual car interior.

For full detail of the interaction, a complete history can be recorded (current state in every
frame). This history is stored globally under a unique ID and is referenced by this ID in
the interaction event fired at the end of the interaction. This enables the reproduction of
either the outcome of the interaction (just final state), a reproduction of the state change order
(intermediate discrete states) or an exact reproduction of the whole interaction (history). By
the latter a replay in a purely graphical scene can be realized without the further need for an
active dynamics simulation.
The result of the complete interaction analysis process is a stream of basic interactions
which are persistently stored and also propagated to other application parts via the event
system. There, they can be analyzed and processed further with automatic methods (action
recognition and animation generation) or by hand.

269Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

10 Will-be-set-by-IN-TECH

4.4 Visual analysis tool

In order to monitor and improve the classification processes for interaction events (described
in the previous section), we implemented a graphical tool that allows us to visualize, analyze
and easily edit the recorded interaction data from a database or from local files. We
implemented our tool VisuAnIA (Visualizing and Analyzing tool for InterAction data) by
using a plug-in architecture, to easily extend the application and to provide different views,
e. g. a 3D trajectory view or an animated hand view.
A graphical browser for the different channels (see section 4.1) offers a generic overview with
a timeline (see fig. 10, left view). According to the layers in the interaction database (fig. 7)
this view is separated into three levels. The top level contains the interaction events which
are referring to the segmented hand trajectories in the second level, as well as to the raw data
in the third level that has been captured from various input devices such as motion trackers,
data gloves, etc. Following the FacetZoom metaphor as described in (Dachselt et al., 2008),
the navigation through the three hierarchical levels can be done by clicking on a desired level,
at which adjacent levels will be represented smaller and remain in context. The interval-based
data (that contains a start and end time) is drawn in a box-like manner along the timeline
and is enriched with generic textual information, such as the type of an interaction event or
the exact time values. Furthermore the user can select one or more of these interval-boxes to
analyze them by using special views. Similar to an audio editing tool, the current position of
the cursor determines a time value that will be used in other plug-ins. To enable the analysis
even for very short or long datasets, this view also provides a linear zooming option along the
timeline.
For a more specific visualization of the hand trajectories we implemented another plug-in that
provides a 3D view (fig. 10, middle view). Next to rotating and zooming, this view allows
the examination of smaller parts of the trajectories. This is done by defining an interval in the
timeline view. Only those parts of the trajectories are displayed which are inside the interval,
what is useful in particular when a recorded action is very local and a hand trajectory occludes
parts of itself. In order to illustrate the timing of the hand movement during the interaction,
on the segmented trajectories a little sphere is shown. This sphere indicates the position of the
hand according to the currently selected time value
A further view shows an animated 3D hand model to visualize the data from a dataglove
(fig. 10, right view). Again using the timeline, the user can access the recorded postures of

<event type="actuator" start-time="11.1374" duration="0.2058" id="CAE-2">

[...]

<actuator-states object-id="cockpit-1::steering_wheel">

<start-data>

<state dof="rotational1" value="-0.0094"/>

<discrete-state value="center"/>

</start-data>

<goal-data>

<state dof="rotational1" value="3.3676"/>

<discrete-state value="right"/>

</goal-data>

</actuator-states>

</event>

Listing 2. Code example of a control actuator event.

270 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 11

Fig. 10. VisuAnIA: The generic timeline view on the left is used to browse the data that gets
visualized in special 3D views.

the hand and compare them to the types of the recognized interaction events or to the objects
which have been used.
A plug-in with a commonly known generic properties view (fig. 11, right view) allows the
listing of all the recorded values as they are stored in the database. This view also permits the
modification of important attributes, such as timing values or the type of an interaction event.
Due to the linear zooming option in the basic timeline view, all interval-boxes outside the
focused area will disappear from the context so that large datasets may not be adequately
examined. Therefore we implemented a conceptual 3D timeline plug-in (Timestrip3D) that
only shows a small fraction from the basic timeline (fig. 11, lower view). To indicate the
relation between the two timelines a small box, that defines the interval for the second
timeline and marks the area of interest, is drawn in the basic timeline view. By using
these two timelines it is possible to examine a focused area of the dataset without losing
context. Additionally, the timestrip offers a fisheye like zooming option, that carries on
the focus-plus-context representation and thus supports the user during analysis. The 3D
strip actually consists of several Bézier surfaces that will be modified to achieve the zooming
effect. Since the textual information on the timestrip is generated by using different font sizes,
different zooming degrees implicate varying levels of detail of the presented information.
To keep both of the timelines synchronized, e. g. while using the generic timeline view
to browse and analyze a dataset and the timestrip to obtain additional information, we
implemented a new tool we call Foculyzer. The aim of the tool is to apply the currently
examined (focused) area around the cursor from one timeline view automatically to a second
timeline view. That means that a user does not need to set the area of interest (red box in fig.
11) by hand, as necessary e. g. in the TimeSearcher 2 tool (Buono et al., 2005). The tolerance
range in which the cursor can be moved without shifting the area of interest can be freely
adjusted in our tool. Thus, e. g. depending on the kind of analysis or length of the dataset,
the user can customize the tool according to the current needs. Two sliders on the focused
area are provided for such adjustments (fig. 11). The sliders are hidden during analysis so
that the timeline itself won’t be occluded. With our tool we overcame the two drawbacks: The
first one occurs when the area of interest is centered exactly around the cursor, which means

271Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

12 Will-be-set-by-IN-TECH

Fig. 11. While the user analyzes interaction events in the upper timeline view, the focused
area is automatically applied to the timestrip where more information and a fisheye like
zooming is provided. The range of tolerance for the cursor is controlled by the sliders on the
red box. On the right, a generic properties view shows the values of the selected
interval-boxes and allows the modification of important values.

that every little movement of the cursor causes the area to shift as described in (Bederson,
2000). A second drawback found in some systems results, when the area of interest is shifted
only upon the collision of the cursor with the area bounds. Thus, in order to effect a focus
change the cursor has to be moved to the borders explicitly which can be annoying. The
adjustable tolerance range allows for a more flexible interaction instead. Our tool Foculyzer is
not restricted to interaction events, but can also be used to synchronize various other views,
e. g. in audio or video editing programs to analyze different channels or different views of one
channel.
Future versions of our tool VisuAnIA will provide plug-ins for data filtering, e. g. to recognize
wrongly tracked trajectories. Furthermore, we will implement a player to reproduce the
recorded interaction data in various speeds.

5. Application scenarios

Due to its universal and extendable nature, the framework for control actuators presented
here can be used in many different types of interactive VR prototyping applications where

272 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 13

movable parts with physically believable behavior are called for. In our particular area of
research - which has virtual prototyping as application domain - we use the framework to
simulate parts of machinery or other virtual prototypes. The operation is done manually by a
VR user. The aim is to demonstrate manipulation sequences that are repeated by an animated
character, i.e. a virtual human, see Figure 12. This type of animation is closely related to
Programming by Demonstration in the field of robotics and is referred to as Action Capture in
(Jung et al., 2006).

Fig. 12. Control actuators contained in the virtual prototype of a car cockpit.

Apart from our research scenario many different use cases are conceivable. Such applications
can include virtual prototyping and construction, ergonomics studies, instructional
animations, etc. The only prerequisite is a mechanism to determine forces and torques exerted
on the actuators. A simple mechanism would be to translate 6DOF input from e. g. a Spaceball
or a tracking device and translate its output to appropriate forces and torques.
Furthermore, interactive scene functionality can be realized by subscribing and reacting to
interaction events. For example, a car radio sound can be played when the car radio button is
pressed. The volume can be adjusted, when the knob is turned, etc.
In this section, we discuss the benefits of our approach for two typical application domains
(virtual training, ergonomic studies with virtual prototypes) on the basis of two scenarios we
have (partially) implemented.

Scenarios

The first scenario is a control panel on which different actuators are located (see fig. 1). These
VR objects represent reference implementations of the fundamental types of control actuators
specified in (DIN894-3, 2006). Among these control actuators are a steering wheel, different
knobs and sliders.
The second scenario is a car driving application (fig. 13). In this scenario, the user sits in a
virtual cockpit and manipulates control actuators in order to drive the car. Control actuators
are a steering wheel, a gear shift, radio knobs and the ignition key. The user’s interactions
trigger certain functionalities and animations.

273Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

14 Will-be-set-by-IN-TECH

Fig. 13. A user manipulates the gear shift in our car driving scenario.

Virtual training and functional prototypes

An important use case of our approach is virtual training. Our first prototype serves the
purpose to improve the user’s fundamental skills in operating virtual control actuators. The
user can change the state of an actuator in order to explore its behavior.
In the second scenario, the user can learn how to start and drive a car or he can improve his
driving skills. By connecting the manipulation of an actuator with a certain functionality using
the event mechanism described before, functional prototypes can be realized. For example,
the user can hear the sound of the car’s engine after starting it and while driving; he can
hear music from the radio after turning it on and he can navigate the car through the virtual
environment by rotating the steering wheel. By providing physically correct behavior of
actuators in combination with functional prototypes, the degree of realism and the feeling
of immersion can be dramatically improved. In this way, the training scenario becomes a very
realistic user experience which facilitates the transfer of learned skills from a virtual to a real
environment.

