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1. Introduction

Despite the use of modern Identification Friend Foe (IFF) technology, aircraft recognition
remains problematic even though a great deal of research effort has already been invested
in this area. In the military context, IFF identification is supposed to be initiated when the
interrogator transmits a signal to the aircraft and friendly aircraft are ’supposed’ to reply to
the signal by transmitting an identification code to the interrogator. Hostile aircraft often
become unresponsive to the interrogator because it is either does not have the appropriate
transponder or is trying to avoid being identified as an unfriendly aircraft. In the civilian air
transport system, the Secondary Surveillance Radar (SSR) allows the location of the civilian
aircraft being transmitted (through transponder) to the Air Traffic Controller (ATC). However,
in extreme incidents, such as the attacks on the World Trade Center on 11th September 2001,
the SSR transponders were manually disabled, which prevented the ATC detecting flight path
alternation. To avoid the drawback of the transponder based aircraft identification system, the
technique of Non-Cooperative Target Recognition (NCTR) has become a useful technology,
because it does not require the participation of friendly aircraft. The NCTR technique relies
primarily on the ground based target classification technology. In a typical classification
problem, the goal is to develop a classifier that is capable to discriminate targets. This
technology shares a great deal of similarity with the modern Electronics Support Measures
(ESM) system that often employs as a Radar Warning Receiver (RWR) for modern military
aircraft self-protection. Acknowledging the number of successful classifier technologies
reported in this area, the goal of this work is not to propose any new algorithm to enhance
the classification technology. Instead, a novel method, based on uncertainty measures, is
introduced to improve the classification function by employing a data fusion technique. Data
fusion applying evidential reasoning framework is a well established technique to fuse diverse
sources of information. A number of fusion methods within this formalism were introduced
including Dempster-Shafer Theory (DST) Fusion, Dezert Samarandche Fusion (DSmT), and
Smets’ Transferable Belief Model (TBM) based fusion. However, the impact of fusion on
the level of uncertainty within these techniques was not studied in detail. While the use of
Shannon entropy with the Bayesian fusion is well understood, the measures of uncertainty
within the Dempster-Shafer formalism is not widely regarded. In this paper, an uncertainty
based technique is proposed to quantify the evolution of DST fusion. This technique is then
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2 Will-be-set-by-IN-TECH

utilised to determine the optimal combination of sensor information to achieve the least
uncertainty in the context of the aircraft identification problem using sensors operating the
NCTR technique.

2. Background

Information fusion is often used as a data-processing technique to integrate uncertain
information from multiple sensors. Information often contains uncertainties, which are
usually related to physical constrains, detection algorithms and the transmitting channel of
the sensors. Whilst the intuitive approaches, such as Dempster-Shafer Fusion (Shafer, 1976),
Dezert Samarandche Fusion (DSmT)(Dezert & Smarandache, 2006) and Smets’ Transferable
Belief Model (TBM) (B.Ristic & P.Smets, 2005) aggregate all available information, these
approaches do not always guarantee optimum results. Acknowledging that these techniques
have associated measurement costs, the essence is to derive a fusion technique to minimise
global uncertainties.
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Fig. 1. JDL Model and Uncertainty

In the aerospace community, there is an increasing trend to automate decision processes
based on information fusion techniques. As an example, fighter pilots may rely on various
forms of data fusion models to assist in assessing the current situations, when uncertain
information co-exists at all levels of fusion. Considering the many data fusion models, the
Joint Defence Laboratory (JDL) model (Hall & Llinas, 2001) is one the most commonly referred
frameworks, which consists of Level 1 Object Assessment, Level 2 Situation Assessment, Level
3 Impact Assessment and Level 4 Process Refinement. The decision maker is supposed to
treat the JDL model at 4 independent levels of functions, however, each level of fusion often
includes unavoidable uncertainties. That means any aircraft identification system employing
real-time situation analysis technology is required to manage uncertainty in the most effective
manner. The techniques based on statistical models employed in aircraft tracking were widely
acknowledged, but the methods based on uncertainty measures for target identification are
not well understood in the aviation community. In recognition of this deficiency, this paper
explores a novel aircraft identification technique by leveraging a new uncertainty based fusion
concept.

