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Climatology of the U.S. Inter-Mountain West 

S. Y. Simon Wang and Robert R. Gillies 
Utah Climate Center / Department of Plants, Soil and Climate 

Utah State University, Logan UT 
USA 

1. Introduction 

The Inter-Mountain West (IMW) of North America is a region that lies between the Rocky 
Mountains to the east and the Cascades and Sierra Nevada to the west (Fig. 1). The climate 
of the IMW is generally semi-arid but this varies by location and elevation. An estimated 50-
80% of the IMW’s streams and rivers are fed by mountain snowpack (Marks and Winstral 
2001), while the majority of the streams and rivers flow into desert sinks or closed-basin 
lakes such as the Great Salt Lake (Fig. 1). These streams and rivers create some 
agriculturally productive areas in the otherwise dry basins and mountain valleys. In 
particular, the Colorado River supplies water to the population-booming southwestern  

 

Fig. 1. The Inter-Mountain West (IMW) region (yellow dashed outline), the Great Salt Lake 
(arrow), and the tree ring site for the reconstructed precipitation (red dot) as shown in Fig. 2. 
Background is terrain (map source: Unidata). 
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states and cities. Climate in the Colorado River Basin has been a subject of intense research 
due to its projected drying trend (Barnett and Pierce 2008). Change in winter precipitation 
regime (i.e. ratio between rainfall and snowfall) is also a subject of interest not only because 
its role in water resource but also its impact on recreational (ski) industry in the IMW. 

Paleoclimate records indicate that the current mean state of climate in the IMW may not be 

stable. Over most of the past millennium, droughts in the IMW were generally more intense 

and lasted longer than those experienced in the 20th century, which had included the “severe 

droughts” of the 1930s and 1950s. Fig. 2 presents a long-term precipitation proxy based on 

tree ring data collected near the upstream Colorado River in northeastern Utah (red dot in 

Fig. 1). It is immediately apparent that even the worst droughts of the 20th century are 

dwarfed in both magnitude and duration compared to the previous droughts of the 14th-18th 

centuries, as well as the megadrought of the 13th century (Gray et al. 2004). Moreover, the 

20th century has been a relatively wet period when compared to the pre-19th century era. 

These observations may imply an unstable state of modern-time, relatively wet precipitation 

regime that carries the potential to resume its pre-18th century climatology with longer, 

deeper droughts. Previous studies of tree ring-based drought analysis (Cook et al. 1997; 

Herweijer et al. 2007) have found a similar non-stationarity in the IMW climate change, in 

the sense that drought frequency has shifted from being centennial and more intense in the 

early millennium into being multi-decadal and less intense in the later millennium. To what 

extent such a cyclic feature may change or persist into the future is important information 

for water management. 

 

Fig. 2. (a) Tree ring-reconstructed annual precipitation proxy (blue shadings) generated 
from samples collected in northeastern Utah (red dot in Fig. 1) by Gray et al. (2004). Orange 
shadings indicate precipitation deficits under the 1940-2001 mean. 

It is now well established that quasi-periodic climate modes in the Pacific and Atlantic 

Oceans modulate the IMW climate. A sizable body of research (Barlow et al. 2001; Schubert 

et al. 2004, 2009; Seager et al. 2005; among others) has explored the physical linkage between 
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the Pacific sea surface temperature (SST) variations and climate anomalies in North 

America. Such Pacific SST variations include (a) multi-decadal modes like the Pacific 

Decadal Oscillation (PDO) (Mantua et al. 1997) and the Interdecadal Pacific Oscillation (IPO; 

Folland et al. 2002), (b) decadal modes such as the Pacific quasi-decadal oscillation (QDO) 

(Tourre et al. 2001; White et al. 2003), and (c) interannual modes associated with the El Niño-

Southern Oscillation (ENSO). Covariability between these Pacific climate modes and the 

drought evolution in the IMW has also been reported (e.g., Sangoyomi 1993; Zhang and 

Mann 2005). Moreover, the IMW’s climate regime is further complicated by unique seasonal 

variations in precipitation, characterized by a combination of annual and semiannual cycles 

whose timing varies across the region. Such a complex climatology poses a great challenge 

to climate models and climate prediction. 

This chapter discusses the complex climate regimes of the IMW with a focus on four 

different timescales: (Section 2) seasonal and intraseasonal, section (3) interannual, and 

section (4) decadal variabilities. These different scales of climate variability interact with 

each other and this further modulates the IMW climate variability; Section 5 discusses such 

an interaction. Simulations of the IMW climate by some global and regional climate models 

are evaluated. Finally, Section 6 provides a summary of the chapter. 

