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1. Introduction

The global climate system ties together many physical variables, such as flow velocity, density,
pressure, temperature, to name a few. The core equations of the climate system are the
primitive evolution equations of the atmosphere and ocean (Lions et al., 1992a;b; 1993a;b;
1995; Majda, 2003), which directly involve the flow velocity (or, alternatively, streamfunction
and vorticity), density and pressure. To incorporate the effects of other relevant physical
processes which supply the energy to or draw it from the motion of the flow, the primitive
equations are coupled to other physical processes through temperature, water vapor, ocean
surface pressure, and other variables. The coupling terms often preserve energy balance, that
is, at any moment, the sum of energy transfer rates between all coupled processes is zero.

The main difficulty in the study of the behavior of primitive equations lies in the nonlinearity
of the dynamics of velocity or streamfunction-vorticity in the advection term. The nonlinearity
of the primitive equations is also the main source of chaos and lack of predictability
for long times in the weather and climate prediction. As has first been recognized by
Lorenz (1963), even a simple three-variable nonlinear dynamical system (the so-called Lorenz
attractor), based on the idealized convection cell with cooling at the top and heating at the
bottom, exhibits extreme sensitivity to initial conditions. Nowadays, the Lorenz attractor
is considered a canonical textbook example of chaos in a nonlinear dynamical system,
with many illustrations depicting two nearly identical initial conditions evolving into two
unrelated trajectories after a short period of time. In more complex dynamical systems
with advection terms, nonlinear chaos develops in much more sophisticated fashion, making
long-term forecasts difficult and uncertain.

Despite nonlinearity and chaos in the dynamics of the atmosphere and oceans, it has long
been recognized by scientists that that the observed motion of the flow can be decomposed
into a multitude of different spatio-temporal scales, ranging from thousands of kilometers
and many years to few hundred meters and several minutes. The slowest-varying modes,
constituting low frequency variability (LFV), involve large scale spatial patterns, usually
called “oscillations”. The examples of these patterns are the well-known El Niño Southern
Oscillation (ENSO), Arctic Oscillation (AO), Antarctic Oscillation (AAO), and North Atlantic
Oscillation (NAO). The rest of the spatio-temporal scales constitute much faster fluctuations,
superimposed with the slowly varying LFV modes. It is believed by a number of scientists
that the mutual combination of the states of LFV modes plays a major role in the present
planetary climate (Crowley, 2000; Delworth & Knutson, 2000), and, therefore, the projection
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2 Will-be-set-by-IN-TECH

of behavior of LFV modes into the future is one of the key considerations for the climate
change prediction.

One of the interesting questions about the dynamics of low frequency variability is the effect of
its coupling with the faster small scale processes on nonlinear chaotic behavior of LFV modes.
Does short time scale chaos and rapid mixing make the long time behavior of LFV modes
more chaotic, or otherwise? The nonlinear variables of the low frequency variability, as well as
small scale fast processes, are the velocity/streamfunction fields, due to nonlinear advection
terms of the primitive equations. In these variables, the energy emerges as a positive-definite
quadratic form, and, therefore, the direct coupling between velocity/streamfunction fields of
LFV and fast dynamics should preserve such a form to reflect the energy balance during its
transfer between the large scale slow motion and fast small scale processes. In Section 2 of
this chapter, we present the results of the recent study (Abramov, 2011c) how the fast small
scale variables affect chaotic properties of the slow variables through linear energy-preserving
coupling in a general nonlinear two-scale model with quadratic energy. White linear coupling
is the simplest form of coupling between slow and fast variables, it is nonetheless common
in interactions between velocity/streamfunction variables (see, for example, the model of
mean flow – small scale interactions via topographic stress in Grote et al. (1999), where the
total energy conservation in the coupling between the zonal mean flow and small scale
fluctuations is a key requirement). For the simple two-scale Lorenz 96 model (Abramov, 2010;
Fatkullin & Vanden-Eijnden, 2004; Lorenz, 1996; Lorenz & Emanuel, 1998), which mimics
certain large-scale features of the atmosphere such as the Rossby waves, we show through
numerical simulations that chaos at slow variables can be suppressed by the rapidly mixing
fast variables, even to the point when the behavior of the slow variables becomes completely
predictable.

Another interesting question arises immediately from the first one. Often, it is not possible
to model a large multiscale dynamical system through a direct numerical simulation, due
to both the exceedingly large number of fast variables, and the need to use a small time
discretization step in the numerical scheme to resolve the motion of the fast variables. In this
case, one solution is to make a suitable closure for the slow variables only, using the averaging
formalism for the fast variables (Papanicolaou, 1977; Vanden-Eijnden, 2003; Volosov, 1962).
However, there is a technical difficulty associated with the averaging formalism: at every
given state of the slow variables, one has to know the statistics of the motion of the isolated fast
variables with given slow state treated as a parameter. Generally, the statistics of a nonlinear
fast dynamics are not known explicitly, and, therefore, either a statistical numerical simulation
with the fast variables has to be performed at a each time step of the slow variables, or a
suitable approximation for relevant fast statistics has to be constructed. Sometimes, the impact
of fast unresolved variables in LFV dynamics is modeled through a constant reference forcing
(Abramov & Majda, 2009; Franzke, 2002; Selten, 1995), which does not reflect the response
of the statistics of the fast variables to changes in the state of the slow variables. However,
the results in Section 2 clearly indicate that chaos at slow variables can be suppressed by
the interactions with fast variables. Thus, the question is: how to capture the suppression
of chaos at slow variables in a closed model for slow variables only, through a suitable but
simple approximation? In Section 3 we demonstrate that an additional linear correction to
the reduced equations for the slow dynamics is sufficient to reproduce major statistics of the
slow variables in a fully coupled model. This correction emerges from the approximation
of the statistical response of the fast variables to changes in slow variables, based on the
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linear fluctuation-dissipation theorem (Majda et al., 2005; Risken, 1989). Section 3 is based
on Abramov (2011b).