The new concept introduced in this work explores a number of uncertainty measures under
the reasoning framework and attempts to introduce a methodology to manage uncertainty
variation under the DST based fusion. An example derived from an Aircraft Identification (AI)
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Measuring and Managing Uncertainty Through Data Fusion for Application to Aircraft Identification System 3

Fig. 2. Example of a radar range profile of a fighter aircraft

system is employed to demonstrate the characteristics of uncertainty variation. In terms of
target tracking, significant advancements have been made in the past two decades to improve
tracking technology by employing sophisticated data fusion techniques. Some of the earlier
works went even further by incorporating Target Identification information, such as IFF data,
to improve the overall track quality (Leung & Wu, 2000), (Carson & Peters, 26-30 Oct 1997),
(Bastiere, 1997), and (Perlovsky & Schoendorf, 1995). When legitimate statistical information
is presented, the techniques employed by tracking and identification using IFF information
are relatively mature. However, when conflicting information is presented to the NCTR
system, most techniques employed today may find it difficult to discriminate the contradicting
information. In this work, we propose a technique based on uncertainty measures to resolve
this problem. The employment of uncertainty in recent aviation research was reported in
areas, such as air traffic control (Porretta & Ochieng, 2010), navigation (Deng & Liu, 2011)
and airport surface movement management (Schuster & Ochieng, 2011), however, all these
works essentially model uncertainty based on the target statistical characteristics, such as
model based classified illustrated in Figure 2. Instead of treating uncertainty implicitly using
their statistical values, the concept proposed in this work treats uncertainty measures directly
as input parameters. In this way, we could explicitly quantify the fusion performance to make
the best target identification.

3. Sensor selection and decision making

Information fusion is often perceived to produce improved decision. This assumption is
generally true when sensor availability is limited, however, one has to question whether
fusing all available data guarantee synergy. The focus of this work is on the reduction of
uncertainties by expressing the relevant uncertainties in the reasoning system and utilise these
measures to achieve the best information fusion strategy. In order to develop an uncertainty
based information fusion in the aircraft identification context, the authors argue that the
best fusion decision can only be observed when (i) the information fusion could provide the
least ambiguous choice, (ii) the result produced by the fusion system induces the least vague
answer under the reasoning framework, and (iii) the final recommendation provided by the
fusion system has the fewest uncertainties. These three axioms underlying this paper are used

251Measuring and Managing Uncertainty 
Through Data Fusion for Application to Aircraft Identification System

www.intechopen.com



4 Will-be-set-by-IN-TECH

to define the best fusion configuration. It is apparent that the goal of uncertainty based fusion
is to choose the result with the least uncertainty. A fusion process based on uncertainties has
the potential to lead to a biased result. However, it is difficult to neglect a decision based
on information fusion when it is the least uncertain, least ambiguous and the most defined
answer when compared with other potential solutions.

Figure 3 depicts an illustrative example where an aircraft identification scenario is considered.
Assuming a model based classifier is employed to identify three kinds of aircraft types -
Dual engines aircraft (D), Quadruple engines aircraft (Q) and Helicopter (H). Also assuming
that the sensors produced an "unknown" state in the form of {D, Q, H}, where the decision
of the aircraft type is not possible to be classified. Three sensors are utilised in this
example to simplify the demonstration, where a classification value based on Basic Probability
Assignment (BPA) are given to each of the classification reports with details also summarised
in Figure 3.