2. Seasonal climate variability  

a. Annual and semiannual cycles 

Pronounced annual and semiannual cycles in precipitation characterize the IMW’s 

climatology. Earlier studies (e.g., Hsu and Wallace 1976) have noted that the phase of the 

annual cycle changes by six months going from east to west across the Rocky Mountains, 

while the semiannual cycle changes phase from north to south. The precipitation patterns 

corresponding to these annual and semiannual cycles are illustrated in Figs. 3a and 3b, 

respectively, through correlation maps of the first and second principal components (PC) of 

monthly data of the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie 

and Arkin 1997). In the IMW, the combination of the annual cycle (i.e. east-west) and 

semiannual cycle (i.e. north-south) forms four seasonal precipitation regimes that meet in 

the central IMW near Utah. However, atmospheric general circulation models (AGCMs) do 

not simulate well such seasonal cycles in precipitation, particularly the semiannual cycle 

(Boyle 1998). In addition, complexity also arises from interaction between the atmospheric 

circulation and orography encountered in the IMW, amplifying such model deficiencies. For 

instance, the NCAR Community Climate Model version 3 (CCM3) produced a distorted 

semiannual precipitation pattern in the IMW, shown in Fig. 3c. Wang et al. (2009a) have 

suggested that the semiannual precipitation cycle in the IMW is likely related to the onset 

and development of the North American Monsoon (NAM) that features a change in the 

upper-level circulation regime, evolving from a large-scale trough in spring into a quasi-

stationary anticyclone in the monsoon months (Higgins et al. 1997). The circulation regime 

change is followed by a precipitation phase reversal in the north-south direction, as is 

shown in Fig. 3b. A similar but weaker change in circulation pattern occurs in early spring, 

when an upper-level trough forms over the southwest U.S. and gradually migrates 

westward (Wang and Chen 2009). These features pose a great challenge to AGCMs in 

simulating the precipitation seasonal cycle of the IMW. 
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(a) Annual (Obs) 

(b) Semiannual (Obs) (c) Semiannual (CCM3) (d) Semiannual (CCM3-CMT) 

 

Fig. 3. Correlation maps of monthly precipitation anomalies with respect to (a) the annual 
cycle and (b) the semiannual cycle using the CMAP (observed) data. (c) and (d) Same as (b) 
but using the control run and the coupled-CMT run of CCM3, respectively. The CCM3 
precipitation was correlated with the PC time series of the CMAP (observed) data. 

To further examine the AGCM performance, we adopted a set of CCM3 simulations with (a) 
the control run as in Fig. 3c and (b) the inclusion of a convective momentum transport 
(CMT) in the convection scheme as in Fig. 3d, generated by Wu et al. (2007). The reason here 
to include the CMT experiment was to evaluate the impact of convective processes on the 
simulated seasonal cycles, since the semiannual cycle of the IMW precipitation is linked to 
the NAM onset – i.e. convective rainfall. In AGCMs, CMT is far more intricate to 
parameterize than thermodynamic transports due to complicated cloud-scale pressure 
gradients induced by organized convection (Moncrieff 1992; Wu et al. 2007). As shown in 
Fig. 3d, the inclusion of CMT considerably improves the simulation of the semiannual 
precipitation change. Of note is that the improvement appears not only in the IMW but also 
in the central and southeast United States. An improvement like this signifies that the 
semiannual cycle in precipitation is closely related to cloud system feedback, since 
convective clouds not only release latent heat and redistribute heat/moisture but also 
transport momentum. Possibly, the convective momentum tendencies adjust the local 
Hadley circulation across the IMW, while the responses of meridional wind to the more 
realistic heating improve the secondary meridional circulation associated with the NAM 
development. 

Regional climate models (RCMs) are thought to produce a more realistic precipitation seasonal 
cycle than AGCMs, particularly in regions having topographically enhanced precipitation 
(Leung et al. 2006). The IMW’s geography is characterized by four major mountain ranges: 1) 
the Cascade Range, 2) the Bitterroot Range, 3) the Wasatch Range and 4) the Colorado Rockies, 
denoted in Fig. 4a as regions 1-4, while central Arizona is denoted as region 5. In the cold 
season, precipitation occurs mainly on the windward side of these mountain ranges (Fig. 4b).  
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Legend: 

 

Fig. 4. (Adopted from Wang et al. 2009a) (a) Orography and (b) cold-season rainfall 
(November-May, UDel) of the IMW, where the red lines outline the major mountain ranges. 
(c)-(g) Monthly histograms of UDel rainfall averaged from the five regions indicated in (b), 
superimposed with the corresponding precipitation of NARR (thick black line) and all 
RCMs (color lines). The abbreviation of the RCMs and their corresponding color codes are 
given under (b). Note the precipitation scale in (c) is twice of that in (d)-(g).  
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Wang et al. (2009a) showed that, from the coastal area toward the IMW (i.e. regions 1 
through 4) the seasonal cycle evolves from a winter regime toward the summer regime with 
increasing semiannual variability. This transition of the precipitation seasonal cycle is 
illustrated in Figs. 4c-g by two sets of observation – the North American Regional 
Reanalysis (NARR) (Mesinger et al. 2006; black line) and the University of Delaware (UDel) 
(Legates and Willmott 1990; blue bar). Apparently, spring precipitation becomes important 
in region 2 and peaks in region 3, but then decreases in regions 4 and 5 where a monsoon 
rainfall regime prevails in summer, corresponding to the combination of the annual and 
semiannual cycles. 

