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1. Introduction

Development of efficient parameter identification methods for the model of a dynamic system
based on real-time measurements of some components of its state vector should be taken
as one of the most important problems of applied statistics and computational mathematics.
Calculating the motion of the system given the initial conditions and its mathematical model is
conventionally called the direct problem of dynamics. Then, the inverse problem of dynamics
would be the problem of identifying the system model parameters based on measurements
of certain components of the state vector provided that the general structural scheme of
the model is known from physical considerations. Such an inverse problem corresponds
to identification problem for the dynamic system representing an aircraft. In this case, the
general structural scheme of the model (motion equations) follows from the fundamental laws
of aerodynamics.

In many cases, modern computational methods and wind tunnel experiments can provide
sufficient data on nominal parameters of the mathematical model - nominal aerodynamic
characteristics of the aircraft. Nevertheless, there exist problems [1] that require correcting
nominal parameters based on measurements taken in real flights. These imply

(1) verifying and interpreting theoretical predictions and results of wind tunnel experiments
(flight data can also be used to improve ground prediction methods),

(2) obtaining more exact and complete mathematical models of the aircraft dynamics to be
applied in designing stability enhancement methods and flight control systems,

(3) designing flight simulators that require more accurate dynamic aircraft profile in all flight
modes (many motions of aircrafts and flight conditions can be neither reconstructed in the
wind tunnel nor calculated analytically up to sufficient accuracy or efficiency),

(4) extending the range of flight modes for new aircrafts, which can include quantitative
determination of stability and impact of control when the configuration is changed or when
special flight conditions are realized,

(5) testing whether the aircraft specification is compliant.
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2 Will-be-set-by-IN-TECH

Furthermore, dimensionless numbers at the nodes of one-or two-dimensional tables found in
wind tunnel experiments serve as nominal values in the aerodynamic parameter identification
problem of the aircraft. This causes the vector that corrects these parameters determined
by the algorithm processing digital data flows received from the aircraft sensors to have a
significant dimension of the order about several tens or hundreds.

It is worth noting that the USA (NASA) is doing extensive work on theoretical and practical
aircraft identification by test flights. In 2006 alone, in addition to many journal publications,
American Institute of Aeronatics and Astronatics (AIAA) published three fundamental
monographs [1-3] on the subject. An implementation of multiple NASA recommended
algorithms for identification problems, SIDPAS (Systems Identification Programs for Aircraft)
software package written in MATLAB M-files language is available on the Internet as an
appendix to [1]. Various existing identification methods published in monographs on statistics
and computational mathematics are widely reviewed in [1].

For the most general identification method, one should take the known nonlinear least squares
method [4] that forms the sum of errors squared - differences between the real measurements
and their calculated analogues obtained by numerical integration of motion equations of the
system for some realization of the vector of unknown parameters.

Successful identification yields the vector of parameters that delivers the global minimum to
the above mentioned sum of errors squared. Still, this criterion is statistically valid only for
linear identification problems, in which measurements are linear with respect to the unknown
vector of parameters.

Implementing the nonlinear least squares method to correct nominal parameters of the
aircraft based on its test flight data involves computational challenges. These arise when the
dimension of the correction vector is big and the sum of errors squared as the function of the
correction vector has multiple relative minimums or when variations of the Newton’s method
are applied, with the sequence of local linearizations performed to find stationary points of
this function. In [1], the regression method supported by lesq.m, smoo.m, derive.m, and xstep.m
files in SIDPAS is recommended for practical applications.

Suppose the motion equations of the system and the sequence of measurements have the form

dx/dt = f (x, ϑ + η, u), ...(0.1)

yk = Hk(x(tk)) + ξk, ...(0.2)

where x(tk) is the n × 1-dimensional vector of the system states at the current instant t and
at the given instants tk, k = 1, ..., N, ϑ is the r × 1-vector of nominal (known) parameters
of the system, η is the vector of unknown parameters that serves as the correction vector
for the nominal vector ϑ after the results of measurements are stochastically processed, u
is the control vector of the system, f (...) is the given vector-function, yk is the sequence of
vectors-results of measurements, Hk(...) is the given vector function, and ξk, k = 1, ..., N is the
sequence of random vectors-errors of measurements with the given random generator for the
mathematical simulation.

We can state the identification problem for the vector η as follows. Find the estimate as the
function of the vector YN formed of the results of all measurements y1, ...yN.
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The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 3

The regression method given in [1] solves this problem under the following limitations

(1) all components of the state vector can be measured : yk = x(tk) + ξk,

(2) at the measurement instants tk, the algorithm constructs the estimate of the vector of
derivatives dx/dt,

(3) the vector function f (x, ϑ + η, u) linearly depends on the vector η.

These fundamental limitations of the regression method duplicate features of the
identification algorithm from [5]. The substantial drawback of the algorithm [5] and the
algorithm of the regression method is that they do not allow using the mathematical model to
analyze theoretically (without applying the Monte-Carlo method) observability conditions of
components of the vector of parameters to be identified for the preliminary given control law
for the test flight of the aircraft and information on random errors of its sensors. Note that this
is the drawback of all known numerical methods that solve nonlinear identification problems.

