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1. Introduction  

Siglecs comprise a family of sialic acid-binding Ig-like lectins, expressed mainly on 
hematopoietic cells (O'Reilly and Paulson 2010; Angata 2006; Crocker, Paulson et al. 2007). 
More than ten Siglecs of human orgin have been cloned, all of which bind sialoglycans. 
Structural commonalities include an extracellular N-terminal V-set Ig-like domain, a 
sialoglycan-binding domain followed by variable numbers of C2-set Ig-like domains, a 
transmembrane domain, and a cytoplasmic signaling domain. Each member is expressed in 
a cell-specific manner, e.g., Siglec-1 on macrophages, Sigelc-2 on B cells, Siglec-7 on natural 
killer cells, and Siglec-9 on myelocytic cells.  
Even though Siglecs bind terminal sialic acids on glycoconjugates, each member 
preferentially binds different oligosaccharide ligands. The nature of a specific sialic acid, its 
linkage to substituted sugars, and underlying neutral oligosaccharides can all influence 

Siglec recognition (see Table 1). For instance, Siglec-1 binds a terminal NeuAc2-3Gal, but 

not a NeuAc2-6Gal residue. In contrast, Siglec-2 preferentially binds a terminal NeuAc2-
6Gal residue (Blixt, Collins et al. 2003; Blixt, Han et al. 2008). Siglec-9 binds both of the 
structures equally. Siglec-7 binds tumor-associated glycans such as so-called “melanoma 

antigen” (disialyl glycan; NeuAc2-8NeuAc2-3Gal) and the branched 2-6sialyl glycan 

(Gal1-3[NeuAc2-6]GlcNAc) (Yamaji, Teranishi et al. 2002; Miyazaki, Ohmori et al. 2004). 
The binding of Siglec-7 to unique sialoglycans may be associated with tumor recognition by 
NK cells. In this context, it is notable that antibody-crosslinking of Siglec-7 on NK cells 

attenuates the cytotoxicity of NK cells against FcR+ P815 murine mastocytoma cells (Nicoll, 
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Avril et al. 2003). The inhibitory signal of Siglec-7 is transduced by its cytoplasmic signaling 
domain containing immune receptor tyrosine-based inhibitory motifs (ITIMs) (Ikehara, 
Ikehara et al. 2004; Yamaji, Mitsuki et al. 2005), which have been described as suppression 
motifs for a variety of immunocytes.  

2. The 3D mapping of critical amino acids for glycan-binding and inibitory 
activity 

We first developed assays for glycan-binding activity and immunosuppressive activity. To 
identify influential amino acids, we constructed a series of mutants and tested for their 
activities. Amino acids of significance were mapped on a 3D model of Siglec-7. 

2.1 The mapping of important amino acids for recognizing tumor-associated glycans 
2.1.1 Overexpression of Siglec-7 on cultured cells 
We used two types of cells for overexpressing Siglec-7: hematopoietic U937 monocytic 
leukemia cells and Chinese hamster ovary (CHO) cells. Each type of cell line was transfected 
with Siglec-7 cDNA and then stable transformants were isolated (U937-WT7 or CHO-WT7). 
Mock transfection cells were also prepared (U937-Ｍock or CHO-Ｍock). Expression levels of 
Siglec-7 on the transformants were estimated by immunoblotting and/or flow cytometry 
using specific antibodies against Siglec-7 (Yamaji, Mitsuki et al. 2005). Prior to binding 
assays, the cells were treated with sialidase to remove endogenous sialic acid.  
We also prepared Siglec-7 ligand-expressing cells, i.e., human erythroleukemia K562 cells 
were transfected with cDNA of 2-8sialyltransferase, ST8SiaVI, which biosynthesizes 
NeuAc2-8NeuAc2-3Gal epitope, a preferred ligand of Siglec-7. The isolated stable 
transformants (K562-ST) were examined for their epitope expression by flow cytometry 
using S2-566 antibody, which recognizes the disialyl epitope. 