2. Suppression of chaos at slow variables via linear energy-preserving coupling

Dynamical systems, where the evolution of variables is separated between two or more
different time scales, are common in the atmospheric/ocean science (Buizza et al., 1999;
Franzke et al., 2005; Hasselmann, 1976; Palmer, 2001). The structure of these systems
is typically characterized by the existence of a special subset of slow variables, which
evolve on a much longer time scale than the rest of the variables. In particular, one can
think of the low-frequency variability models in the atmospheric science, where the slow
variables, usually the large scale empirical orthogonal functions describing the large-scale
slowly-varying patterns in the atmosphere (such as the Arctic or North Atlantic oscillations,
for example), are coupled with small-scale fast processes, which are often very chaotic,
turbulent and unpredictable (with respect to the slow time scale, that is). One of the key
questions about the behavior of multiscale dynamics is the effect of the rapidly mixing
turbulent fast dynamics on the chaotic properties of the slow variables.

In this section we present the results of Abramov (2011c), where the chaotic behavior of slow
variables is studied by applying the averaging formalism to the dynamics of the linearized
model for the slow variables in a two-scale dynamical system with linear energy-preserving
coupling. In particular, we consider a two-scale system of autonomous ordinary differential
equations of the form

dx

dt
= f (x) + λyLy,

dy

dt
= g(x)− λxL

Tx, (1)

where x = x(t) ∈ R
Nx are the slow variables, y = y(t) ∈ R

Ny are the fast variables, with
Ny ≫ Nx, f and g are Nx and Ny vector-valued nonlinear functions of x and y, respectively,L
is a constant Nx × Ny matrix, and λx, λy > 0 are the coupling parameters. Here, for simplicity,
we assume that L has the full rank, that is, Nx. It can be shown directly that the coupling
terms in (1) preserve the quadratic energy of the form

E = λxEx + λyEy, Ex =
1

2
‖x‖2, Ey =

1

2
‖y‖2. (2)

For simplicity of presentation, here we assume that the total energy is a weighted sum of
squares of the components of x and y; the more general case with energy being an arbitrary
positive-definite quadratic form is discussed in Abramov (2011c). Here note that f (x) and
g(y) are not required to preserve the energy, as they might contain forcing and dissipation,
which frequently happens in atmosphere/ocean dynamics. For the two-scale system in
(1), we look at the averaged dynamics for x alone (Abramov, 2010; Papanicolaou, 1977;
Vanden-Eijnden, 2003; Volosov, 1962). The averaging formalism produces the closed system
for x in the form

dx

dt
= f (x) + λyLz̄(x), (3)

where z̄(x) is the mean state of the fast variables with x given as a constant parameter:

dz

dt
= g(z)− λxL

Tx, z̄(x) = lim
r→∞

1

r

∫ r

0
z(t)dt. (4)
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To observe the chaotic properties of (3), and, in particular, the sensitivity to initial conditions,
one has to look at the linearized dynamics of (3), given by

dv

dt
=

[

∂f

∂x
(x(t)) + λyL

∂

∂x
z̄(x(t))

]

v, (5)

where x(t) is the solution of (3). It is not difficult to see that, for two nearby initial conditions
x0 and x∗

0 of (3) with v0 = x∗
0 − x0, the solution v(t) of (5) is an approximation of the

difference of the trajectories (x∗(t) − x(t)), as long as this difference remains small. Then,
the sensitivity of (3) to initial conditions is given by the rate of growth of ‖v(t)‖ in time. For
the rate of growth, one can write

1

2

d

dt
‖v‖2 = vT ∂f

∂x
(x(t))v + λyv

T

[

L
∂

∂x
z̄(x(t))

]

v. (6)

Above, observe that the first term in the right-hand side comes from the uncoupled part of
(3), while the second term represents the effect of coupling of the slow variables x to the fast
variables y. At this point, consider (4), perturbed by a small constant forcing δg,

dz

dt
= g(z)− λxL

Tx+ δg, (7)

with the perturbed mean state z̄ + δz̄, and denote

R(x) =
δz̄

δg
. (8)

Then, assuming that the small constant perturbation δg comes from a small change in x, that
is,

δg = −λxL
Tδx, (9)

for the derivative of z̄(x) one obtains, by the chain rule,

∂

∂x
z̄(x) =

δz̄

δg

∂δg

∂δx
= −λxR(x)LT. (10)

Now, taking into account (10), for (6) we obtain

1

2

d

dt
‖v‖2 = vT ∂f

∂x
(x(t))v− λxλyv

TLR(x(t))LTv. (11)

At this point, one can see that if R(x) is positive-definite, then the second term in the
right-hand side of (11) becomes negative for arbitrary nonzero v, which means that the
coupling to the fast variables reduces the rate of growth of ‖v‖ and decreases chaos in (3),
as well as its sensitivity to changes in initial conditions.