Relations (0.1) and (0.2) show that when conditions (1)-(3) are met and N is sufficiently big,
the estimation vector satisfies the overdetermind system of linear algebraic equations, with
methods to solve it being well known. The given conditions seem to be rather rigid and
may be hard-to-implement. For instance, it is arguable whether one can construct the vector
of derivatives dx/dt sufficiently accurately given the real turbulent atmosphere conditions,
which imply that the outputs of the angle of attack and sideslip sensors inevitably include
random and unpredictable frequency components.

All this justifies the development of new identification algorithms that can be applied to
dynamic systems of a rather general class and do not possess drawbacks of NASA algorithms.
The proposed multipolynomial approximation algorithm (MPA algorithm) serves as such a
new identification algorithm.

2. Statement of the problem and basic scheme of the proposed identification

algorithm

The general scheme for identifying aerodynamic characteristics of the aircraft by the test flight
data is as follows [1]. Motion equations of the aircraft (0.1) and system (0.2) of measurements
of motion characteristics of the aircraft are given. The vector ϑ is the vector of nominal
aerodynamic parameters determined in the wind tunnel experiment. Calculated by the results
of real (test) flight, the vector η is used to correct the vector ϑ.

When the aircraft flies, its computer fixes the digital array of initial conditions and time
functions, viz. current control surface angles and measurements of some motion parameters
of the aircraft (some components of the vector x(t) of the state of the aircraft) received from
its sensors. Note that selecting the criterion for optimal or, at least, rational mode to control
the test flight is a separate problem and lies beyond our further consideration. The current
motion characteristics measured as the time function such as angles of attack and sideslip and
components of the vector of angular velocity and g-load obtained by the inertial system of
the aircraft are registered for real (not known for sure) aerodynamic parameters of the aircraft
(parameters ϑ + η) and can be called measured characteristics of the perturbed motion.
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4 Will-be-set-by-IN-TECH

Once the flight under the mentioned (given) initial conditions and time functions (control
surface angles) is completed, nominal motion equations (equations of form (1) for η = 0)
are integrated numerically for the nominal aerodynamic parameters of the aircraft. For the
calculated characteristics of the nominal motion of the aircraft one should take the obtained
data - components of the state vector of the aircraft as the function of discrete time. Differences
between measurable characteristics of the perturbed motion and calculated characteristics
of the nominal motion serve as carriers of data on the unknown vector η that shows the
difference between real and nominal aerodynamic parameters.

The input of the MPA identification algorithm receives the vector of initial conditions and
control surface angles as functions of time and arrays of characteristics of nominal and
perturbed motions.

The output of the algorithm is η̂(YN) , which is the correction vector for nominal aerodynamic
parameters.

The identification algorithm is efficient if the motion equations integrated numerically with
the corrected aerodynamic parameters yield such motion characteristics ϑ + η̂(YN) (corrected
characteristics, in what follows) that are close to real (measurable) characteristics.

In this work, we consider the technology of applying the Bayes MPA algorithm [6, 7] to
solve identification problems on the example of the aircraft, for which nominal aerodynamic
parameters of the pitching motion are the nominal parameters of one of an "pseudo" F-16
aircraft.

We replace real flights by mathematical simulation, with characteristics of the perturbed
motion obtained by integrating the motion equations of the aircraft numerically. In these
equations, nominal aerodynamic parameters at the nodes of the corresponding tables are
changed to random values that do not exceed in modulus the given 25 ÷ 50 percents of
nominal values at these nodes.

Fundamentally, the MPA algorithm assumes that the vector of unknown parameters η is
random on the set of possible flights. We assume that the a priori statistical-generator for
computer generated random vectors η and ξk is given. This generator makes the algorithm
estimating components of the vector η (the identification algorithm) Bayesian. Further, for
particular calculations, we assume that random components of the mentioned vectors are
distributed uniformly and can be called by the standard Random program in Turbo Pascal.

The MPA algorithm provides the approximation method we implement with the
multidimensional power series of the vector E(η|YN) of the conditional mathematical
expectation of the vector η if the vector of measurements YN is fixed and a priori statistical
data on random vectors η and ξk are given.

The vector E(η|YN) is known to be optimal, in root-mean-square sense, estimate of the random
vector η.

We describe the steps of operation of the MPA algorithm when it identifies the vector η[6, 7].

Step 1. Suppose d is a given positive integer number and the set of integer numbers a1, ..., aN

consists of all nonnegative solutions of the integer inequality a1 + ... + aN ≤ d, the number of
which we denote by m(d, N). The value m(d, N) is given by the recurrent formula proved by
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The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 5

induction.
m(d, N) = m(d − 1, N) + (N + d − 1) · · · N/d!, m(1, N) = N.

We obtain the vector WN(d) of dimension m(d, N) × 1, the components w1, ..., wm(d, N) of
which are all possible values ya1

1 ...yan

N of the form that represent the powers of measurable
values.

Then, we construct the base vector V(d, N) of dimension (r + m(d, N)) × 1, V(d, N) =
‖ηWN(d)‖.

Step 2. We use a known statistical generator of random vectors η and ξk to solve repeatedly
the Cauchy problem for Eq.(1) for given initial conditions x(0), a control law u(t) and various
realizations of random vectors η and xik.