Ergonomic studies

A main application domain of our approach is ergonomic evaluation of virtual prototypes.
The evaluations can be conducted with real VR users and virtual humans. An example of a
virtual prototype suitable for ergonomic studies is a virtual car as described in the second
scenario. The car prototype provides a set of actuators which are typically required for
driving. A user performs different actions, such as turning the ignition key, turning the
radio on, switching the gears and turning the steering wheel. These actions can be imitated
by virtual humans with different body proportions. Ergonomic problems occur, e. g., if a
(virtual) human’s arm collides with an obstacle while trying to grasp a target object or if the
human cannot even reach the target object. Such problems can be identified and analyzed by
observing the real VR user performing the actions required to reach a certain goal (e. g. starting

274 Modeling and Simulation in Engineering

www.intechopen.com

Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes 15

the car’s engine) or by watching animations of virtual humans synthesized from captured
action sequences. In this context, realistic actuator behavior is important, since a state change
of an actuator can influence ergonomic conditions. For instance, if there were no collisions
with the gear shift lever, such collisions can suddenly occur after changing the lever’s state
(orientation/position). In addition, by using an event serialization mechanism, it is not only
possible to reproduce the motions of the involved control actuators exactly (even without
virtual humans), but also to visualize the generated events for a more thorough analysis (e. g.,
in order to identify unwanted collisions). This is an important use case for our VisuAnIA tool
(see 4.4) that offers the required analysis functionality.

6. Conclusion

We presented a comprehensive approach for enabling and analyzing natural interactions with
functional virtual prototypes. Compared to more generic languages such as X3D or Collada, a
domain-specific XML-based language simplifies the specification of virtual control actuators.
In immersive VR settings, control actuators can be manipulated using natural interaction
techniques based on data gloves and motion tracking devices. During on-going user
interactions, the current state of the control actuator is continuously monitored and made
available to other components of the overall VR-system by means of an event mechanism.
A continuously moving control actuator may snap to predefined discrete states, e. g. on/off
positions of a switch, and special events are fired when the actuator reaches such a discrete
state. For instance, this allows to simulate functional effects of control actuators in the
VR system. The described approach covers all control actuators described in the European
standard EN 894-3.
True functional validation of virtual prototypes, in our opinion, should include but not
be restricted to live experiences of VR users. Therefore, our approach comprises several
concepts and tools for recording and offline analysis of operating procedures performed
on virtual prototypes in immersive VR. For this, various aspects of user interactions can
be stored in an interaction database, from low-level sensor data, over trajectory data, up
to high-level interaction events containing e. g. the classifications of user grasps w.r.t. a
grasp taxonomy. A graphical tool that builds on state-of-the-art as well as newly designed
information visualization methods serves to analyze and, if appropriate, edit the recorded
interactions. The power of our approach is demonstrated by an implemented application
where animations of virtual humans are generated from the recorded interaction data. We
believe that several application settings, such as VR-based training systems, could benefit
from the presented approach.

7. References

Abate, A. F., Guida, M., Leoncini, P., Nappi, M. & Ricciardi, S. (2009). A Haptic-Based
Approach to Virtual Training for Aerospace Industry, J. Vis. Lang. Comput.
20: 318–325.
URL: http://portal.acm.org/citation.cfm?id=1598095.1598605

Bederson, B. B. (2000). Fisheye Menus, Proceedings of the 13th annual ACM symposium on User
interface software and technology, UIST ’00, ACM, New York, NY, USA, pp. 217–225.
URL: http://doi.acm.org/10.1145/354401.354782

Buono, P., Aris, A., Plaisant, C., Khella, A. & Shneiderman, B. (2005). Interactive Pattern Search
in Time Series, Vol. 5669, SPIE, pp. 175–186.
URL: http://link.aip.org/link/?PSI/5669/175/1

275Enabling and Analyzing Natural Interaction with Functional Virtual Prototypes

www.intechopen.com

16 Will-be-set-by-IN-TECH

Cutkosky, M. (1989). On Grasp Choice, Grasp Models and the Design of Hands for
Manufacturing Tasks, IEEE Transactions on Robotics and Automation 5(3): 269–279.