2.1.2 Binding activity of Siglec-7 expressed on U937 cells  

Siglec-7 binds to melanoma antigen (2-8disialyl epitope: NeuAc2-8NeuAc2-3). We 

therefore used NeuAc2-8NeuAc-polyacrylamide (disialo-PAA) as a probe for characterizing 
 

 

Fig. 1. Binding of a disialyl probe (NeuAc2-8NeuAc-PAA) to U937-WT7 cells, which 
overexpress Siglec-7. U937-WT7 cells were incubated with biotinylated NeuAc2-8NeuAc-
PAA. After the cells were incubated with FITC-streptavidin, fluorescnce intensity was 
detected by flow cytometry (A). Mean fluorescnce intensity increases in a saturable manner 
in a range of 1-45 M probe concentration (B). 
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glycan-binding activity of Siglec-7 on U937-WT7 cells (Fig. 1A). The probe bound to U937-
WT7 cells in a saturable manner showing a less thanM of the Kd value (Fig 
1B)(unpublished data, Yamaji et al.).  
To examine whether Siglec-7 mediates cellular binding, U937-WT7 cells were co-cultured 
with K562-ST cells, which express 2,8disialyl epitopes. U937-WT7 cells formed aggregates 
with K562-ST (Fig. 2A) but not with K562-Mock cells (Fig. 2B), suggesting that the cell-cell 
interaction depends on 2,8disialyl epitopes on K562-ST cells. In this model system Siglec-7 
binds 2,8disialyl epitopes on the target cells in a trans-acting manner. 
 

 

Fig. 2. U937-WT7 cells form aggregates with K562-ST cells (A), which express 2,8disialyl 
epitopes, but not with K562-Mock cells (B). 

Siglec-7 functions as a negative regulator in various immuno-responses. Upon activation of 
Siglec-7, cytoplasmic immune receptor tyrosine-based inhibitory motifs (ITIMs) are 
phosphorylated and transduce the inhibitory signal. Co-cultivation of U937-WT cells with 
K562-ST cells induced tyrosine phosphorylation of Siglec-7, whereas that with K562-mock 
cells did not (data not shown), suggesting that interaction of Siglec-7 with ligands on 
opposing cells transduces inhibitory signalling (unpublished data, Yamaji et al.).  

2.1.3 Binding specificity of Siglec-7 expressed on CHO cells 
To characterize the glycan-binding specificity of Siglec-7, a high-throughput sensitive assay 
was developed (Yamaji, Nakamura et al. 2003). For the assay we prepared a streptavidin-
based neoglycoprotein as a glycoprobe (Hashimoto, Suzuki et al. 1998). Briefly, streptavidin 
was coupled with oligosaccharides by reductive amination (Mahoney and Schnaar 1994). 
The synthsized oligosaccharyl streptavidin was mixed with biotinylated BSA, yielding a 
‘‘polymer’’ that carries 10-11 molecules of oligosaccharyl streptavidin with more than 100 
oligosaccharides (Fig. 3). The multivalency of oligosaccharide ligands increased binding 
“avidity” of the probe (O'Reilly and Paulson 2010). Radioiodination of biotinylated BSA 
before mixing gave a radioiodinated glycoprobe. The binding specificity of Siglec-7 on 
CHO-WT7 cells was examined by utilizing a set of glycoprobes, such as GD3-, GM1-, GD1a-, 
GT1b-, LSTa-, LSTb-, and LSTc-polymers (Table 1). 
GD3-polymer bound to CHO-WT7 cells more effectively than GD1a-polymers (Fig. 4A), 
suggesting that 2-8disialyl epitopes (NeuAc 2-8 NeuAc 2-3Gal) of the GD3-polymer 
were more potent ligands than the terminal 2-3-linked sialyl residues of the GD1a-
polymer. The GT1b-polymer bound well to CHO-WT7 cells because GT1b contains the 2-
8disialyl residue attached to the internal galactose. LSTb-polymer containing the branched 
2-6sialyl residue (Gal1-3[NeuAc2-6]GlcNAc) also bound well to CHO-WT7 cells. LSTa-,  
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Fig. 3. Preparation of a streptavidin-based glyco-probe. 

 

 
a The nomenclature is based on that of Svennerholm (J. Neurochem. 10, 613, 1963). 