We apply the Monte-Carlo method to find the prior first and second statistical moments of
the vector V(d, N), i.e., the mathematical expectation V̄(d, N), and the covariance matrix
CV(d, N) = E((V(d, N)− V̄(d, N))(V(d, N)− V̄(d, N))T) .

Implementation of step 2 is a learning process for the algorithm, adjusting it to solve the
particular problem described by Eqs. (1) and (2).

Step 3. For given d and N and a fixed vector YN , we assign the vector η̂(WN(d)) to be the
solution to the estimation problem. This vector gives an approximate estimate of the vector
E(η|YN) that is optimal in the root-mean-square sense on the set of vector linear combinations
of components of the vector WN1

(d)

η̂(WN(d)) = ∑
a1+...+aN≤d

λ(a1, ..., aN)ya1

1 · · · yaN

N . (1.1)

The vector V̄(d, N) and the matrix CV(d, N) are the initial conditions for the process of
recurrent calculations that realizes the principle of observation decomposition [6] and consists
of m(d, N) steps. Once the final step is performed, we obtain vector coefficients λ(a1, ..., aN)
for (1.1). Moreover, we determine the matrix C(d, N), which is the covariance matrix of the
estimation errors for the vector E(ηN |YN) of conditional mathematical expectation estimated
by the vector η̂(WN(d)).

Calculating the elements of the matrix C(d, N), we have the method of preliminary (prior to
the actual flight) analysis of observability of identified parameters for the given control law,
structure of measurements and their expected random errors. Recurrent calculations do not
require matrix inversion and indicate the situations when the next component of the vector
WN(d) is close to linear combination of its previous components. To implement the recursion,
we process the components of the vector WN(d) one after another. However, the adjustment of
the algorithm performed by applying the Monte-Carlo method to find the vector V̄(d, N) and
the matrix CV(d, N) takes into account a priori ideas on stochastic structure of components
of the whole set of possible vectors WN(d) that can appear in any realizations of the random
vectors η and ξk allowed by the a priori conditions.

This adjustment is the price we have to pay if we want the MPA algorithm to solve
nonlinear identification problems efficiently. This is what makes the MPA algorithm differ
fundamentally from, for instance, the standard Kalman filter designed to solve linear
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identification problems only or from multiple variations of algorithms resulted from attempts
to extend the Kalman filter to nonlinear filtration problems.

In [6], a multidimensional analogue of the K. Weierstrass theorem (the corollary of the M.
Stone theorem [9]) is used to prove that when the integer d is increases then the error estimates
of the vector E(η|YN) the vector |η̂(WN(d))−E(η|YN)| tend to zero uniformly on some region.
Formulas of the recurrent algorithm are given and justified in [6, 7] and in the Appendix.

This scheme for the MPA algorithm operation shows that it can be applied to identify
parameters of almost any dynamic system provided that the structures of the motion
equations and measurements of form (0.1) and (0.2) and prior statistical generators of random
unknown parameters and errors of measurements are given. The MPA algorithm is devoid of
the above listed limitations and drawbacks, which gives it substantial advantages over NASA
identification algorithms. Apart from errors of computations, the algorithm does not add
any other errors (such as errors due to linearization of nonlinear functions) into the identified
parameters. Therefore, one should expect that the priori spread of identifiable parameters to
be always greater than the posterior spread. This is why we can use iterations.

Let us compare the sequential steps of the standard discrete Kalman filter and the MPA
algorithm.

(1) The Kalman filter identifies the vector η, which can be represented by part of components
of the state vector of the linear dynamic system for the observations that linearly depend on
state vectors. The a priori data are the first and second moments of components of random
initial state vectors, uncorrelated random vectors of perturbations and observation errors.
We need these data for sequential (recurrent) construction of the estimation vector that is
root-mean-square optimal. Usually assigned, a priori data can be also determined by the
Monte-Carlo method if the complex mechanism of their appearance is given.

(2) To find an asymptotic solution to the nonlinear identification problem, the MPA algorithm,
unlike the Kalman filter, requires a priori statistical data on both the initial and all
hypothesized future state vectors of the dynamic system and observations. These a priori
data are represented by the first and second statistical moments for the random vector V(d,
N): the vector V(d, N)) and the matrix CV(d, N). These moments are calculated using the
Monte-Carlo method. However, there are cases when they can be obtained by numerical
multidimensional region integration.

(1.1) Once conditions from (1) are met, the Kalman filter constructs the recurrent process, at
every step of which the current estimation vector optimal in the root-mean-square sense and
the covariance matrix of errors of the estimate are calculated.

(2.1) Based on (2), the MPA algorithm implements the recurrent computational process that
do not require matrix inversion. At each step of the process, we construct

i. the current estimation vector η̂(WN(d)) linear with respect to components of the vector
WN(d) and optimal in the root-mean-square sense on the set of linear combinations of
components of this vector; moreover, the uniform convergence η̂(WN(d)) → E(η|YN), d → ∞.
is attained on some region,
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The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 7

ii. the current covariance matrix of estimation errors (we emphasize that known numerical
methods of constructing approximations of the vector of nonlinear estimates cannot calculate
current covariance matrices of estimation errors).