Analyzing the precipitation climatology simulated by six RCMs participating in the North 
American Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2009), 
in which the RCMs were driven by the same boundary conditions of a global reanalysis, 
Wang et al. (2009a) found that the RCMs have a difficulty in replicating the precipitation 
seasonal cycle. As revealed in Figs. 4c-g, in the Cascade Range (region 1) where the annual 
cycle is dominant, the phases of the RCM precipitation show marked consistency with the 
observations. However, beginning in region 2, the RCM precipitation variation increasingly 
departs from the observation and the simulated winter precipitation amounts are 
consistently too large. In the inner IMW (region 3), where the annual cycle is weak, four out 
of the six RCMs still produce a dominant annual cycle and do not capture the elevated 
spring precipitation. In region 4 where winter precipitation and summer monsoon rains 
have equal contributions, the RCMs generate mixed signals that disagree with the 
observations. In region 5, the simulated monsoon precipitation is only captured by one 
model (red line), which used spectral nudging (i.e., incorporating reanalysis information 
into the simulation domain). In summary, the performances of the RCMs are weakest in the 
inner IMW (i.e. regions 2-4) in which the transition of seasonal climate regimes takes place. 
Due to the overprediction in winter precipitation, most RCMs have a tendency to produce 
too strong of an annual cycle and this obscures the relatively good performance in the 
semiannual cycle (Wang et al. 2009a). Such a character differs from most AGCMs that do not 
simulate the semiannual cycle well. The overprediction of winter precipitation also affects 
the simulated ENSO impact on the IMW climate; this model deficiency will be further 
discussed in Section 3. 

b. Intraseasonal variation 

Winter and spring weather conditions in the IMW are characterized by considerable 
intraseasonal variations (on the order of 3-8 weeks). These intraseasonal variations are 
linked to (1) the evolution of free external Rossby waves (Lau and Nath 1999), (2) tropical-
midlatitude interaction associated with the Madden-Julian Oscillation (MJO) (Mo 1999), 
and (3) short Rossby waves propagating through the jet stream waveguide, referred to as 
the circumglobal teleconnection (CGT) (Branstator 2002). For external Rossby waves, the 
forcing and dynamics have been studied extensively; i.e. the waves slowly propagate 
westward in response to the planetary β effect at a speed coincident with the 
intraseasonal timescale (Branstator 1987; Horel and Mechoso 1988; Lau and Nath 1999). 
On the other hand, the midlatitude response of the circulation to the tropical MJO forcing 
normally results in stationary or eastward-moving synoptic-scale waves (Mo and Paegle 
2005). For the CGT, upstream transient vorticity forcing, usually occurring in Eurasia and 
East Asia, produces short-wave response with the energy propagating eastward towards 
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North America. The CGT pattern is known to change month-by-month (i.e. intraseasonal) 
(Ding and Wang 2005), yet it has a profound impact on extreme spring weather conditions 
in the IMW (Wang et al. 2010b).  

A recent study (Gillies et al. 2010a) has shown that winter weather – including temperature, 
precipitation and snowpack – fluctuates in strong association with a “30-day mode” that 
dominates persistent weather regimes in the IMW. Analyzing the geopotential height 
sounding data in Salt Lake City during 1980-2008, Gillies et al. (2010a) constructed a 
composite lifecycle of the 30-day mode (Fig. 5a). This 30-day mode strongly affects 
precipitation and snow depth over the IMW (Fig. 5b; centered in Salt Lake City with a 200 
km radius), as well as temperature that effects snowmelt. Based on the 8-phase lifecycle of 
the 30-day mode, Gillies et al. (2010b) constructed the composite patterns of the 200-mb 
streamfunction and velocity potential (Fig. 6). The composite lifecycle of the 30-day mode – 
i.e. centered in the IMW – depicts a global eastward propagation of the velocity potential 
with a predominant zonal wave-1 pattern, which resembles the signature MJO structure. 
Meanwhile, a series of short-wave cells is excited within the eastward propagating velocity 
potential and propagates towards North America. At phases 2-3 when a stationary ridge 
prevails over the Great Basin, the associated wave train follows the “great circle” route of 
the Pacific-North America (PNA) pattern (Horel and Wallace 1981). An oppositely signed 
circulation anomaly appears at phases 6-7. Despite the propagating feature in the velocity 
potential, the streamfunction wave trains appear to be quasi-stationary. Such a feature 
underscores the fact that wintertime stationary waves in North America (and in the IMW) 
fluctuate in response to the tropical–extratropical linkages of the MJO (e.g., Kushnir 1987; 
Mo and Paegle 2005). These results indicate that the occurrences of either persistent ridging 
events or prolonged precipitation spells in the IMW are “phase locked” with the MJO 
evolution – at least at the higher-frequency end of the MJO spectrum that spans 30-60 days.  

 

Fig. 5. (a) Lifecycle of the intraseasonal variability (ISV) based on Salt Lake City sounding of 
geopotential height (300mb), and (b) the 8-phase composites of Tmax (red), precipitation 
(blue dashed), and snow depth (cyan dotted) in Utah and upper Colorado Basin during 
1980-2008 (after Gillies et al. 2010a). 
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Fig. 6. Eight-phase composites of the 200mb velocity potential (shadings) and streamfunction 
constructed form the 30-day mode at Salt Lake City. Adopted from Gillies et al. (2010b) with 
permission from the American Meteorological Society.  
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3. Interannual variability 

The impact of ENSO on precipitation and drought anomalies over western North America 

has been studied extensively. It is now well established that ENSO tends to produce a so-

called North American dipole structure in precipitation and temperature, encompassing the 

Pacific Northwest and the Southwest with opposite polarity (Dettinger et al. 1998; and 

subsequent works). However, short-term climate forecasts (6 months to 2 years) based on 

this conceptual model have frequently failed during the recent decade (Wood 2011). Past 

studies (Rajagopalan and Lall 1998; Zhang and Mann 2005) have noted that the central part 

of the IMW is shielded from direct influence of ENSO as the region lies between the 

marginal zone of the north-south dipole pattern. Later studies (Hidalgo and Dracup 2003; 

Brown 2011) also found that the ENSO-climate connection in the IMW is not stable; rather, it 

fluctuates following a long-term oscillatory manner. This feature is further discussed in 

Section 5. 