Table 1. Glycan structures of oligosaccharides and their recognition by Siglecs. 

and LSTc-polymers containing 2-3/6-linked sialyl residue did not bind to the cells. The 

apparent Kd and Bmax values of the GD3-polymer to CHO-WT7 cells were about 10 nM and 

70 fmol/2 x 104 cells, respectively. Next we examined the binding specificity of Siglec-9 (Fig. 

4B), which has the highest sequence similarity to Siglec-7 (83% identity) among all Siglecs 

reported. CHO-WT9 bound poorly to GD3- and LSTb-polymers, but did bind well to GD1a-, 

LSTa-, GT1b-, and LSTc-polymers, suggesting that Siglec-9 recognizes a terminal NeuAc2-

3(or 6) Gal residue and its binding specificity is distinguished from that of Siglec-7 (Fig. 4). 
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Fig. 4. The glycan-binding specificity of Siglec-7 (A) and Siglec-9 (B). 

2.1.4 Mapping of critical amino acids for recognizing tumor-associated glycans  
The differences in glycan-binding specificity of the two Siglecs appeared to be attributable to 

sequence differences in the glycan-binding V-set domains. To identify amino acid(s) 

responsible for these specificity differences, we prepared a series of shuffling chimeras in 

the V-set domain between Siglecs-7 and -9. We eventually found that substitution of a small 

region, Asn70-Lys75, of Siglec-7 with the equivalent region of Siglec-9, Ala66-Asp71 (6 a.a. 

chimera) resulted in the loss of Siglec-7-like binding specificity and the acquisition of the 

Siglec-9-like binding property (Fig. 5), suggesting that only the six amino acid sequence in 

the glycan-binding domain is important for determining the binding specificity of Siglec-7 

and -9. None of single amino acid mutants changed binding specificity, suggesting that all 

of the six amino acids, or possibly a certain combination among these amino acids, is 

responsible for Siglec-7-like binding specificity (Yamaji, Teranishi et al. 2002). 
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Fig. 5. Siglec-7 binds well to 2-8disialo-probe (Sia2-8Sia2-3Gal) whereas Siglec-9 does 

2-3sialo-probe (Sia2-3Gal). Replacement of six amino acids (Asn70-Lys75) of Siglec-7 
results in Siglec-9-like binding specificity (6 a.a. chimera). 

2.1.5 The 3D mapping of the six amino acid in Siglec-7 V-set domain 
To date, crystal structures of Siglec domains have been reported including mouse Siglec-1 V-
set domain, human Siglec-5 V-set plus C2-set domain and human Siglec-7 V-set domain 
(Fig. 6). (Alphey, Attrill et al. 2003; Dimasi, Moretta et al. 2004; Attrill, Imamura et al. 2006; 
Attrill, Takazawa et al. 2006) 

Structural information on Siglecs is thus accumulating, and the basis for the recognition of a 
terminal sialic acid is becoming established. The interaction is highlighted by a conserved 
arginine residue that forms a crucial salt bridge with the sialic acid carboxylate.  
Crystal structures of Siglec-7 V-set domain have been reported so far with or without 

sialosides. The structure of unliganded Siglec-7 V-set domain is an Ig-like -sandwich fold 

formed by two -sheets (strands A’GFCC’ and ABED) (Fig. 7, left) (Alphey, Attrill et al. 
2003). The conserved Arg124, which is the key ligand-binding residue, is solvent-exposed 
and is located on the center of A’GFCC’ face. 
Six amino acid residues (Asn70 to Lys75), which determine the binding preference for 
disialo-glycans (Yamaji, Teranishi et al. 2002), are located on the tip of the C-C’ loop. The 

crystal structure of Siglec-7 V-set domain in complex with (2-8)disialylated glycan reveals 
how this important family of lectins binds the structurally diverse sialosides (Fig. 7, right). 
The terminal sialic acid is the major determinants of ligand binding, making several 
hydrogen bonds with the protein. A key salt bridge is formed between the Arg124 
guanidinium group and the terminal sialic acid carboxylate. The C-C’ loop, a region 
implicated in ligand-binding specificity, undergoes a drastic conformational shift, allowing 
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it to interact with the underlying neutral glycan core. The ligand-induced conformational 
change observed in the C-C‘ loop may be characterstic of Siglec-7. 
 