Implementation of items 2 and 2.1 makes the MPA algorithm more efficient than any known
linear identification algorithm since it

i. does not involve linearization,

ii. does not apply variants of the Newton method to solve systems of nonlinear algebraic
equations,

iii. forms the estimation vector that tends uniformly to the vector of conditional mathematical
expectation for the growing integer d,

iiii. obtains the covariance matrix of estimation errors.

It is worth emphasizing that in this work we just develop the fundamental ground of
computational technique for solving the complex problem of aircraft parameter identification.

3. Testing the MPA algorithm: Problem reconstruction (identification of

parameters) for the attractor from units of an electrical chain

We consider the boundary inverse problem for the attractor whose equations are presented in
[8 ]. The three parameters are the initial conditions: X1[0] = η1, X2[0] = η2, X3[0] = η3. The
six parameters η3+i, i = 1, ..., 6 correspond to combinations of the inductance, the resistances
and the two capacitances of a circuit.

The equations of the mathematical model of the circuit take the following form [8]:

X1[k − 1] < −η3+6 : f = η3+5;

−η3+6 < X1[k − 1] < η3+6 : f = X1[k − 1](1 − X1[k − 1]2);

X1[k − 1] > η3+6 : f = −η3+5;

X1[k] = X1[k − 1] + δX2[k − 1];

X2[k] = X2[k − 1] + δ(−X1[k − 1]− η3+1X2[k − 1] + X3[k − 1]);

X3[k] = X3[k − 1] + δ(θ3+2(η3+3 f − X3[k − 1])− η3+4X2[k − 1]);

where X1[k] corresponds to a voltage, X2[k] to a current and X3[k] to another voltage.

We suppose that by i = 1, 2, 3
ηi ∈ 1 + (εi − 0.5).

We also suppose [ 8] that

η3+1 ∈ 0.5(1 + (ε1 − 0.5)); η3+2 = 0.3(1 + (ε2 − 0.5)); η3+3 = 15(1 + (ε3 − 0.5));

η3+4 ∈ 1.5(1 + (ε4 − 0.5)); η3+5 = 0.5(1 + (ε5 − 0.5)); η3+6 = 1.2(1 + (ε6 − 0.5));

yk = X1(tk)) + ζk

δ = 0.01, k = 1, ..., N = 1200, z1 = ∑
k=N/T
k=1 yk, z2 = ∑

k=2×N/T
k=1+N/T yk,...

125An Algorithm for Parameters Identification of an Aircraft’s Dynamics
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The algorithm uses approximations of parameters by means of linear combinations of the
constructed values zi(d = 1). Values z1, z2 - are the sums of values of flowing observations -
serve as inputs of MPA algorithm

The relative errors of the boundary problem are

i 1 2 3

T = 24

∆i 0.025 0.264 0.272

T = 48

∆i 0.0007 −0.003 0.046

T = 120

∆i 0.00005 −0.00264 0.01687

T = 240

∆i 0.00001 −0.00049 0.02686

.

The relative errors of the inverse problem are

i 1 2 3 4 5 6

T = 24

∆3+i −0.347 0.198 −0.250 0.097 0.095 0.136
T = 48

∆3+i −0.140 0.234 −0.222 0.104 0.143 0.133

T = 120

∆3+i −0.169 0.205 −0.167 0.094 0.179 0.097

T = 240

∆3+i −0.042 0.129 −0.031 −0.0001 0.151 0.146

.

The resulted tables show, that corresponding adjustment the MPA algorithm - a corresponding
selection of value T allows to make small relative errors of an estimation of parameters of the
non-linear dynamic system.

4. Identification of aerodynamic coefficients of the pitching motion for an pseudo

f-16 aircraft

We illustrate efficiency of offered MPA algorithm on an example of identification of 48
dimensionless aerodynamic coefficients for the aircraft of near F-16. The aircraft we shall
conditionally name " pseudo F-16 ". The term "near" is justified by that, what is the coefficients
are taken from SIDPAS [1], but are perturbed by addition of some random numbers.

The tables resulted below, show, that errors of identification are small also modules of their
relative values do not surpass several hundredth. The considered problem corresponds to
minimization of object function of 48 variables, which it is made of the sum of squares of
differences of actual and computational angles of attack, g-load, pitch angles, observable with
frequency 10 hertz during 25 sec. flight of the aircraft maneuvering in a vertical plane.
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The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 9

number αi CZ0
(αi) Cm0 (αi) CZq

(αi) Cmq (αi)

1 0.7700 −0.1740 −8.8000 −7.2100
2 0.2410 −0.1450 −25.8000 −5.4000
3 −0.1000 −0.1210 −28.9000 −5.2300
4 −0.4160 −0.1270 −31.4000 −5.2600
5 −0.7310 −0.1290 −31.2000 −6.1100
6 −1.0530 −0.1020 −30.7000 −6.6400
7 −1.3660 −0.0970 −27.7000 −5.6900
8 −1.6460 −0.1130 −28.2000 −6.0000
9 −1.9170 −0.0870 −29.0000 −6.2000
10 −2.1200 −0.0840 −29.8000 −6.4000
11 −2.2480 −0.0690 −38.3000 −6.6000
12 −2.2290 −0.0060 −35.3000 −6.0000