Fig. 3. Multi-sensor aircraft classification

If the identification process performed by each sensor is independent, information provided
by Sensor 2 is clearly contradicting with Sensor 1 and Sensor 3. The errors can be induced by
the incorrect scatter angle, or simply estimated by an inaccurate model. Based on the axioms
discussed, it is observed that fusing Sensor 1 and Sensor 2, or Sensor 2 and Sensor 3 under DST
(which be discussed in the next section) will not produce a pronounced result to identify the
aircraft type. The result of the fusion is illustrated in Table 1, where only the combination of
Sensor 1 and Sensor 3 could provide an unambiguous fusion result. This example highlights
the criticality of uncertainty measures in relation to the standard DST fusion process. Section
5 and Section 6 of this paper provide an empirical uncertainty measures analysis in the
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Sensor 1&2 Sensor 1&3 Sensors 2&3
D,Q,H 0.026 0.022 0.0356

D,Q 0.0779 0.037 0.0595

H 0.3506 0.7704 0.3810
Q 0.1558 0.1185 0.0833

D 0.3896 0.0519 0.4405

Table 1. Sensor fusion example with contradicted information

reasoning framework, and provides an insight into how this method can be applied in an
aircraft identification capability.

4. Evidential reasoning framework

The notion of Basic Probability Assignment (BPA) (Shafer, 1976) is defined with respect to
a finite universe of propositions or frame of discernment, Ω. The sum of the probabilities
assigned to all subsets of Ω and all propositions which support Ω must be in unity, as such
BPA is a function from the set of subsets, 2Ω, of Ω to the unit interval [0, 1]. In accordance
with the convention proposed by Shafer (Shafer, 1976):

m(∅) = 0 (1)

and

∑
A⊆Ω

m(A) = 1 (2)

The subset A of Ω such that m(A) > 0 is called a focal element of m, and ∅ is the empty set.
Whilst the summation of BPA must be unity, it is not manditory for the BPA of a proposition
A and its negation A sum to unity.

4.1 Belief and plausibility measures

The idea of linking belief with evidential measures was first discussed by Shafer, and the idea
of Belief function in reference to the BPA is defined as,

Definition 1. Bel: 2Ω → [0, 1] is a belief function over Ω if it satisfies:

• Bel(∅) = 0

• Bel(Ω) = 1

• for every integer n > 0 and collection of subsets A1, ...., An of Ω

Bel(A1 ∪ ...∪ An) ≥ ∑
i

Bel(Ai)− ∑
i<j

Bel(Ai ∩ Aj) + . . . + (−1)n+1Bel(A1 ∩ ... ∩ An)

BPA gives a measure of support that is assigned exactly to the focal elements of a given frame
of discernment. In order to aggregate the total belief in a subset A, the extent to which all the
available evidence supports A, one needs to sum together the BPAs of all the subsets of A for
a belief measurement.

Bel(A) = ∑
B⊆A

m(B) ∀A ⊆ Ω (3)
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The remaining evidence may not necessarily support the negation A. In fact some of them may
be assigned to propositions which are not disjointed from A, and hence, could be plausibly
transferred directly to A for further information. Shafer called this the plausibility of A:

Pl(A) = ∑
B∩A �=∅

m(B) ∀A ⊆ Ω (4)

4.2 Dempster-Shafer fusion under an iterative process

Dempster’s rule of combination forms a new body of evidence with which the focal elements
are all non-empty intersections X ∩ Y. Given any S ⊆ U there are many pairs X, Y ⊆ U such
that X ∩ Y = S and so the total weight of agreement assignable to the focal subset X ∩ Y
is ∑X∩Y=S m(X)m′(Y). Once normalising the agreement with the "non-conflicting values"
(1 − K), Dempster’s rule of combination for imprecise evidence becomes,

(m ∗ m′)(S) =
1

1 − K ∑
X∩Y=S

m(X)m′(Y) (5)

for all ∅ �= S ⊆ U. The conflict between two bodies of evidence m, m′ is the total weight of
contradiction between the events of m and the events of m′:

K(m, m′) = ∑
X∩Y=∅

m(X)m′(Y) (6)

The quantity 1 − K is the cumulative degree to which the two bodies of evidence do not
contradict with each other and is called the agreement between m and m′. In general evidential
theory, Dampster-Shafer rules, belief functions, plausibility functions and BPA forms a suite
of significant tools to construct probabilities through carefully modelled evidence. Through
this combination process, two new measurement values - non-specificity and conflict, are also
generated as a by-product. An empirical analysis is presented in Section 5 in conjunction
with the theory of Aggregated Uncertainty (AU) and the recently proposed generalised Total
Uncertainty (TU) measures.