When is R(x) positive-definite? Generally, since

δz̄ = R(x)δg, (12)

where δg is a small constant perturbation in (7), and δz̄ is the response of the mean state of (7)
to δg, the positive-definiteness of R(x) means that

δz̄Tδg = δgTR(x)δg > 0 for all sufficiently small δg, (13)
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that is, the response of the mean state δz̄ does not develop against the perturbation δg, as long
as δg is sufficiently small. It is not difficult to show that the following identity holds whenever
δg vanishes:

d

dt
δz̄ = −δg, (14)

that is, at the moment the small constant perturbation δg vanishes from (7), the time derivative
of δz̄ equals δg with the opposite sign. Multiplying the above relation by δz̄T on both sides,
we obtain

δz̄T d

dt
δz̄ =

1

2

d

dt
‖δz̄‖2 = −δz̄Tδg < 0, (15)

that is, any sufficiently small perturbation of the mean state δz̄ decreases in time at
the moment when the external perturbation δg is removed (stability of mean state
under perturbations). An example of such dynamics is the Ornstein-Uhlenbeck process
(Uhlenbeck & Ornstein, 1930):

dz

dt
= −Γz + g +σ

dWt

dt
− λxL

Tx, (16)

where Γ is a constant positive-definite matrix, g is a constant vector, σ is a constant matrix,
and Wt is a Wiener process. Indeed, applying statistical averages on both sides of (16) yields

z̄ = Γ
−1(g − λxL

Tx), (17)

and, therefore,
R = Γ

−1, (18)

which ascertains the positive-definiteness of R. In the case of general nonlinear dynamics
in (4), it is shown in Abramov (2011c) that, if the statistical distribution of the solution of (4)
can be approximated by the Gaussian probability density with mean state z̄ and covariance
matrix Σ, then R can be approximated by the integral of the time autocorrelation matrix:

R =

[

∫ ∞

0
C(s)ds

]

Σ
−1, C(s) = lim

r→∞

1

r

∫ r

0
z(t + s)(z(t)− z̄)T dt. (19)

This is the quasi-Gaussian approximation of R(x) (Abramov, 2009; 2010; 2011a;
Abramov & Majda, 2007; 2008; 2009; 2011; Majda et al., 2005). In this case, it is argued in
Abramov (2011c) that the positive-definiteness of R must be associated with the situation
where the typical Poincaré recurrence time of nonlinear motion around the mean state in
(4) (which can be viewed as an advective time scale) is not much shorter than the turbulent
mixing autocorrelation time. The reason is that, since C(0)Σ−1 is the identity matrix, then
there always exists a∗ > 0 such that

Ra =

[

∫ a

0
C(s)ds

]

Σ
−1 is positive definite for all a, 0 < a ≤ a∗. (20)

The positive-definiteness of Ra for larger a can probably be violated by the domination
of the rotation part in C(s) for larger s, which evolves on the advective time scale of (4).
However, this effect can be prevented by a sufficiently rapid decay of ‖C(s)‖ for large s,
which is governed by the turbulent mixing autocorrelation time. Thus, in general, one can
expect the positive-definiteness of R to appear in the situations where the turbulent mixing
autocorrelation time scale is not much longer than the advective time scale.
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Below we demonstrate through the series of numerical experiments with the two-scale Lorenz
96 model that increasing turbulent mixing at the fast variables promotes positive-definiteness
of R, as well as decreases chaos at the slow variables.

2.1 The two-scale Lorenz 96 model

The Lorenz 96 model was suggested by Lorenz (1996) as a simple two-scale system which
mimics certain large scale features of the atmospheric dynamics, such as Rossby waves.
Abramov (2011c) rescaled the Lorenz 96 model using energy rescaling similar to the one used
by Majda et al. (2005) for the one-scale Lorenz 96 model. The rescaled model is given by

ẋi = xi−1(xi+1 − xi−2) +
1

βx
(x̄(xi+1 − xi−2)− xi) +

Fx − x̄

β2
x

−
λy

J

J

∑
j=1

yi,j,

ẏi,j =
1

ε

[

yi,j+1(yi,j−1 − yi,j+2) +
1

βy

(

ȳ(yi,j−1 − yi,j+2)− yi,j

)

+
Fy − ȳ

β2
y

+ λxxi

]

,

(21)

where 1 ≤ i ≤ Nx , 1 ≤ j ≤ J. Additionally, we write the fast limiting dynamics for (21) as

żi,j = zi,j+1(zi,j−1 − zi,j+2) +
1

βy

(

z̄(zi,j−1 − zi,j+2)− zi,j

)

+
Fy − z̄

β2
y

+ λxxi, (22)

where x is given as an external parameter, as in (4). The following notations are adopted
above:

• x is the set of the slow variables of size Nx. The following periodic boundary conditions
hold for x: xi+Nx

= xi;

• y is the set of the fast variables of size Ny = Nx J where J is a positive integer. The following
boundary conditions hold for y: yi+Nx,j = yi,j and yi,j+J = yi+1,j;

• Fx and Fy are the constant forcing parameters;

• λx and λy are the coupling parameters;

• ε is the time scale separation parameter;

• x̄ and ȳ are the statistical mean states, and βx and βy are the statistical standard deviations,
respectively, of the corresponding uncoupled dynamics

d

dt
xi = xi−1(xi+1 − xi−2)− xi + Fx,

d

dt
yi,j = yi,j+1(yi,j+1 − xi,j+2)− yi,j + Fy,

(23)

separately for slow and fast variables.