Table 1. Nominal values of the functions CZ0
(α), Cm0 (α), CZq

(α), Cmq (α)

4.1 Pitching motion equations

We use the rectangular coordinate system XYZ adopted in NASA. Then for the unperturbed
atmosphere and conditions V = const, pitching motion equations have the form [1]:

dα/dt = ωY + (g/V)(NZ + cos(θ − α)),

dωY/dt = MY/JY ,

dθ/dt = ωY ,

NZ = CZ(α, δs)qS/G,

MY = Cm(α, δs)qSb,

where V=300 ft/sec,H=20000 ft, α is the angle of attack, NZ is the g-load, which is the vector
of aerodynamic forces projected onto the axis Z and divided by the weight of the aircraft,
MY is the vector of the moment of aerodynamic forces projected onto the axis Y, ω is the
vector of the angular velocity of the aircraft projected onto the axis Y,θ is the angle between
the the axis X and the horizontal plane, q is the value of the dynamic pressure, G is the
weight, JY is the moment of inertia with respect to the axis Y, S is the area of the surface
generating aerodynamic forces, b is the mean aerodynamic of the wing, CZ(α, δ) and Cm(α, δ)
are dimensionless coefficients of the aerodynamic force and moment,δs is the angle of the
stabilator devlection measured in degrees.

Functions CZ(α, δs) and Cm(α, δs) are given by the relations [1],:

CZ(α, δs) = CZ0
(α)− 0.19(δs/25) + CZq

(α)(b/(2V))ω,

Cm(α, δs) = Cm0 (α)δs + Cmq (α)(b/(2V))ω + 0.1CZ.

4.2 Parametric model aerodynamic forces and moments

Nominal values of 4 functions of the angle of attack CZ0
(α), Cm0 (α), CZq

(α), Cmq (α) are given

with the argument step (55 − 1)/12 degree at 12 nodes (Table 1) in range −10◦ ≤ α ≤ 45◦ .

To determine values of functions between the nodes, we use linear interpolation. Having
analyzed Table 1, we can see that functions CZ0

(αi), Cm0 (αi), CZq
(αi), Cmq (αi) are essentially

127An Algorithm for Parameters Identification of an Aircraft’s Dynamics
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number αi ∆(CZ0
(αi)) ∆(Cm0 (αi)) ∆(CZq

(αi)) ∆(Cmq (αi))

1 0.7700 −0.1740 −8.8000 −7.2100
2 −0.5290 0.0290 −17.0000 1.8100
3 −0.3410 0.0240 −3.1000 0.1700
4 −0.3160 −0.0060 −2.5000 −0.0300
5 −0.3150 −0.0020 0.2000 −0.8500
6 −0.3220 0.0270 0.5000 −0.5300
7 −0.3130 0.0050 3.0000 0.9500
8 −0.2800 −0.0160 −0.5000 −0.3100
9 −0.2710 0.0260 −0.8000 −0.2000
10 −0.2030 0.0030 −0.8000 −0.2000
11 −0.1280 0.0150 −8.5000 −0.2000
12 0.0190 0.0630 3.0000 0.6000

Table 2. Nominal values of increment ∆(CZ0
(αi)), ∆(Cm0 (αi)), ∆(CZq

(αi)), ∆(Cmq (αi))

nonlinear. Table 2 confirms this visual impression. In it increments are presented 4 functions
on each step of Table 1. Apparently, increments noticeably vary.

We study the identification problem for the perturbed analogues of the functions
CZ0

(α), Cm0 (α), CZq
(α), Cmq (α). The number of nominal coefficients that determine these

functions is 12+12+12+12 = 48. Let us single out the problem which is the most complex
for the MPA algorithm, when the actual coefficients differs from the nominal coefficients
by the unknown bounded by the prior limits value ηi at each point of the table. Then,
for accumulated results of measurements of parameters of the perturbed motion, the MPA
algorithm is to estimate 48 components of the vector of random estimates, - the vector of
differences between actual and nominal coefficients.

Suppose ϑi and Bi are the i-th components of the nominal and actual (perturbed) vectors of
aerodynamic coefficients , i = 1, ..., 48, i.e. the number of actual coefficients to be identified is
48 in this case. We assume that the parametric model

Bi = ϑi + ηi.

holds. The vector η serves as the vector of perturbations of nominal data errors of
aerodynamic parameters, and identification yields the estimates of its components. We give
the structure of these components by the formula ηi = ϑiρiεi, 0 < ρi < 1,−1 < εi < 1.
The positive number ρi gives the maximum value that, by identification conditions, can be
attained by the ratio of the absolute values of the random value of perturbations ηi and
nominal coefficients ϑi .