5. Uncertainty measures within the evidential reasoning framework

While the classical uncertainties are often measured by the Hartley and Shannon functions,
the two functions are tailored for different purposes. In order to cater for both uncertainties,
evidential based uncertainty measures are adopted. Two types of classical evidential based
uncertainties - non-specificity and conflict - are often measured as part of the DST fusion
(Harmanec, 1996). In this section, an overview is introduced to the concept of Hartley
Uncertainty measures, Aggregrated Uncertainty (AU) measures and Total Uncertainty (TU)
measures which was proposed by Klir (Klir, 2006). This analysis covers the context of the
DST fusion system and their subsequent implication. A practical example based on aircraft
identification applying uncertainty measures as sensor discrimination matrices is discussed
in Section 7 to verify our observations.

5.1 Hartley uncertainty

The technique of uncertainty measures was first addressed by Shannon. Under his proposal,
the way to quantify uncertainty measures expressed by a probability distribution function p
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Measuring and Managing Uncertainty Through Data Fusion for Application to Aircraft Identification System 7

on a singleton set is in the form of,

− c ∑ p(x) logb p(x) (7)

where b and c are positive constants, and b �= 1. While this technique is useful to apply in
sensor management system operating under the probabilistic framework, it cannot be used
under a finite set condition. An alternative is to employ the legacy Hartley measures (Hartley,
n.d.), where it seems to be the only meaningful way to measure uncertainty in the form of,

c logb ∑
x∈Ω

rA(x) (8)

or alternatively
c logb |A| (9)

where A is a finite set and |A| is the cardinality of the finite set. b and c are positive constants,
and b �= 1. When uncertainty is measured in bits, c logb 2 = 1. Harley uncertainty measures,
H, defined for any basic possibility functions, rA,

H(rA) = log2 |A| (10)

On closer examination of (10), H(rA) is a measure directly related to the specificity of a finite
set. In other words, the larger the size of a set, the less specific the measurement becomes.
This type of measures was defined as non-specificity by Klir (Klir, 2006). In the reasoning
framework, Hartley Measures are usually treated as a weighted average of all the focal subsets
in the form of BPA function (Klir, 2006).The concept of generalised Harley measures in the
context of DST framework is thus defined by the function,

GH(m) = ∑
A∈Ω

m(A) log2 |A| (11)

where Ω is the superset of the focal elements.

5.2 Aggregated uncertainty measures

Suppose the goal of information fusion is to reduce global uncertainties, Harmanec
(Harmanec, 1996) was the first to explore the concept of uncertainty measures in the DST
framework. The idea of AU uncertainty measures was proposed as the optimum uncertainty
measures technique under the DST domain, because it is the only way to incorporate the value
of non-specificity and conflict simultaneously, which often coexist in the DST framework.

Definition 2. The measure of the Aggregated Uncertainty contained in Bel, denoted as AU(Bel), is
defined by

AU(Bel) = max{− ∑
x∈Ω

px log2 px} (12)

where the maximum is taken over all {px}x∈Ω such that px ∈ [0, 1] for all x ∈ Ω, ∑x∈Ω px = 1 and
for all A ⊆ Ω, Bel(A) ≤ ∑x∈A px.

Although the AU technique is not an efficient algorithm, it does satisfy all the
properties defined as uncertainty measures (Harmanec, 1996), and specifically, the
subadditivity/additivity characteristics.