In the rescaled Lorenz 96 model (21), Fx and Fy regulate the chaos and mixing of the x and
y variables, respectively. However, in the absence of linear rescaling through the mean states
x̄, ȳ, and standard deviations βx , βy, the mean state and mean energy would also be affected
by the changes in forcing, which affects the mean and energy trends in coupling for the fixed
coupling parameters. Thus, the rescaling of the two-scale Lorenz 96 model is needed to adjust
the effect of coupling independently of forcing, such that for any Fx and Fy, the mean states
and variances of all xi and yi,j in (21) are approximately zero and one, respectively. At this
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point, we can observe that the coupling in the rescaled Lorenz 96 model in (21) preserves the
energy

E = λxEx +
ελy

J
Ey, Ex =

1

2

Nx

∑
i=1

x2
i , Ey =

1

2

Nx

∑
i=1

J

∑
j=1

y2
ij, (24)

and the coupling matrix L is given by

(Ly)i = −
J

∑
j=1

yij, (LTx)ij = −xi. (25)

2.2 Suppression of chaos at slow variables by increasing mixing at fast variables

Below, we show the computed statistics of the rescaled Lorenz 96 model (21) with the
following parameters: Nx = 10, Ny = 40, Fx = 6, Fy = 6, 8, 12, 16 and 24, λx = λy = 0.25,
ε = 0.01 (the time scale separation between x and y is 100 times). The slow forcing parameter
Fx = 6 is chosen so that the slow dynamics are not too chaotic, mimicking the behavior of
low-frequency variability in the atmosphere (it is known from the previous work, such as
Abramov (2009; 2010; 2011a); Abramov & Majda (2003; 2007; 2008); Majda et al. (2005) that
for F = 6 the dynamics of the uncoupled model in (23) are weakly chaotic). The coupling
parameters λx and λy are set to 0.25 so that they are neither too small, nor too large, to ensure
rich interaction between the slow and fast variables without linearizing the rescaled Lorenz
96 system too much. The time-scale separation parameter ε = 0.01 is, again, chosen so that
it is neither too large, nor too small (the time scale separation by two orders of magnitude
is consistent, for instance, with the separation between annual and diurnal cycles in the
atmosphere).

In the rescaled Lorenz 96 model (21), it turns out that the values of Fx and Fy do not
significantly affect the mean state and mean energy for both the slow variables x and fast
variables y. To show this, in Table 1 we display the mean states and variances of both x and
y for the rescaled Lorenz 96 model in (21). Observe that, despite different forcing regimes,
the means and variances for both x and y are almost unchanged, the mean states being near
zero while the variances being near one, as designed by the rescaling. Here note that while
the rescaling was carried out for the corresponding uncoupled model (where it sets the mean
state to zero and variance to one precisely), using the same rescaling parameters in the coupled
model (21) still sets its means and variances near prescribed values zero and one, respectively
(although not precisely).

At this point, we turn our attention to the chaotic behavior of the slow variables x and mixing
behavior of the fast variables y for the same range of parameters. Here we observe the average
divergence behavior in time between the short-time (half of the time unit) running averages
〈x〉(t) of the slow time series x(t), which are initially generated very closely to each other (for
technical details of this simulation, see Abramov (2011c)). The short time-averaging window
of half of the time unit for the running average 〈x〉(t) ensures that the slow variables x(t)
do not change much during this window, while the fast time series y(t) mix completely
during the same short time averaging window. The results of this simulation, together with
the the time autocorrelation functions for the decoupled fast variables for the same set of
parameters with x set to its mean state, are shown in Figure 1. Remarkably, the chaos in the
slow x-variables is consistently suppressed as the fast forcing Fy increases, as the unperturbed
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Nx = 10, Ny = 40, Fx = 6, λx = λy = 0.25, ε = 0.01
Fy x-mean x-var y-mean y-var

6 9.64 · 10−3 0.9451 −2.38 · 10−3 1.066
8 2.817 · 10−2 0.9514 −1.466 · 10−2 1.098
12 2.05 · 10−2 0.9336 −2.719 · 10−2 1.139

16 −1.353 · 10−2 0.9006 −4.028 · 10−2 1.153
24 −6.972 · 10−2 0.8434 −6.075 · 10−2 1.167

Table 1. The mean states and variances of the x and y variables for the rescaled Lorenz 96
model in (21) with the following parameters: Nx = 10, Ny = 40, Fx = 6, Fy = 6, 8, 12, 16 and
24, λx = λy = 0.25, ε = 0.01.
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Fig. 1. Left: average divergence between perturbed and unperturbed running averages of the
slow variables of (21). Right: the time autocorrelation functions of (22) with xi fixed at its
statistical mean state. The following parameters are used: Nx = 10, Ny = 40, Fx = 6,
Fy = 6, 8, 12, 16 and 24, λx = λy = 0.25, ε = 0.01.

and perturbed slow running averages 〈x〉(t) diverge from each other slower and slower
in time. It cannot be caused by the changing statistical mean or variance of the slow or
fast variables creating average counteracting forcing at the slow variables, as Table 1 clearly
indicates that the mean states and variances of both the slow and fast variables do not change
by a significant amount for different Fy. At the same time, observe that more rapid decay of
the time autocorrelation functions for the fast variables is observed as chaos at slow variables
is suppressed, supporting the theory developed above and in Abramov (2011c).