4.3 Transient processes of characteristics of nominal motions

We wish to identify-estimate - during one test flight the 48 unknown aerodynamic coefficients
for 12 nodes-12 the set angles of attack αi, i = 1..., 12. For a testing maneuver the
characteristics α(t), NZ(t), θ(t) of Transient Processes are carrier of information of the the
identified coefficients. Therefore during flight the aircraft should "visit" vicinities of angles
of attack −10◦ ≤ α ≤ 45◦
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The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 11

number. obs. k δs(k) α(k) NZ(k) θ(k)
1 −0.0200 3.6820 0.1021 0.0132
3 −0.0600 5.1462 −0.3525 0.1388
5 −0.1000 6.0119 −0.2956 0.1689
7 −0.1400 6.7707 −0.2493 0.0300
9 −0.1800 7.5061 −0.2085 −0.1851

11 −0.2200 8.2964 −0.1685 −0.3945
13 −0.2600 9.2186 −0.1253 −0.5227
15 −0.3000 10.2083 −0.6016 −0.5119
17 −0.3400 10.6145 −0.5691 −0.6187
19 −0.3800 10.8889 −0.5477 −0.8891
21 −0.4200 11.0977 −0.5334 −1.2461
23 −0.4600 11.2993 −0.5223 −1.6252
25 −0.5000 11.5494 −0.5114 −1.9688
27 −0.5400 11.9047 −0.4974 −2.2222
29 −0.5800 12.4277 −0.4774 −2.3286
31 −0.6200 13.1919 −0.4477 −2.2247
33 −0.6600 14.2870 −0.4043 −1.8352
35 −0.7000 15.4810 −0.8822 −1.1481
37 −0.7400 16.1493 −0.8343 −0.6582
39 −0.7800 16.6530 −0.7993 −0.3828
41 −0.8200 17.0629 −0.7728 −0.2382
43 −0.8600 17.4401 −0.7511 −0.1552
45 −0.9000 17.8400 −0.7310 −0.0747
47 −0.9400 18.3168 −0.7095 0.0571
49 −0.9800 18.9260 −0.6838 0.2926
51 −1.0200 19.7287 −0.6512 0.6855
53 −1.0600 20.1833 −1.1389 1.1343
55 −1.1000 20.1954 −1.1266 1.3075
57 −1.1400 19.9812 −1.1273 1.2486
59 −1.1800 19.9888 −1.1293 1.1572
61 −1.2200 19.9789 −1.1308 1.1146
63 −1.2600 20.0083 −1.1316 1.1129
65 −1.3000 20.0049 −1.1325 1.1437
67 −1.3400 20.0371 −1.1330 1.2113
69 −1.3800 20.0328 −1.1338 1.3073
71 −1.4200 20.0598 −1.1344 1.4359
73 −1.4600 20.0636 −1.1346 1.6053
75 −1.5000 20.0993 −1.1344 1.8069
77 −1.5400 20.1945 −1.1326 2.0671
79 −1.5800 20.3760 −1.1278 2.4096
81 −1.6200 20.6696 −1.1186 2.8558
83 −1.6600 21.1005 −1.1037 3.4247
85 −1.7000 21.6926 −1.0820 4.1331
87 −1.7400 22.4690 −1.0523 4.9948
89 −1.7800 23.4509 −1.0133 6.0212
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91 −1.8200 24.6576 −0.9641 7.2201
93 −1.8600 25.7086 −1.3912 8.6103
95 −1.9000 26.9187 −1.3506 10.2913
97 −1.9400 28.6178 −1.2942 12.4085
99 −1.9800 30.7696 −1.6768 15.0754