 

Fig. 6. Crystal structures of Siglec domains reported to date. Mouse Siglec-1 (left, PDB code 
1QFO), human Siglec-5 (center, PDB code 2ZG1) and human Siglec-7 (right, PDB code 
1O7V) are shown with ribbon representation. Conserved arginine residue is highlighted in 
dark blue. 

 

 

Fig. 7. Dynamic conformational shift of the C-C’ loop of Siglec-7 at the binding pocket. 
Crystal structures of unliganded (left) (Alphey, Attrill et al. 2003) and liganded (right) 
(Attrill, Imamura et al. 2006). Siglec-7 V-set domains are shown in ribbon diagrams. In both 
structures, a conserved Arg124 residue is highlighted in blue with stick representation. Six 
amino acid residues, Asn70 to Lys75 in the C-C’ loop, are colored in red. Disialylated GT1b 
glycan is shown with stick representation (right). 
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2.2 The 3D mapping of critical amino acids for cell death-inducing activity 
2.2.1 Cell death-inducing activity of Siglec-7  
To analyze effects of Siglec-7 on a cellular function, Siglec-7 on U937-WT7 cells was ligated 
with an F(ab’)2 fragment of anti-Siglec-7. The ligation of Siglec-7 with the specific antibody, 
13-3-D, increased cell death at 30-50% (Fig. 8A). Control F(ab’)2 fragments of irrelevant 
antibody showed a subtle effect on the cell death under our experimental conditions. Figure 
6B shows a graph of percentage of Annexin V-positive cells in the Annexin V-positive 
window in Figure 8B. The cell death of Siglec-7-expressing cells was time-dependent and 
dose-dependent of incubation with the F(ab’)2 fragment. A pancaspase inhibitor, Z-VAD-
FMK, did not inhibited Siglec-7-dependent cell death, suggesting that caspases are not 
involved in the cell death. In addition, we could not detect DNA ladder formation in the cell 
death process (Mitsuki, Nara et al. 2010). 
 
 
 

 
 

Fig. 8. Ligation of Siglec-7 elicits death of U937-WT7. 

2.2.2 Morphological changes of death-induced U937-WT7  
Electron microscopy revealed that ligation of Siglec-7 induced some chromatin condensation 

in the nucleus, but did not induce nuclear condensation and fragmentation (Fig. 9). It was 

noted that Siglec-7 ligation induced a number of vacuoles, which were associated with 

“ribosome-like granules”, suggesting that the vacuoles are derived from rough endoplasmic 

reticulum. Neither nuclear condensation nor fragmentation was detected in the cell death, 

suggesting that Siglec-7 induces non-apoptotic cell death. 
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Fig. 9. Electron micrograph of U937-WT cells, which are treated with (Siglec-7) or (control) 
an F(ab’)2 fragment of anti-Siglec-7. Siglec-7 ligation induces some chromatin condensation 
and formation of vacuoles with “ribosome-like granules”(inset). 

2.2.3 Mapping of important amino acids for inducing cell death 
To test the involvement of ITIM for signaling, we deleted the cytoplasmic portion of Siglec-7 
and expressed it in U937 cells (U937-7Δcytosol). Unexpectedly, U937-7Δcytosol without 

cytosolic domain elicited cell death (Fig. 10A), indicating that cell death does not involve 
 

 

Fig. 10. Shuffling chimeras in C-set domains between Siglec-7 (gray bar) and –9 (white bar). 
Replacement of C2-2 or C2-2b domain abolishes cell death-inducing activity. 
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ITIMs. Since U937-WT9 did not show cell death, we prepared a series of domain shuffling 
chimeras between Siglecs-7 and -9 to identify domain(s) responsible for the cell death.  
Each domain of U937-7Δcytosol was replaced with the corresponding domain of Siglec-9. 