In addition, in Figure 2 we demonstrate viability of the quasi-Gaussian approximation to the
response R(x) of the mean state z̄ in (4) to small constant external forcing, where x is set
to the statistical mean state of the slow variables. Observe that as Fy increases and chaos at
the slow variables is suppressed, the smallest eigenvalue of the symmetric part of R grows
systematically, thus “increasing” positive-definiteness of R. Additionally, the probability
density functions of the fast variables are shown in Figure 2 to demonstrate that the statistical
distribution of the fast variables is close to Gaussian.
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Fig. 2. Upper-left: probability density functions of (22) with xi fixed at its statistical mean
state. The rest: quasi-Gaussian approximations of averaged infinite-time linear response
operators R(x̄) for the rescaled Lorenz 96 model in (21) with the following parameters:
Nx = 10, Ny = 40, Fx = 6, Fy = 6, 8, 12, 16 and 24, λx = λy = 0.25, ε = 0.01.
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Fig. 3. Left: average divergence between perturbed and unperturbed running averages of the
slow variables of (21). Right: the time autocorrelation functions of (22) with xi fixed at its
statistical mean state. The following parameters are used: Nx = 20, Ny = 80, Fx = 6,
Fy = 6, 8, 12 and 16, λx = λy = 0.35, ε = 0.01, as well as for the uncoupled rescaled Lorenz 96
model with N = 20 and F = 6.

Nx = 20, Ny = 80, Fx = 6, λx = λy = 0.35, ε = 0.01
Fy x-mean x-var y-mean y-var

6 6.216 · 10−3 0.8878 −9.982 · 10−3 1.119
8 2.34 · 10−2 0.8728 −2.791 · 10−2 1.19

12 −0.1363 0.6927 −5.553 · 10−2 1.168
16 −0.1444 0.6703 −8.669 · 10−2 1.199

Table 2. The mean states and variances of the x and y variables for the rescaled Lorenz 96
model in (21) with the following parameters: Nx = 20, Ny = 80, Fx = 6, Fy = 6, 8, 12 and 16,
λx = λy = 0.35, ε = 0.01.

Another key question in the atmosphere/ocean science is whether the uncoupled system,
consisting of slow variables only, is more or less chaotic than its original version, coupled
with the fast, often unresolved or underresolved variables. Indeed, often scientists work with
uncoupled models consisting of slow variables only, where coupling terms were replaced
with the estimates of the long-term averages of the corresponding fast variables, such as the
T21 barotropic model with the realistic Earth topography (Abramov & Majda, 2009; Franzke,
2002; Selten, 1995), and study dynamical properties of the slow variables in the uncoupled
models. The common sense in this case suggests that if the uncoupled slow model is chaotic,
then, naturally, its original version coupled with fast rapidly mixing dynamics should be even
more chaotic.

Remarkably, the common sense logic in this situation is deceiving. In fact, it turns out to be
possible even to reach the transition from the chaotic to stable slow dynamics by increasing
the turbulent mixing at the fast variables, while the uncoupled slow dynamics remain chaotic.
Here we demonstrate such an example for the rescaled Lorenz 96 model in (21) with the
following set of parameters: Nx = 20, Ny = 80, Fx = 6, λx = λy = 0.35, ε = 0.01, and compare
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it with the uncoupled rescaled Lorenz 96 model with the same parameters N = 20 and F = 6
for the slow variables. In Figure 3 we show the average divergence of a perturbed trajectory
from an unperturbed one for this set of parameters. Observe that, while the slow dynamics
for Fy = 6, 8 and for uncoupled dynamics with F = 6 are clearly chaotic, for Fy = 12 and
greater values the abrupt transition occurs, where the difference between the perturbed and
unperturbed x time series does not grow much beyond 10%. The time autocorrelations of the
fast variables for the same set of parameters are also shown in Figure 3, while the statistical
mean states and variances for and Table 2. Here, the chaos at slow variables is suppressed
purely by the dynamical mechanism uncovered in this work; indeed, the mean state and
variance of both the slow and fast variables do not change substantially enough to suppress
chaos by creating a counteracting mean forcing term at the slow dynamics to suppress Fx (see
Table 2 for confirmation), while the time autocorrelation functions for the fast variables in
Figure 3 with x set to the mean state decay faster for larger values of Fy, indicating stronger
mixing. The key observation here is that the behavior of the uncoupled model with just the
slow variables in the same regime is deceiving – it is clearly chaotic, while the full two-scale
model loses chaos at the slow variables in more turbulent regimes of the fast dynamics.

3. Capturing statistics of coupled dynamics via simple closure for slow variables

The time-space scale separation of atmospheric dynamics causes its direct numerical
simulation to be computationally expensive, due both to the large number of the fast variables
and necessity to choose a small discretization time step in order to resolve the fast components
of dynamics. In the climate change prediction the situation is further complicated by the fact
that climate is characterized by the long-term statistics of the slow LFV modes, which, under
small changes of parameters (such as the solar radiation forcing, greenhouse gas content, etc)
change over even longer time scale than the motion of the slow variables themselves. In
this situation, where long-term statistics of the slow motion patterns need to be captured, the
direct forward time integration of the most comprehensive global circulation models (GCM)
is subject to enormous computational expense.