101 −2.0200 32.4354 −1.6031 17.5706
103 −2.0600 33.8743 −1.5431 19.7731
105 −2.1000 35.1432 −1.8357 21.7958
107 −2.1400 35.7317 −1.8014 23.4808
109 −2.1800 35.9655 −1.7815 24.7918
111 −2.1800 35.9159 −1.7715 25.8128
113 −2.1400 35.6010 −1.7680 26.5691
115 −2.1000 34.9990 −1.7695 27.0436
117 −2.0600 34.7166 −1.4423 27.4338
119 −2.0200 34.4743 −1.4525 27.8824
121 −1.9800 34.2309 −1.4610 28.3457
123 −1.9400 33.9488 −1.4692 28.7851
125 −1.9000 33.5921 −1.4785 29.1649
127 −1.8600 33.1250 −1.4900 29.4506
129 −1.8200 32.5103 −1.5050 29.6075
131 −1.7800 31.7080 −1.5248 29.5992
133 −1.7400 30.6740 −1.5505 29.3864
135 −1.7000 29.6897 −1.1403 29.0369
137 −1.6600 29.5906 −1.1751 29.2924
139 −1.6200 30.0407 −1.6327 30.1792
141 −1.5800 30.0324 −1.1643 30.9954
143 −1.5400 30.0007 −1.1623 31.6784
145 −1.5000 29.9971 −1.1623 32.3405
147 −1.4600 29.9834 −1.6165 32.9999
149 −1.4200 29.9916 −1.1620 33.6324
151 −1.3800 29.9805 −1.1621 34.2532
153 −1.3400 30.0190 −1.1626 34.8756
155 −1.3000 29.9687 −1.6164 35.4719
157 −1.2600 30.0181 −1.1623 36.0635
159 −1.2200 29.9808 −1.1614 36.6311
161 −1.1800 29.9772 −1.1614 37.1835
163 −1.1400 29.9490 −1.6153 37.7184
165 −1.1000 29.9574 −1.1606 38.2407
167 −1.0600 29.9417 −1.6141 38.7453
169 −1.0200 29.9178 −1.1614 39.1922
171 −0.9800 29.8635 −1.1625 39.6161
173 −0.9400 29.7346 −1.1650 39.9729
175 −0.9000 29.4842 −1.1711 40.2178
177 −0.8600 29.0596 −1.1829 40.3020
179 −0.8200 28.3990 −1.2028 40.1699
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181 −0.7800 27.4286 −1.2336 39.7559
183 −0.7400 26.0585 −1.2787 38.9816
185 −0.7000 24.4358 −0.8717 37.7788
187 −0.6600 22.7903 −0.9362 36.2669
189 −0.6200 20.7622 −1.0163 34.4409
191 −0.5800 18.7935 −0.5743 32.3636
193 −0.5400 17.0475 −0.6702 30.3402
195 −0.5000 15.1676 −0.7674 28.2787
197 −0.4600 13.9500 −0.3141 26.3775
199 −0.4200 13.1154 −0.3750 24.8646
201 −0.3800 12.4703 −0.4193 23.5913
203 −0.3400 11.9129 −0.4537 22.4424
205 −0.3000 11.3566 −0.4837 21.3242
207 −0.2600 10.7223 −0.5143 20.1561
209 −0.2200 9.9324 −0.5497 18.8636
211 −0.1800 9.8365 −0.0427 17.6449
213 −0.1400 9.9588 −0.0463 16.6494
215 −0.1000 9.9853 −0.0452 15.7456
217 −0.0600 9.9853 −0.0437 14.8087
219 −0.0200 10.0132 −0.0415 13.8278
221 0.0200 9.9999 −0.0398 12.7981
223 0.0600 9.9409 −0.5639 11.7156
225 0.1000 9.9557 −0.0371 10.5715
227 0.1400 9.9311 −0.0359 9.3815
229 0.1800 9.8312 −0.0369 8.1116
231 0.2200 9.6174 −0.0423 6.7279
233 0.2600 9.2466 −0.0540 5.1941
235 0.3000 8.6685 −0.0746 3.4700
237 0.3400 7.8225 −0.1068 1.5084
239 0.3800 6.6340 −0.1539 −0.7475
241 0.4200 5.0095 −0.2203 −3.3684
243 0.4600 3.6383 0.2178 −6.2070
245 0.5000 2.2053 0.1484 −9.0796
247 0.5400 0.5330 0.0717 −12.0920
249 0.5800 −0.9453 0.5373 −15.2658

Table 3. The characteristics α(t), NZ(t), θ(t) of the nominal motions for the chosen control
law δs(t).

4.4 Estimating identification accuracy of 48 errors of aerodynamic parameters of the aircraft

Primary task of MPA algorithm consists in identification - estimation-48 increments of 4
functions. If entry conditions and increments are determined, values of the unknown
coefficients follow from obvious recurrent formulas.

To estimate the accuracy, we assume that the current values of α, NY , θ are measured every
0.1 sec. during 25 seconds .We assume that random errors of measurement represent the
discrete white noise bounded by the true measurable value multiplied by the given value ǫ.
An amount of the primary observations equal 3*250=750.
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number αi nom.koef. CZ0
(αi) perturb.koef. CZ0

(αi) δ(CZ0
(αi))

1 0.6512 0.6326 0.02854

2 0.0205 0.0260 −0.26410

3 −0.3778 −0.3646 0.03491

4 −0.7395 −0.7213 0.02456

5 −1.0610 −1.0657 −0.00443

6 −1.4038 −1.4016 0.00159

7 −1.7679 −1.7424 0.01444

8 −2.0582 −2.0453 0.00627

9 −2.2774 −2.3388 −0.02693

10 −2.4568 −2.5459 −0.03625

11 −2.5639 −2.6698 −0.04130

12 −2.5404 −2.6505 −0.04334

Table 4. The Relative errors of the identifications of CZ0
(αi) by ρ = 0.25

number αi nom.koef. Cm0 (αi) perturb.koef. Cm0 (αi) δ(Cm0 (αi))

1 −0.2130 −0.2054 0.03582

2 −0.1816 −0.1783 0.01851

3 −0.1567 −0.1550 0.01061

4 −0.1618 −0.1611 0.00439

5 −0.1634 −0.1631 0.00209

6 −0.1427 −0.1388 0.02754

7 −0.1372 −0.1338 0.02439

8 −0.1495 −0.1502 −0.00467

9 −0.1175 −0.1220 −0.03771

10 −0.1139 −0.1190 −0.04484

11 −0.0957 −0.1043 −0.08937

12 −0.0399 −0.0394 0.01236

Table 5. The Relative errors of the identifications of Cm0 (αi) by ρ = 0.25

We compress primary observations for a smoothing the high-frequency errors and reduction
of a dimension of matrixes covariance . The file of the primary observations is divided into
12 groups and as an input of the algorithm of the identification the vector of the dimension
12 × 1 serves. Components of this vector are the sums of elements of each of 12 groups.

To characterize the accuracy of identification of the random parameter ηi the degree of
perturbation of the aerodynamic coefficients ϑ , we determine the relative errors of estimation
(ηi − η̂i)/ηi for every component the identifiable functions . The relative errors designate
δ(CZ0

(αi)), δ(Cm0 (αi)), δ(CZq
(αi)), δ(Cmq (αi)), i = 1, ..., 12.