255Measuring and Managing Uncertainty 
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BelA BelB BelC

BelA BelB BelC

AU

AU‘
AU‘ > AU

Fig. 4. Additivity and Subadditivity

Subadditivity. If Bel is an arbitrary joint belief function on X × Y and the associated
marginal belief functions are BelX and BelY, then

AU(Bel) ≤ AU(BelX) + AU(BelY) (13)

Additivity. If Bel is a joint belief function on X × Y, and the marginal belief functions BelX

and BelY are noninteractive, then

AU(Bel) = AU(BelX) + AU(BelY) (14)

The property of additivity/subadditivity of AU call forth the assumption that uncertainties
could be reduced if sensors share common interaction prior the information fusion process
occurring. Assuming sensor dependency exists among BelA, BelB and BelC, the characteristics
of the resultant uncertainty under an evidential fusion system is illustrated pictorially in
Figure 4. The algorithm to compute AU uncertainty was originated by Harmanec (Harmanec,
1996). Under the proposed algorithm, the input is treated in the form of a frame of
discernment X, with a belief function Bel on X. This algorithm’s computation completes once
a finite number of steps have been taken and the output is the correct value of the function
AU(Bel), since {px}x∈X maximises the Shannon entropy within the constraints induced by
Bel.

5.3 Total uncertainty measures

The concept of generalised Total Uncertainty (TU) was proposed by Klir (Klir & Smith, 2001)
not long after the introduction of AU uncertainty. This measure is defined as a combination
of AU uncertainty and Generalised Hartley Measures,

TU = 〈GH, GS〉 (15)

where GH represent the Generalised Hartley measures which was discussed in (11). The
factor GS is called Generalised Shannon measurement (Klir, 2006), which is the conflicts
measurement with the consideration of evident specificity. In other words, it is GS =
AU − GH, the Aggregated Uncertainty with the reduction of specificity consideration. One
advantage of the disaggregated TU, in comparison with AU, is that it expresses amounts of
both types of uncertainty (non-specificity and conflict) explicitly, and consequently, it is highly
sensitive to changes in evidence. These new features of uncertainty measures allow one to
work with any set of recognised and well-developed theories of uncertainty as a whole, which
are commonly seen in any evidential based fusion problem.
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Measuring and Managing Uncertainty Through Data Fusion for Application to Aircraft Identification System 9

Classification 1 Sensor 3 Sensors 7 Sensors
A 0.22 0.3485 0.4125
B 0.25 0.3309 0.3525
C 0.26 0.2845 0.2343
D 0,00 0.0015 0.0001

A,B 0.07 0.0163 0.0004
A,C 0.03 0.005 0.0001
A,D 0.03 0.005 0.0001
B,C 0.015 0.0022 0.0000
B,D 0.005 0.0007 0.0000
C,D 0.01 0.0014 0.0000

A,B,C,D 0.1 0.0042 0.0000

Table 2. Classification Results with DST Fusion

6. Analysis of uncertainty measures under the Dempster Shafer fusion framework

To appreciate the impact of uncertainty variation, an example with a set of arbitrary data
is illustrated in Table 2. The data set is exactly the same measurement values, such that
an iterative DST fusion can be performed. The results in Table 2 confirmed that sensor
information can be refined and appears to have a reduction of ambiguity under an iterative
DST fusion process. However, the merit of these results cannot be examined further, unless
an acceptable matrices is used to quantify the fusion. To address this point, the results
illustrated in Figure 5 a demonstrate how AU uncertainty reduction could quantify the
DST fusion process. Whilst the AU uncertainty measure are a useful index to quantify
the DST fusion process, it is suggested to be insensitive to small change in evidences (Klir,
2006). Acknowledging the inherited issues with the AU uncertainty measures, this work also
examines the concept of employing Total Uncertainty Map (TUM) to evaluate a standard DST
Fusion process. Considering TU is an amalgamation of GH and GS, the uncertainty variation
becomes significant if it is illustrated in two dimensional space. Figure 5b is an illustration of
how a TUM can be used to visualise the recursive DST fusion. To assist the interpretation, the
results of GS/GH are also provided in Figure 5a to enhance the illustration. In this case, GS
and GH are treated as an unified parameters with the variation under the DST fusion process
observed. Due to the equivalent sensor input for the DST fusion, the weighted average of
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Sensor 1 Sensor 2 Sensor 3 Sensor 4
{ A } = 0.26 {B} = 0.2 {B} = 0.1 {A} = 0.05
{B}= 0.26 {A,B}= 0.1 {C} = 0.1 {B} = 0.05
{C}= 0.26 {A,C} = 0.1 {A,B}=0.16 {D} = 0.2