As a more computationally feasible alternative to direct forward time integration of the
complete multiscale model, it has long been recognized that, if a closed simplified model
for the slow variables alone is available, one could use this closed slow-variable model
instead to simulate the statistics of the slow variables. Numerous closure schemes
were developed for multiscale dynamical systems (Crommelin & Vanden-Eijnden, 2008;
Fatkullin & Vanden-Eijnden, 2004; Majda et al., 1999; 2001; 2002; 2003), which are based
on the averaging principle over the fast variables (Papanicolaou, 1977; Vanden-Eijnden,
2003; Volosov, 1962). Some of the methods (such as those in Majda et al. (1999; 2001;
2002; 2003)) replace the fast nonlinear dynamics with suitable stochastic processes (Wilks,
2005) or conditional Markov chains (Crommelin & Vanden-Eijnden, 2008), while others
(Fatkullin & Vanden-Eijnden, 2004) provide direct closure by suitable tabulation and curve
fitting. Majda et al. (2010) used the stochastic mode reduction method in a nonlinear stochastic
model which mimicked the behavior of a GCM. However, it seems that all these approaches
require either extensive computations to produce a closed model (for example, the methods in
Crommelin & Vanden-Eijnden (2008) and Fatkullin & Vanden-Eijnden (2004) require multiple
simulations of fast variables alone with different fixed states of slow variables), or somewhat
ad hoc determination of closure coefficients by matching areas under the time correlation
functions (Majda et al., 1999; 2001; 2002; 2003).
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In this section we present a simple method of determining the closed model for slow variables
alone, which requires only a single computation of appropriate statistics for the fast dynamics
with a certain fixed state of the slow variables, developed in Abramov (2011b). The method is
based on the first-order Taylor expansion of the averaged coupling term for the fast variables
with respect to the slow variables, which was already computed in Section 2. We show
through the computations with the appropriately rescaled two-scale Lorenz 96 96 model (21)
that, with simple linear coupling in both slow and fast variables, this method produces quite
comparable statistics to what is exhibited by the slow variables of the complete two-scale
Lorenz 96 model. The main advantage of the method is its simplicity and easiness of
implementation, partly due to the fact that the fast dynamics need not be explicitly known
(that is, the fast dynamics can be provided as a “black-box” observations), and the parameters
of the closed model for the slow variables are determined from the appropriate statistics of
the fast variables for a given fixed state of the slow variables. Additionally, the method can
be applied even when the statistics for both the slow and fast variables of the full multiscale
model are not available due to computational expense.

For the purpose of this work, here we assume that the computation of (4) is practically feasible
only for a single choice of the constant parameter x = x∗, where x∗ is a suitable point, in the
vicinity of which the motion occurs, such as the mean state of the original multiscale dynamics
in (1), or a nearby state. A poor man’s approach in this case is to compute the approximate
average at a single point x = x∗, which is a zero order approximation:

z̄(x) = z̄(x∗) +O(‖x− x∗‖). (26)

Here, one has to compute the time average z̄, needed for the averaged dynamics in (3), only
once, for the time series of (4) corresponding to x = x∗. However, as recently found in
Abramov (2011c) and demonstrated above in Section 2, this approximation may fail to capture
the chaotic properties of the slow variables in (1), because the coupling term in the averaged
linearized dynamics (5) would not be reproduced. Here we propose the following first order
correction:

z̄(x) = z̄(x∗) +
∂z̄

∂x
(x∗)(x−x∗) + O(‖x− x∗‖2) =

= z̄(x∗)− λxR(x∗)LT(x− x∗) + O(‖x− x∗‖2),

(27)

where the derivative of z̄ with respect to x is already computed in (10) through the linear
response R of the statistical mean state to small constant external forcing. The first-order
approximation above, applied to (3), leads to the following closed system for the slow
variables alone:

dx

dt
= f (x) + λyLz̄∗ − λxλyLR∗LT(x− x∗), (28)

where z̄∗ = z̄(x∗) is the time-average of the trajectory in (4) for x = x∗, while R∗ = R(x∗)
is given by (19) for the same value of x = x∗.

Even with the linear coupling, the function z̄(x) (the dependence of the mean state of (4)
on x) is not generally linear. Thus, the validity of the linear approximation in (28) depends
on the influence (or lack thereof) of the nonlinearity of the function z̄(x). While rigorous
estimates of the validity of the linear approximation in (28) can hardly be provided in general
case, here, instead, we try to justify it by comparing the fast limiting system in (4) to the
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Ornstein-Uhlenbeck process in (16). It is easy to see, by applying statistical averages on both
sides, that the difference between the statistical mean states of (16) corresponding to x and x∗

is
z̄OU − z̄∗OU = Γ

−1Lx(x− x∗), (29)

which is valid for (x − x∗) of an arbitrary norm. At the same time, it was already shown
in (18) (Section 2) that R = Γ

−1, which means that, in the case of the Ornstein-Uhlenbeck
process, the relation (27) is exact for an arbitrarily large perturbation (x − x∗). Hence, if
the nonlinear process in (4) behaves statistically similarly to the Ornstein-Uhlenbeck process
in (16), the averaged system in (28) can be expected to behave statistically similarly to the
slow part of (1). Below we numerically test the approximation for slow variables with linear
coupling using the two-scale Lorenz 96 model, the same that was used in Section 2.