The CGT pattern (cf. Section 2b), which is characterized as a short Rossby wave train along 

the jet stream waveguide with a zonal wave-5 structure (Branstator 2002; Ding and Wang 

2005), has been found to be linked to persistent rainy conditions over the IMW (Wang et al. 

2010b). The spatial scale of the CGT wave train is shorter than that of the classic PNA 

pattern (wave 1-3; Hoskins and Karoly 1981), while its variability is uncorrelated with ENSO 

(Ding and Wang 2005). During spring, the North American circulations undergo a 

considerable change as the jet stream shifts rapidly northward. From April to July, a 

synoptic-scale trough develops over the southwest U.S., deepens and migrates to the West 

Coast and eventually merges with the oceanic trough over the North Pacific (Higgins et al. 

1997; Wang and Chen 2009). The development of this trough enhances moisture and 

facilitates synoptic disturbances toward the IMW during spring, contributing to the rainy 

season there (cf. Fig. 4e).  

Such a seasonal transition takes place through the formation of a standing wave train, 

manifest as stationary short waves embedded in the climatological jet stream (Fig. 7a). 

The distinct short-wave trough over the West Coast (arrow indicated) reflects the spring 

trough that enhances precipitation in the IMW. Wang et al. (2010b) found that extremely 

wet spring seasons in the IMW often occur with the presence of the CGT. Specifically, a 

wet (dry) spring in the IMW occurs when the CGT is in-phase (out-of-phase) with the 

standing wave train. For example, Fig. 7b shows the record precipitation that occurred in 

June 2009 as the climatological trough considerably deepened and was embedded in a 

series of short waves. Here, the CGT is further illustrated by the filtered geopotential 

height in the zonal wave-5 regime using harmonic analysis. Visual comparison between 

Figs. 7a and 7b indicates that the 2009 wave train is in-phase with the standing wave 

train. Analyzing a 50-year period of two reanalysis datasets (NCEP and ERA; see caption) 

through the empirical orthogonal function (EOF) analysis, Wang et al. (2010b) confirmed 

the CGT linkage with the spring precipitation anomalies in the IMW. As shown in Fig. 7c, 

the first leading mode (26%) depicts the CGT as an amplification effect of the standing 

wave train (due to their coincident phases). Comparison of the EOF time series with the 

IMW precipitation anomalies in Fig. 7d further reveals that precipitation anomalies were 

clearly dependent with the phasing of the CGT.  

www.intechopen.com



 
Modern Climatology 

 

162 

 

Fig. 7. (a) long-term 250hPa zonal wind (contours) and the shortwave-regime geopotential 
height (shadings; zonal wave-5) in June; yellow arrow indicates the spring trough. (b) The 
250hPa streamlines and shortwave-regime geopotential height (shadings) in June 2009, 
marked with trough (red) and ridge (blue) lines. Note the consistent phases of geopotential 
height between (a) and (b). (c) First EOF of shortwave-regime streamfunction at 250 hPa 
from two reanalyses: NCEP (contours; Kalnay et al. 1996) and ERA (shadings, combined 
from ERA40 and ERA-Interim; Simmons et al. 2007). (d) Relationship between the first EOFs 
of NCEP1 and ERA, with the scatters represented by the IMW precipitation anomalies (ΔP; 
Legates and Willmott 1990) in terms of sign and size (After Wang et al. 2010b). 

As mentioned in Section 2, Wang et al. (2009a) found that precipitation simulations by the 
NARCCAP RCMs (Section 2a) exhibit a “false” ENSO signal in the central IMW, likely due 
to their general tendency to overpredict winter precipitation. By examining the ENSO 
precipitation pattern constructed from the composite differences between six El Niño 
(1982/83, 87/88, 91/92, 94/95, 97/98, 2002/03) and four La Niña (1984/85, 88/89, 95/96, 98-
2001) winters, which was based on the NOAA Climate Prediction Center1, Fig. 8a reveales 
the typical north-south precipitation dipole over the western United States. This 
precipitation dipole is reasonably simulated by the NARCCAP models. However, in the 
central IMW (i.e. regions 3 and 4 in Fig. 4b indicated by yellow arrows), the RCM 
precipitation anomalies are uniformly too large compared to the observations. It is known 

                                                 
1 http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.ERSST.v3.shtml 
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that precipitation variations in the central IMW are not exactly in-phase with ENSO; instead, 
precipitation variations lag ENSO by a quarter-phase in both the 3-6 year frequency 
(Rajagopalan and Lall 1998) and the decadal frequency (Wang et al. 2009b). This feature is 
manifest by the weak winter precipitation anomalies in the observations near regions 3 
and 4 (Fig. 8a), where the precipitation dipole changes sign. In the RCMs, however, 
significant ENSO signals remain in the central IMW extending from the Pacific 
Northwest, suggesting that most RCMs simulate the ENSO impacts too far inland. On the 
other hand, the ENSO composites made for the subsequent spring seasons (Fig. 8b) do not 
reveal such a systematic bias; this suggests that overprediction of winter precipitation 
over the IMW may be the cause of such a false ENSO signal.  