{A,B}= 0.07 {A,B,C}=0.1 {B,C}=0.14 {A,B} = 0.11
{A,C}= 0.01 {A,C,D}=0.1 {B,D}=0.05 {A,C} = 0.03
{A,D}= 0.01 {B,C,D}=0.3 {A,C}=0.1 {A,D} = 0.03
{B,C}= 0.01 {A,B,C}=0.2 {C,D} = 0.03
{B,D}= 0.01 {B,C,D}=0.15 {B,C,D} = 0.3
{C,D}= 0.01 {A,B,C,D} = 0.2

{A,B,C,D}= 0.1

Table 3. Random Sensor Input

each focal subset are virtually unchanged, which is why the GH values displayed in Figure
5b remain constant throughout the iterative DST fusion process. Further observation shows,
however, that other uncertainty in the form of conflicts are gradually reduced as part of
the DST fusion process. To further explore the characteristics of uncertainty variation, four
arbitrary sensor data sets are outlined in Table 3. The TU uncertainty is displayed in Figure
6 b. These results are further broken down into four levels and each level represents the
number of sensors fused by the DST fusion. Based on the sample results, it is difficult to
provide a consolidated uncertainty variation within the DST fusion framework. However, a
potential optimisation solution exists when the fusion goal is to present the most specific and
least conflicted information to the decision maker. This concept will be covered in Section 7
by leveraging a NCTR based AI example.
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Fig. 6. Extended Uncertainty Variation Modelling

7. NCTR based Aircraft Identification (AI)

This case study utilises an example commonly encountered in a model based classification
system. Assuming each NCTR sensor has a potential to produce feature detection of,

B = {E0, E1, E2, ....., E36}

where B is the frame of discernment of the aircraft’s type attributes, and this example
allows seven model based classifiers to report aircraft type identification. To reduce the

258 Recent Advances in Aircraft Technology

www.intechopen.com



Measuring and Managing Uncertainty Through Data Fusion for Application to Aircraft Identification System 11

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
1

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
2

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
3

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
4

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
5

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

S
e

n
s
o

r 
6

N
N

 S
c
o

re
s

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
0

0.5

1

Actual result is E1

S
e

n
s
o

r 
7

N
N

 S
c
o

re
s

Fig. 7. Model based classifier for aircraft type detection

Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6
m{e1} = 0.5188 m{e1} = 0.3617 m{e1} = 0.5126 m{e1} = 0.4565 m{e1} = 0.4414 m{e1} = 0.3480
m{e6} = 0.4124 m{e4} = 0.1540 m{e6} = 0.4387 m{e4} = 0.1551 m{e6} = 0.5342 m{e4} = 0.1533
m{Θ} = 0.0687 m{e6} = 0.3971 m{Θ} = 0.0487 m{e6} = 0.3546 m{Θ} = 0.0244 m{e6} = 0.3254