Dachselt, R., Frisch, M. & Weiland, M. (2008). Facetzoom: A Continuous Multi-Scale Widget
for Navigating Hierarchical Metadata, CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, ACM, New York, NY, USA,
pp. 1353–1356.

DIN894-3 (2006). Safety of Machinery - Ergonomic Requirements for the Design of Displays
and Control Actuators - part 3: Control Actuators, en 894-3.

Heumer, G. (2010). Simulation, Erfassung und Analyse direkter Objektmanipulationen in virtuellen
Umgebungen, PhD thesis, TU BA Freiberg.
URL: http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-70518

Heumer, G., Ben Amor, H. & Jung, B. (2008). Grasp Recognition for Uncalibrated Data Gloves:
A Machine Learning Approach, Presence: Teleoperators and Virtual Environments
17: 121–142.
URL: http://portal.acm.org/citation.cfm?id=1362509.1362512

International Organization for Standardization (2008). ISO/IEC FDIS 19775-1:2008: Information
technology – Computer graphics and image processing – Extensible 3D (X3D) – Part 1:
Architecture and base components, 2. Edition.

Jerez, J. & Suero, A. (2011). Newton Game Dynamics. Open-Source Physics Engine .
URL: http://newtondynamics.com

Jung, B., Amor, H. B., Heumer, G. & Weber, M. (2006). From Motion Capture to Action
Capture: A Review of Imitation Learning Techniques and their Application to
VR-based Character Animation, Proceedings VRST 2006 - Thirteenth ACM Symposium
on Virtual Reality Software and Technology, pp. 145–154.

Kallmann, M. & Thalmann, D. (1999). Direct 3D Interaction with Smart Objects, Proceedings
ACM VRST 99, London.

Khronos Group (2008). Collada - Digital Asset Schema Release 1.5.0 Specification.
Moehring, M. & Froehlich, B. (2011). Natural Interaction Metaphors for Functional Validations

of Virtual Car Models, IEEE Transactions on Visualization and Computer Graphics
(TVCG), accepted manuscript .
URL: http://dx.doi.org/10.1109/TVCG.2011.36

Moehring, M. & Fröhlich, B. (2010). Enabling Functional Validation of Virtual Cars Through
Natural Interaction Metaphors, Proceedings of IEEE Virtual Reality Conference, VR 2010,
pp. 27–34.

Schlesinger, G. (1919). Der Mechanische Aufbau der Künstlichen Glieder, in M. Borchardt
et al. (eds), Ersatzglieder und Arbeitshilfen für Kriegsbeschädigte und Unfallverletzte,
Springer-Verlag, Berlin, Germany, pp. 321–661.

Weber, M., Heumer, G., Amor, H. B. & Jung, B. (2006). An Animation System for Imitation
of Object Grasping in Virtual Reality, Proceedings of Advances in Artificial Reality and
Tele-Existence, 16th International Conference on Artificial Reality and Telexistence, ICAT,
Springer, pp. 65–76.

Zachmann, G. & Rettig, A. (2001). Natural and Robust Interaction in Virtual Assembly
Simulation , Eighth ISPE International Conference on Concurrent Engineering: Research
and Applications (ISPE/CE2001), pp. 425–434.

Zorriassatine, F., Wykes, C., Parkin, R. & Gindy, N. (2003). A Survey of Virtual Prototyping
Techniques for Mechanical Product Development, Journal of Engineering Manufacture
217.

276 Modeling and Simulation in Engineering

www.intechopen.com

Modeling and Simulation in Engineering

Edited by Prof. Catalin Alexandru

ISBN 978-953-51-0012-6

Hard cover, 298 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides an open platform to establish and share knowledge developed by scholars, scientists, and

engineers from all over the world, about various applications of the modeling and simulation in the design

process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections

(3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling

and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most

accurate and sophisticated software in treating complex systems, are applied. All the original contributions in

this book are jointed by the basic principle of a successful modeling and simulation process: as complex as

necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that

reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision

of the results.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Frank Gommlich, Guido Heumer, Bernhard Jung, Matthias Lenk and Arnd Vitzthum (2012). Enabling and

Analyzing Natural Interaction with Functional Virtual Prototypes, Modeling and Simulation in Engineering, Prof.

Catalin Alexandru (Ed.), ISBN: 978-953-51-0012-6, InTech, Available from:

http://www.intechopen.com/books/modeling-and-simulation-in-engineering/enabling-and-analyzing-natural-

interaction-with-functional-virtual-prototypes

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