3.1 Direct numerical simulation

Here we present a numerical study of the proposed approximation for the slow dynamics,
applied to the two-scale Lorenz 96 model in (21). We compare the statistical properties of the
slow variables for the three following systems:

1. The complete two-scale Lorenz 96 system from (21);

2. The approximation for the slow dynamics alone from (28);

3. The poor man’s version of (28) with the first-order correction term R∗ set to zero (further
referred to as the “zero-order” system).

The fixed parameter x∗ for the computation of R∗ was set to the long-term mean state x̄ of
(21) (in practical situations, a rough estimate could be used).

Due to translational invariance of the studied models, the statistics are invariant with respect
to the index shift for the variables xi. For diagnostics, we monitor the following long-term
statistical quantities of xi:

a. The probability density functions (PDF), computed by bin-counting. A PDF gives the
most complete information about the one-point statistics of xi, as it shows the statistical
distribution of xi in the phase space.

b. The time autocorrelation functions 〈xi(t)xi(t + s)〉, where the time average is over t,
normalized by the variance 〈x2

i 〉 (so that it always starts with 1).

The success (or failure) of the proposed approximation of the slow dynamics depends on
several factors. First, as the quasi-Gaussian linear response formula (19) is used for the
computation of R∗, the precision will be affected by the non-Gaussianity of the fast dynamics.
Second, it depends how linearly the mean state z̄ for the fast variables depends on the slow
variables x. Here we observe the limitations of the proposed approximation by studying a
variety of dynamical regimes of the rescaled Lorenz 96 model in (21):

• Nx = 20, J = 4 (so that Ny = 80). Thus, the number of the fast variables is four times
greater than the number of the slow variables.

• λx = λy = 0.3, 0.4. These values of coupling are chosen so that they are neither too
weak, nor too strong (although 0.3 is weaker, and 0.4 is stronger). Recall that the standard
deviations of both xi and yi,j variables are approximately 1, and, thus, the contribution to
the right-hand side from coupled variables is weaker than the self-contribution, but still of
the same order.
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Fig. 4. Probability density functions of the slow variables. The following parameters are
used: Nx = 20, Ny = 80, Fx = 6, 16, Fy = 8, 12, λx = λy = 0.3, ε = 0.01.

λx,y = 0.3, Fy = 8 λx,y = 0.3, Fy = 12

Red. Z.O.

Fx = 6 5.036 · 10−3 1.165 · 10−2

Fx = 16 5.593 · 10−3 1.469 · 10−2

Red. Z.O.

Fx = 6 2.581 · 10−3 1.576 · 10−2

Fx = 16 2.71 · 10−3 1.818 · 10−2

λx,y = 0.4, Fy = 8 λx,y = 0.4, Fy = 12

Red. Z.O.

Fx = 6 0.1022 8.857 · 10−2

Fx = 16 3.725 · 10−3 2.703 · 10−2

Red. Z.O.

Fx = 6 9.28 · 10−2 0.1113
Fx = 16 5.885 · 10−3 3.209 · 10−2

Table 3. L2-errors between the PDFs of the slow variables of the full two-scale Lorenz 96
model and the two reduced models. Notations: “Red.” stands for “Reduced” (that is, (28)),
and “Z.O.” stands for “Zero-order”, the poor man’s version of (28).
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Fig. 5. Probability density functions of the slow variables. The following parameters are
used: Nx = 20, Ny = 80, Fx = 6, 16, Fy = 8, 12, λx = λy = 0.4, ε = 0.01.

• Fx = 6, 16. The slow forcing Fx adjusts the chaos and mixing properties of the slow
variables, and in this work it is set to a weakly chaotic regime Fx = 6, and strongly chaotic
regime Fx = 16.

• Fy = 8, 12. The fast forcing adjusts the chaos and mixing properties of the fast variables.
Here the value of Fy is chosen so that the fast variables are either moderately chaotic for
Fy = 8, or more strongly chaotic for Fy = 12.

• ε = 0.01. The time scale separation of two orders of magnitude is consistent with typical
real-world geophysical processes (for example, the annual and diurnal cycles of the Earth’s
atmosphere).

In Figures 4 and 5 we show the probability density functions of the slow dynamics for the
full two-scale Lorenz 96 model, the reduced closed model for the slow variables alone in (28),
and its poor man’s zero order version without the linear correction term. In addition, in Table
3 we show the L2-errors in PDFs between the full two-scale Lorenz 96 model and the two
reduced models. Observe that for the more weakly coupled regimes with λx = λy = 0.3 all
PDFs look similar, however, the reduced model with the correction term reproduces the PDFs
much closer to those of the full two-scale Lorenz 96 model, than the zero-order model. In
the more strongly coupled regime with λx = λy = 0.4 the situation tilts even more in favor
of the reduced model with linear correction term in (28): observe that for the weakly chaotic
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Fig. 6. Time autocorrelation functions of the slow variables. The following parameters are
used: Nx = 20, Ny = 80, Fx = 6, 16, Fy = 8, 12, λx = λy = 0.3, ε = 0.01.