m{e9} = 0.0733 m{Θ} = 0.0337 m{e9} = 0.1602
m{Θ} = 0.0138 m{Θ} = 0.0357

Table 4. Normalised Aircraft Detection

computational workload this example only employs 12 of the target type signature instead of
the potential 37 type of targets, where the results are depicted in Figure 7. The 12 aircraft type
signatures selected for this simulation share similar characteristics, and often cause confusion
to this particular NCTR platform. The remaining 25 emitter detections are not discarded, but
are consolidated as detection CLUTTER. This method is similar to the strategy reported in
(Yu & Sycara, 2006), instead this case study treats all aircraft signatures as the total frame
of discernment ΘE, { e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11 }. In terms of the simulation,
each emitter signature is considered as ei ∈ E, where m(ei) is the normalised confidence level
assigned by the post threshold detection process. For instance, the normalised post-detection
confidence level with Sensor 2 are m{e1} = 0.3617, m{e4} = 0.1540, m{e6} = 0.3971
and m{e9} = 0.0733. To include the non-mutually exclusive aircraft type as CLUTTER,
m{ΘE} = c(CLUTTER), where we assign the confidence of CLUTTER to the set of all possible
aircraft types. In this case, the normalised m{ΘE} based on the pre-detection process is 0.0138.

Upon completion with the BPA preparation, we performed a DST based fusion with a
permutation space of 27. Figure 8 shows the uncertainty in the form of AU as gradually
reduced with the increment of DST fusion. However, the results become less effective when
more sensors are fused together. In accordance with the discussions covered in Section 6, the
authors believe the optimum approach when conducting an uncertainty based DST fusion
cannot rely on one single parameter alone. Depending on the computational workload and
the tolerance of conflicts, the uncertainty based fusion process ought to be determined by a
TU map, where GS and GH are to be treated separately. The preliminary results based on this
concept are illustrated in Figure 9.
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Notwithstanding the treatment of uncertainty in the DST context, Figure 9a outlined a method
when adopting the theory of AU uncertainty to search for the least uncertain post-fusion
results. For comparison purposes, the results of GS/GH measures are also displayed in Figure
9b. Under such a process, the final result is to be determined by the fusion that produces the
minimum AU uncertainty. In this particular example, Sensors 1, 3, 4 and 7 can be selected
to participate in the fusion process. Based on the least AU uncertainty, the final BPA for the
detected emitters are given below:

m{ΘE} = 0

m{e1} = 0.5604

m{e6} = 0.4396

With a similar approach, and adopting the GS/GH characteristics, Sensors 1, 2 and 3 are
selected to join the fusion process. Based on the least GS/GH uncertainty, the final BPA for
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the detected emitters are given below, which is equivalent to sensor combination with the least
AU uncertainty:

m{ΘE} = 0

m{e1} = 0.5604

m{e6} = 0.4396

Although the final results obtained from the uncertainty based DST fusion do not yield
distinct decisions, the results justify that aircraft type e1 or aircraft type e6 are detected.

8. Conclusion

This paper reviews the role of uncertainty measures in the data fusion framework within
the context of evidential reasoning. An empirical analysis of the AU and TU uncertainty
variations is conducted under the DST fusion framework. A preliminary method to choose
sensors based on the uncertainty level is proposed. This technique is illustrated with an
aircraft identification problem, when the radar range profile classifier is employed to support
an identification system such as NCTR. Since the amount of reflected radar energy is different
for different parts of the aircraft, inconsistency often occurs even when the same target is
being observed by a number of sensors despite using the same classifier model. It is this
inconsistency which makes the uncertainty based fusion technique useful in resolving aircraft
identification problems. While the proposed technique can be computationally intensive, the
idea underwrites a conservative result with the least measurable uncertainty. This approach
essentially yields the potential to evaluate all kinds of reasoning based fusion systems. We
have certainly not reached the end of our research effort yet, as the proposed concept only
considers primarily the reduction of AU uncertainty. The authors recognise the benefits in
further investigation of TUM in conjunction with the theory of optimisation, when a trade-off
can be computed based on the classification’s precision and accuracy. At the moment,
our proposed concept does not take into account the sensor information based on human
originated data. It is certainly an exciting future research topic, if the proposed concept is to
be extended to cover identification systems where human originate information is employed.
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