 

(a) ENSO Composite (DJF) (b) ENSO Composite (MAM) 

Obs Model Model Obs

 

Fig. 8. (a) Differences of precipitation composites between El Niño and La Niña winters 
(December-February). (b) Same as (a) but for the subsequent springs (March-May). The 
major mountain ranges are outlined by black dashed lines. The interval of shaded contours 
is given in the lower right. Adopted from Wang et al. (2009a). 
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4. Decadal variability 

a. Multi-decadal cycle 

A wealth of research (Gray et al. 2003; Seager et al. 2005; Herweijer et al. 2007; and others) has 
established a link between low-frequency climate variability in the IMW and the Pacific 
climate oscillations. Recent studies focusing on the decadal-scale climate variability have 
turned attention to the Great Salt Lake (GSL), a large closed-basin lake located in the heart of 
the IMW (Fig. 1). As a pluvial lake, the GSL integrates hydrological forcings over a substantial 
watershed. When coupled with the lake’s shallowness, the accumulated water results in 
extensive fluctuations in the lake elevation. The large drainage area of the GSL dampens out 
high-frequency variability and therefore is more responsive to climatic variabilities at longer 
timescales (Lall and Mann 1995). Consequently, the long-term change in the GSL elevation 
reflects the persistent wet/dry periods in the IMW. This feature is revealed in Fig. 9a, the 
GSL’s 150 years of elevation record (shaded curve) superimposed with the lake elevation 
tendency (ΔGSL; dotted line). Applied with the 20-year lowpass filter, the ΔGSL exhibits a 
marked multi-decadal variability (solid line) that is coherent with the low-frequency variation 
of the Palmer Drought Severity Index (PDSI; red dashed line), reconstructed from tree rings 
near the GSL (Cook and Krusic 2004). Such a result supports the notion that any long-term 
changes in the GSL elevation respond to sustained wet and dry periods of the surrounding 
region. A recent study by Wang et al. (2011a) noticed that a multi-decadal (~30 year) and a 
quasi-decadal (10-15 year) frequency bands stand out significantly in the GSL elevation 
spectrum; this feature is shown in Fig. 9b. These two frequency bands are also the leading 
timescales of the drought variability in the IMW (Herweijer et al. 2007). 

 

PDSI

Elevation tendency (��GSL)

GSL elevation 

99% CI 
Red noise 
background 

threshold 

IPO 
(~30 yr) 

(a) (b)

QDO 
(10-15 yr) 

�GSL spectrum 

 

Fig. 9. (a) The GSL elevation (blue shaded graph) overlaid with the elevation tendency 
(GSL; black line) and the PDSI (red dashed line) at the nearby grid points, after a 20-year 
lowpass filter. The unfiltered GSL is shown with a gray dotted line for reference. (b) The 
Multi-Taper Method (MTM) spectral analysis of the GSL during the period 1848-2008 with 
2 tapper, overlaid with the 99% confidence interval (upper blue line) and the red noise 
background threshold (lower blue line). Adopted from Wang et al. (2011a). 
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The analysis of Wang et al. (2011a) revealed that hydrological factors controlling the 

multi-decadal variations of the GSL elevation respond to a particular teleconnection that 

is induced at the transition point of the IPO, that is, a basin-scale interdecadal variability 

that exhibits a loading pattern in the tropical Pacific SSTs (Folland et al. 2002). The 

transition lies approximately halfway between the warmest and coldest tropical SST 

anomalies in the central Pacific (corresponding to the extreme IPO phases). A distinctive 

teleconnection pattern develops during such transition points, as was argued by Wang et 

al. (2011a) and delineated in Fig. 10. Using a 700-year record (1300-2003) of the tree ring-

reconstructed Niño 3.4 index (Cook et al. 2009), denoted as CNiño3.4, as well as the 

Twentieth Century Reanalysis (20CR) Version 2 during 1871-2010 (Compo et al. 2011), the 

250hPa streamfunction and SSTs were regressed upon the CNiño3.4 index. All the 

variables were bandpass filtered with 20-45 years to reflect the IPO. At year zero (yr+0),  

 

Fig. 10. (a) Patterns of the 250mb streamfunction (ψ; contours) and SSTs (dotted) regressed 
upon the CNiño3.4 index at different lags. The contour interval is 10-6 m2 s-1 omitting zeros. 
All data were bandpass filtered with 20-50 years. Values at the 95% confidence interval are 
indicated by yellow shadings for ψ and by dots for the SSTs, based on Student’s t-test.  
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the SST response to the CNiño3.4 depicts the classic IPO “horseshoe pattern” (Zhang and 

Delworth 2007) consisting of a widespread eastern tropical warming surrounded by 

midlatitude cooling. A clear PNA pattern of the streamfunction field emerges in response to 

such a tropical Pacific warming (Fig. 10a). Such SST and circulation patterns are known to 

produce the North American dipole that juxtaposes the GSL area with wet conditions the 

SST response to the CNiño3.4 depicts the classic IPO “horseshoe pattern” (Zhang and 