Assays for death inducing activity of the chimeras revealed that replacement of the 
membrane-proximal C2-set domain abolished cell death activity (U937-C2-2), indicating that 
C2-2 domain is important for the cell death (Fig. 10B)(Mitsuki, Nara et al. 2010). To narrow 
down the region responsible for cell death, we prepared additional chimeric mutants. The 
C2-2 domain was tentatively divided into three portions; C2-2a, C2-2b, and C2-2c regions. 
When C2-2b region was replaced with the corresponding region of Siglec-9, cell death was 
completely abolished (U937-C2-2b) (Fig. 10B). Neither replacement of C2-2a nor C2-2c had 
any effect. These results suggest that the C2-2b region contributes most to cell death. 
Six amino acids differ between Siglec-7 and -9 in the C2-2b region, prompting us to prepare 

single amino acid mutants using U937-7Δcytosol cDNA as a parental construct. Five of six 

possible mutants were established as stable cell lines. Four of the five mutants (W288L, 

T289S, S292G, and L304G) showed marked decreases in cell death activity (Fig. 11), 

suggesting that the four amino acids are critical for inducing the cell death.  

 

 

 

 
 

Fig. 11. Single amino acid mutants of Siglec-7 and their cell death-inducing activity. Four 
mutants (W288L, T289S, S292G, and L304G) show marked decrease in the cell death 
activity. 
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2.2.4 The 3D mapping of critical amino acids for cell death-inducing activity 
Although structural information on the V-set domain is available for some of Siglecs, little 

is known about the Siglec C2 domains. We therefore built models of C2-2 domains of 

Siglec-7 and -9 (Fig. 12). A homology search based on Smith-Waterman algorithm was 

performed using SSearch (Smith and Waterman 1981) to identify sequences that are 

homologous with the human Siglec-7 C2-2 domain. The second immunoglobulin domain 

of human paladin (PDB code 2dm3) was selected as a template among those with low E 

values. The positions of the cysteine residues are conserved between Siglec-7/-9 C2-2 

domains and second Ig domain of paladin. The qualities of the resultant protein structures 

were checked using the Procheck program (Laskowski, MacArthur et al. 1993), which 

gives Ramachandran plots and a quantitative distribution of the geometric parameters 

within the allowed conformational space. Importantly, the model of Siglec-7 C2-2 domain 

suggests that the four amino acid residues (L304, W288, T289 and S292) were proximal to 

one another (Fig. 12). The close location of these four residues tempted us to speculate 

that they would be involved in interactions with other adjacent molecules to transduce the 

death signal. 

 

 

Fig. 12. Computer-assisted homology modeling of the C2-2 domains of Siglec-7 and -9. The 
models are shown by space filling (transparent) and ribbon representation. Homology 
modeling was performed using MODELLER version 9.4 software (Sali and Blundell 1993; 
Fiser, Do et al. 2000; Marti-Renom, Stuart et al. 2000). The four amino acids in Siglec-7 (L304, 
W288, T289 and S292), which are responsible for the cell death activity, are shown in red 
with stick representation. The corresponding residues in Siglec-9 (G303, L287, S288 and 
G291) are also shown in red. 
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3. Conclusion 

We have demonstrated that Siglec-7 may mediate non-apoptotic cell death by signal 

transduction after binding to tumor-associated glycans such as “melanoma antigen” (2-

8disialyl epitopes). In particular, we have identified amino acid residues responsible for the 

activity. These residues are mapped on a 3D-structure of Siglec-7 and their functions are 

discussed from a structural point of view. 

Six amino acid residues (Asn70 to Lys75), responsible for the binding preference for 2-
8disialyl epitope, are located on the tip of the C-C’ loop and undergoes a drastic 
conformational shift allowing it to interact with the underlying neutral glycan core. This 
dynamic comformational change may determine the ligand-binding specificity of Siglec-7. 
Thus our biochemical data in conjunction with the reported crystallographic data are of 
great value in understanding the structure-function relationships of Siglecs and other 
sialoside-binding proteins. 
Four amino acid residues (L304, W288, T289 and S292) in the Siglec-7 C2-2 domain, 
responsible for eliciting cell death, are proximal to one another. It is tempting to speculate 
that these residues are crucial for interacting with other adjacent molecules to transduce the 
death signal. These structural models would be useful for developing structure-guided 
inhibitors or activators of Siglec-7 on NK cells. 
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