λx,y = 0.3, Fy = 8 λx,y = 0.3, Fy = 12

Av. Z.O.

Fx = 6 5.841 · 10−2 0.1211
Fx = 16 4.079 · 10−2 5.342 · 10−2

Av. Z.O.

Fx = 6 6.539 · 10−2 0.1572
Fx = 16 1.559 · 10−2 7.396 · 10−2

λx,y = 0.4, Fy = 8 λx,y = 0.4, Fy = 12

Av. Z.O.

Fx = 6 5.538 · 10−2 0.3677
Fx = 16 8.534 · 10−2 0.1355

Av. Z.O.

Fx = 6 0.2981 0.3986
Fx = 16 4.835 · 10−2 0.1482

Table 4. L2-errors between the time autocorrelation functions of the slow variables of the full
two-scale Lorenz 96 model and the two reduced models. Notations: “Red.” stands for
“Reduced” (that is, (28)), and “Z.O.” stands for “Zero-order”, the poor man’s version of (28).
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Fig. 7. Time autocorrelation functions of the slow variables. The following parameters are
used: Nx = 20, Ny = 80, Fx = 6, 16, Fy = 8, 12, λx = λy = 0.4, ε = 0.01.

regime with Fx = 6 the PDFs of the full two-scale Lorenz 96 model have three sharp peaks,
indicating strong non-Gaussianity. The reduced model in (28) reproduces these peaks, while
its zero-order version fails. In Figures 6 and 7 we show the time autocorrelation functions
of the slow dynamics for the full two-scale Lorenz 96 model, the reduced closed model for
the slow variables alone in (28), and its poor man’s zero order version without the linear
correction term. Just as the PDFs, for the more weakly coupled regimes with λx = λy = 0.3
the time autocorrelation functions look similar, yet the reduced model with the correction
term reproduces the time autocorrelation functions more precisely than the zero-order model.
In the more strongly coupled regime with λx = λy = 0.4 the difference between the reduced
model in (28) and its poor man’s zero-order version is even more drastic: observe that for the
weakly chaotic regime with Fx = 6 the time autocorrelation functions of the full two-scale
Lorenz 96 model do not exhibit decay (indicating very weak mixing), and the reduced model
in (28) reproduces the autocorrelation functions of the full two-scale Lorenz 96 model rather
well, while its zero-order version fails. In addition, in Table 4 we show the L2-errors in time
autocorrelation functions (for the correlation time interval of 20 time units, as in Figures 6
and 7) between the full two-scale Lorenz 96 model and the two reduced models. Observe
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that, generally, the reduced system in (28) produces more precise results than its poor man’s
version without the correction term.

4. Conclusions

In this work we made an initial attempt to estimate and reproduce the chaotic properties of
a nonlinear multiscale system with linear energy-preserving coupling which mimics major
features of low frequency variability dynamics in real-world climate. In particular, we find
that, due to the energy-preserving coupling, the sensitivity to initial conditions of the slow
variables can be reduced by rapid mixing strong chaos of the fast variables. In addition, we
develop a simple closure scheme for the slow variables alone, which captures major statistics
of the full multiscale system. These two studies suggest that the predictability of the low
frequency variability in multiscale climate dynamics could in practice be better than what
is normally presumed today, and future projections of the low frequency variability modes
could be captured by a much simpler reduced model for slow variables alone, which could
potentially lead to improved climate change prediction. Below we list the major developments
and observations of this work.

• A suitable theory of the effect of the fast rapidly mixing dynamics on the chaos at slow
variables is developed by applying the averaging formalism to the linearized dynamics
of the system. It is found that the linear energy-preserving coupling creates a systematic
damping effect on the chaos at the slow scales when the fast dynamics is rapidly mixing.

• This effect is vividly demonstrated for the two-scale Lorenz 96 model, which is also
appropriately rescaled so that the adjustments for the mixing regime at the fast variables
do not affect the mean state and variance of both the slow and fast variables. In particular,
it is shown through direct numerical simulations that the uncoupled slow dynamics
may remain chaotic, while the full coupled system loses chaos and becomes completely
predictable at the slow scales as the dynamics at the fast scales become more turbulent.

• With help of the observations above, we develop a simple method of constructing the
closed reduced model for slow variables of a multiscale model with linear coupling, which
requires only a single computation of the mean state and the time autocorrelation function
for the fast dynamics with a fixed state of the slow variables. The method is based on
the first-order Taylor expansion of the averaged coupling term for the fast variables with
respect to the slow variables, which is computed using the linear fluctuation-dissipation
theorem. We demonstrate through the computations with the same rescaled Lorenz 96
model that, with simple linear coupling in both slow and fast variables, the developed
reduced model produces quite comparable statistics to what is exhibited by the complete
two-scale Lorenz 96 model.

Given the above results, the question of improved predictability of low frequency variability
and climate becomes more interesting. Indeed, if the coupling to the fast dynamics makes
slow processes less chaotic, then the reduced models with constant parameterizations of
interactions with fast dynamics could be more chaotic than the actual physical processes they
describe. If one can create reduced climate models which capture the chaos suppression effect
with adequate skill, the climate change projections can potentially become less uncertain. In
the future, the author intends to develop such reduced climate models for a more realistic
Earth-like setting, possibly in collaboration with climate scientists. It remains to be seen
whether Earth’s climate is more predictable than we tend to think.
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