Delworth 2007) consisting of a widespread eastern tropical warming surrounded by 

midlatitude cooling. A clear PNA pattern of the streamfunction field emerges in response to 

the north and dry conditions to the south (Gershunov and Barnett 1998); however it is not 

the modulating force for the GSL change (Wang et al. 2009b). At yr+9, the basin-wide SST 

pattern reveals weak anomalies in the central equatorial Pacific with noticeable cooling in 

the northeastern Pacific (Fig. 10b). Meanwhile, a cyclonic cell develops over western North 

America and is embedded in a zonal wave train. Such a teleconnection wave train appears 

to be a Rossby wave response to upstream forcings (similar to the situation in Fig. 7), 

possibly induced by warm SST and/or convection anomalies in the western North Pacific 

(Lau and Weng 2002; Wang et al. 2011b). The resulting cyclonic circulation over the West 

Coast influences precipitation in the interior West (Barlow et al. 2001). The results presented 

here therefore suggest that the GSL’s multi-decadal variability (and associated local 

wet/dry cycle) is modulated by the IPO’s transition phases between the warm and cold, 

rather than by its extreme phases.  

b. Quasi-decadal cycle 

The marked quasi-decadal variability (10-15 year) revealed form the IMW precipitation 

variations, the GSL elevation change (cf. Fig. 9b), and the Pacific SSTs indicates a co-

variation between the GSL elevation and the Pacific QDO. The Pacific QDO has a substantial 

SST variation in the central tropical Pacific near the NINO4 region (Allan 2000). At the 

quasi-decadal timescale, the SST anomalies in the NINO4 region [SST(NINO4)] exhibit a 

significant, yet inverse coherence with the GSL elevation (Fig. 11). However, such a 

coherence denies any direct association (either in-phase or out-of-phase) between the 

precipitation anomalies in the GSL watershed and the Pacific QDO because, in a given 

frequency, the precipitation variations always lead the GSL elevation variations (Lall and 

Mann 1995). In other words, only an indirect link or a coincidence can explain such an 

association between the Pacific QDO and the precipitation source of the GSL.  

Wang et al. (2010a) investigated this phenomenon and found that the quasi-decadal 

variation in the IMW precipitation consistently lags the Pacific QDO by a quarter-phase, i.e. 

3 years after the peak of the warm-phase Pacific QDO occurs, an anomalous trough 

develops over the Gulf of Alaska and enhances the IMW precipitation (similar to the 

situation in Fig. 10). For the opposite, i.e. the cool-phase Pacific QDO, 3 years later an 

anomalous ridge forms in the same location and thus reduces the IMW precipitation. These 

findings describes a process that the quasi-decadal coherence between SST(NINO4) and 

the GSL elevation reflects a sequential process that begins with the warm/cool phase of the 

Pacific QDO and ultimately affects the GSL elevation, through modulations of the 

quadrature amplitude modulation of the Pacific QDO. This process is illustrated in Fig. 11 

with bandpass filtered time series of SST(NINO4), the IMW precipitation (P), and the GSL 

elevation. The phase shift creates consistent time lags between the GSL elevation and the 
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Pacific QDO, leading to a phase lag of  ~3 years in the quasi-decadal frequency (Fig. 11). 

These processes attribute the phase lags in the occurrence of the IMW droughts/pluvials in 

the IMW, to the lifecycle of the decadal-scale Pacific climate oscillations. 

C 

feet 

cm 

Warm 

Cool 

Warm-to-cool & cool-to-warm transitions 

 

Fig. 11. Time series of the 10-15 year bandpassed SST(NINO4) (black line), precipitation in 
the GSL watershed (blue dotted line), and the GSL elevation (red dashed line). The GSL 
elevation lags the precipitation by 3 years while the precipitation lags the Pacific QDO by 
another 3 years. (Adopted from Wang et al. 2010a) with permission of the American 
Meteorological Society 

c. Paleoclimate evidence 

Because instrumental precipitation data in the IMW only date back to the 1890s, and the length 
of reliable atmospheric data is considerably shorter, proxy precipitation constructed by tree-
ring chronology was examined. Compiling the tree ring records in northeastern Utah, Gray et 
al. (2004) constructed a 776 year precipitation record from 1226 to 2001 – this data has been 
shown in Fig. 1. The power spectra of Gray et al.’s tree-ring precipitation (Fig. 12a) depict three 
significant modes, with one covering the 150-200 year frequency and the other two 
corresponding to the 30 year and 10-15 year cycles of the GSL elevation (cf. Fig. 9b). The 150-
200 year mode echoes the “secular mode” of GSL that was pointed out by previous studies 
(Lall and Mann 1995). As shown in Fig. 1, its uptrend during the 20th century coincides with 
the climate regime shift observed in the Colorado River Basin during the 1970s (Hidalgo and 
Dracup 2003). The 30-year cycle of the tree-ring precipitation is most pronounced between 
1500 and 1650 and has weakened since starting around 1650. Recent tree-ring chronologies 
have been developed into proxies for atmospheric circulation patterns. Examining the proxy 
index of the Pacific Decadal Oscillation (PDO) constructed by Biondi et al. (2001) for the 1661-
1991 period and comparing it with Gray et al.’s tree-ring precipitation, Wang et al. (2010a) 
found three peaks in the 30 year, 10-15 year, and 4-5 year frequency bands that are significant 
above the 90% confidence level in the spectral coherence analysis (Fig. 12b). It is known that 
the PDO (which covers the North Pacific north of 20°N, in contrast to the IPO that covers the 
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entire Pacific Basin) contains both the interdecadal and interannual signals in the tropical 
Pacific (Zhang et al. 1997). Therefore, the three coherence zones in Fig. 12b appear to be 
responses of the PDO, QDO, and ENSO modes, respectively. These modes not only affect the 
IMW climate individually but also collectively; their interplay is discussed next. 
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Fig. 12. (a) The global wavelet power spectrum of the tree-ring reconstructed precipitation 
over northeast Utah (Gray et al. 2004) from 1226 to 2001 superimposed with the red-noise 
99% significance level (dotted curve). (b) MTM coherence between the tree-ring 
precipitation and the proxy PDO index constructed by Biondi et al. 2001 for 1661-1991. The 
three frequency bands corresponding to the IPO, QDO, and ENSO are indicated. (Adopted 
from Wang et al. 2010a) 

5. Scale interaction between different climate modes  

a. Interdecadal vs. interannual 

Focusing on timescales longer than ENSO, previous studies (e.g., Gershunov and Barnett 

1998; Brown and Comrie 2004) have identified a pronounced interaction between 

interannual and decadal climate variabilities originating from the Pacific. Those studies 

concluded that constructive and destructive superposition between ENSO and the PDO can 

respectively strengthen and weaken the North American dipole structure in precipitation 

and temperature. Recent studies (e.g., Brown 2011) continued to explore such a multi-

decadal, ENSO-related variability over the western United States. But to date, how these 

different scales of natural variability interact and how such interactions influence the IMW 

climate remains unclear. Although ENSO is known to fluctuate within a broad frequency 

band of 2-7 years, several studies (e.g., Allan 2000; Tourre et al. 2001) have argued that there 

are two distinct modes of ENSO – a 2-3 year “quasi-biennual” oscillation and a 3-6 year 

interannual oscillation. These two ENSO modes are associated with unique atmosphere-

ocean interactions and are linked to different regional climate patterns (Mo 2010).  

To substantiate this character, time series of precipitation averaged in four western states of 

Nevada, Utah, Idaho and Wyoming (derived from the US Historical Climatology Network 

data), as well as the Nino3.4 SST index, are displayed in Fig. 13a. Here, both time series were 
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bandpass filtered with 3-6 years to focus on the interannual mode, following Rajagopalan 

and Lall (1998). Visual inspection finds that the two variables are not consistently in-phase 

or out-of-phase; instead, their relationship fluctuates. By computing a running correlation 

analysis of every 15 years, centered at the 7th year, the relationship between the precipitation  

 

Fig. 13. (a) Time series of precipitation (P) averaged within the 4-state region (see text) and 
the Nino3.4 SST index. (b) Running correlation coefficients of a 15 year period between P 
and Nino3.4, with significant correlations outlined by yellow circles. (c) The PDO index with 
15-year lowpass filter. 

and Nino3.4 SST anomalies reveals a low-frequency oscillation (Fig. 13b), with some 20 
years featuring negative correlations and the next 20 years showing positive correlations, 
only to transition to negative again. Superimposing the PDO index2 smoothed by a 15-year 
lowpass filter (to highlight its low-frequency signal, Fig. 13c), it becomes clear that the 
alternating correlation between ENSO and the precipitation anomalies is a modulation from 

                                                 
2 The PDO index was obtained from the University of Washington at 
http://jisao.washington.edu/pdo/PDO.latest. 
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the PDO. Apparently, positive PDO phases shift the ENSO-induced North American 
dipole northward, causing the central IMW to respond positively to ENSO. Likewise, 
negative PDO phases shift the dipole southward, thereby leading the central IMW to react 
negatively with ENSO. On the other hand, correlation analysis between  the Nino3.4 SST 
anomalies and precipitation in Arizona and New Mexico (not shown) does not reveal any 
discernable change with respect to the PDO phasing. This finding result suggests that the 
PDO modulation on ENSO’s climate impact is only effective around the transition zone of 
the precipitation dipole in the central IMW. This result echoes the observation by Brown 
(2011) that the relationship between cold-season ENSO conditions and circulation 
anomalies over the western United States varies with phasing of the PDO. The results 
presented here and from Brown (2011) therefore suggest uncertainty on decadal time 
scales for using ENSO conditions as a seasonal climate forecast tool. 

b. Interannual vs. intraseasonal 

We have observed that the intraseasonal variability of the IMW climate also undergoes 
modulation from certain interannual modes. Analyzing episodes of persistent temperature 
inversions in Salt Lake Valley and Cache Valley (80 miles northeast of Salt Lake City), Gillies 
et al. (2010a) noticed a tendency for those persistent inversion episodes to delay their 
occurrence by about 5 days each year. This intriguing feature is illustrated in Fig. 14a, which  

shows the temperature lapse rate at the Salt Lake City International Airport (KSLC; 
shadings) overlaid with the PM2.5 concentrations in Salt Lake City (blue line), for winters 
1998/99 to 2007/08. Throughout this decade, the occurrences of persistent temperature 
inversions (i.e. events lasting longer than 7 days) began in mid-December 1998, shifted to 
late December in 1999 and then continued to “delay” through late January 2007. Because 
such prolonged temperature inversion events are linked to episodes of semi-stationary ridge 
developed over the IMW, we analyzed the NCEP/NCAR Reanalysis (Kalnay et al. 1996) 
using the 700hPa geopotential height at the nearest grid point of KSLC from December 1948 
to February 2010. The geopotential height was bandpass filtered with 20-40 days based on 
the 30-day mode as identified in Gillies et al. (2010a). The analysis of 62 winters (Fig. 14b) 
reveals episodes of prolonged ridge events (dark gray) that seem to delay each year by one 
week, as indicated by yellow arrows. This “migration” in the timing of the ridging episodes 
reappears in early December about every 5-6 years. This timescale coincides with that of the 
interannual ENSO cycle. It is possible that persistent ridging and inversion episodes in the 
IMW undergo an external forcing that modulates the seasonal timing of their occurrence. 

To examine the possible interannual forcing on the intraseasonal variability of the persistent 
ridging events principal component (PC) analysis was carried out using the bandpass filtered 
700hPa geopotential height as that shown in Fig. 14b. The first two leading modes (PC1 and 
PC2; Fig. 15a), accounting for 27% and 19% of the variance, depict a quadrature phase shift in 
the timing of the intraseasonal fluctuation. The year-to-year coefficients of PC1 and PC2 are 
significantly correlated at a 1-year lag (r=0.48), suggesting that PC1 tends to transitions into 
PC2 a year after. Meanwhile, PC3 shows weaker amplitude in the middle of the winter (9% of 
the variance). The regression patterns of winter streamfunction at 300 hPa and SSTs with each 
PC coefficient are shown in Fig. 15b. The regression with PC1 reveals a La Nina type of SST 
and circulation structure characterized by cold SST anomalies in the central equatorial Pacific 
associated with a PNA-like teleconnection pattern. The regression with PC2 depicts weak and 
disorganized SST anomalies accompanied by a short-wave circulation pattern. Noteworthy is 
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that this short-wave pattern is in-phase with the winter standing wave train, similar to that 
presented in Fig. 7a, but at a slightly different latitude with respect to the winter jet stream. 
The troughs (red) and ridges (blue) of the winter standing wave train are indicated in Fig. 15b. 
Likely, PC2 is at the transition point between the La Nina and El Nino phases, where short-
wave circulation response is a dominant feature (Wang et al. 2011b). The regression with PC3 
outlines the SST and circulation patterns very similar to the North Atlantic Oscillation (Hurrell 
2003), with a seesawing dipole between the Icelandic low and the Bermuda high. This mode 
(PC3) appears to modify the transition between PC1 and PC2 and further change the 
occurrence timing. These observations require further examination through GCM experiments 
prescribed with SST forcing conditions as those in Fig. 15.  
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Fig. 14. (a) The 00Z temperature lapse rate at KSLC (orange contours) overlaid with PM2.5 
concentrations within Salt Lake Valley for the winters of 1999-2008. (b) Bandpass filtered 
geopotential height at 700mb with 20-40 days interpolated onto the KSLC location derived 
from NCEP reanalysis; yellow arrows indicate the time shift in persistent ridging events. 
The geographical location and terrain are given at top left. 
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Fig. 15. (a) First 3 leading PCs of the bandpass filtered 700mb geopotential height at KSLC over 
the 1980-2008 period, and (b) corresponding patterns of 300mb streamfunction (contours) and 
SSTs (shading) regressed upon each PC time series. KSLC is indicated by a red cross. 

6. Summary 

The IMW is situated in the marginal zone of different climate regimes between (a) the 

annual and semiannual cycles, (b) the ENSO-induced north-south dipole, and (c) the PDO-

related north-south seesaw pattern. The IMW climate variability undergoes robust 

modulations by the Pacific teleconnection. However, past research has almost exclusively 

focused on the extreme phases of the Pacific oscillatory modes (such as ENSO and the 

PDO/IPO), even though those modes feature a well-defined lifecycle. In this chapter we 

demonstrated that the Pacific oscillatory modes induce different types of teleconnection 

during their transition between the extreme warm and cold phases. Such teleconnection 

processes are subtle and may be difficult to monitor, but they have been found to control the 

climate variability of the IMW more profoundly than the warm/cold phases of the Pacific 

oscillatory modes. Moreover, the circulation anomalies affecting the IMW are more 

responsive to midlatitude short-wave trains rather than the long-wave PNA pattern. This 

feature poses a challenge to climate modeling and seasonal climate prediction for the IMW, 

especially the upper Colorado River Basin. The interplay between the various climate 

oscillations and their collective effects further complicate the climate variability of the IMW. 

Current climate forecast models have a difficulty in realistically depicting the IMW’s climate 

regime and the transition-phase teleconnections associated with ENSO (and /IPO).  

In the changing climate, future water resources of the IMW may be strained and threatened 
due to the rapid increase in water demand and the projected decrease in precipitation. 
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Historical climate data indicate that episodic events of extreme drought will compound the 
problem of increased demand and that this may interact with projected climate change in 
unforeseen and potentially worrisome ways. This is particularly a concern for water 
management in the IMW, which supplies the headwater of the Colorado River. Further 
diagnostics and modeling studies are required to isolate the effect of individual climate 
oscillatory modes in order to improve climate prediction for the IMW.  
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