Apparently, relative errors of identification are small and do not surpass several hundredth at
ρ = 0.25

132 Recent Advances in Aircraft Technology

www.intechopen.com



The Inverse Problem - an Algorithm for Parameters Identification of an Aircraft’s Dynamics 15

number αi nom.koef. CZq
(αi) perturb.koef. CZq

(αi) δ(CZq
(αi))

1 −9.9636 −8.8984 0.10691
2 −25.2235 −26.1655 −0.03735
3 −28.4644 −29.2857 −0.02885
4 −31.4821 −31.8270 −0.01096
5 −31.3125 −31.6274 −0.01006
6 −30.8417 −31.1249 −0.00918
7 −27.5461 −28.0921 −0.01982
8 −28.1388 −28.6036 −0.01652
9 −28.9682 −29.4069 −0.01515
10 −29.7908 −30.2114 −0.01412
11 −38.6789 −38.7933 −0.00296
12 −35.7355 −35.8053 −0.00195

Table 6. The Relative errors of the identifications of CZq
(αi) by ρ = 0.25

number αi nom.koef. Cmq (αi) perturb.koef. Cmq (αi) δ(Cmq (αi))
1 −5.5807 −6.1771 −0.10686
2 −4.1294 −4.3066 −0.04291
3 −3.9913 −4.1368 −0.03645
4 −4.0250 −4.1662 −0.03510
5 −4.9363 −5.0012 −0.01315
6 −5.5024 −5.5314 −0.00527
7 −4.5272 −4.5870 −0.01320
8 −4.8711 −4.8936 −0.00462
9 −5.0970 −5.0915 0.00108
10 −5.3245 −5.2912 0.00626
11 −5.5637 −5.4908 0.01310
12 −4.8726 −4.8937 −0.00434

Table 7. The Relative errors of the identifications of Cmq (αi) by ρ = 0.25

number αi nom.koef. CZ0
(αi) perturb.koef. CZ0

(αi) δ(CZ0
(αi))

1 0.5324 0.4255 0.20083
2 −0.1999 −0.2092 −0.04637
3 −0.6556 −0.5969 0.08959
4 −1.0629 −0.9303 0.12481
5 −1.3911 −1.2772 0.08188
6 −1.7546 −1.6697 0.04839
7 −2.1699 −2.0331 0.06304
8 −2.4704 −2.3417 0.05209
9 −2.6379 −2.6342 0.00138

10 −2.7936 −2.8450 −0.01839
11 −2.8799 −2.9723 −0.03208
12 −2.8518 −2.9530 −0.03548

Table 8. The Relative errors of the identifications of CZ0
(αi) by ρ = 0.50
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number αi nom.koef. Cm0 (αi) perturb.koef. Cm0 (αi) δ(Cm0 (αi))
1 −0.2520 −0.2441 0.03123
2 −0.2183 −0.2166 0.00781
3 −0.1924 −0.1934 −0.00523
4 −0.1966 −0.1994 −0.01457
5 −0.1979 −0.2014 −0.01792
6 −0.1834 −0.1747 0.04747
7 −0.1773 −0.1697 0.04301
8 −0.1860 −0.1858 0.00145
9 −0.1481 −0.1599 −0.08004
10 −0.1438 −0.1569 −0.09149
11 −0.1225 −0.1420 −0.15942
12 −0.0738 −0.0811 −0.09934

Table 9. The Relative errors of the identifications of Cm0 (αi) by ρ = 0.50

number αi nom.koef. CZq
(αi) perturb.koef. CZq

(αi) δ(CZq
(αi))

1 −11.1272 −8.6840 0.21957
2 −24.6470 −25.6672 −0.04139
3 −28.0288 −28.8049 −0.02769
4 −31.5642 −31.3356 0.00724
5 −31.4249 −31.1306 0.00937
6 −30.9833 −30.6296 0.01142
7 −27.3921 −27.6113 −0.00800
8 −28.0776 −28.1104 −0.00117
9 −28.9364 −28.9144 0.00076
10 −29.7817 −29.7303 0.00172
11 −39.0577 −38.2130 0.02163
12 −36.1709 −35.1346 0.02865

Table 10. The Relative errors of the identifications of CZq
(αi) by ρ = 0.25

number αi nom.koef. Cmq (αi) perturb.koef. Cmq (αi) δ(Cmq (αi))
1 −3.9514 −6.9359 −0.75528
2 −2.8588 −5.1596 −0.80480
3 −2.7526 −4.9893 −0.81258
4 −2.7899 −5.0189 −0.79894
5 −3.7625 −5.8672 −0.55939
6 −4.3649 −6.3936 −0.46477
7 −3.3644 −5.4530 −0.62079
8 −3.7422 −5.7627 −0.53993
9 −3.9940 −5.9631 −0.49299

10 −4.2490 −6.1601 −0.44976
11 −4.5274 −6.3594 −0.40464
12 −3.7451 −5.7631 −0.53882

Table 11. The Relative errors of the identifications of Cmq (αi) by ρ = 0.50
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5. Conclusions

The presented data show that the multipolynomial approximation algorithm can provide
a computational ground for developing an efficient parameter identification technique for
the nonlinear dynamic system, including identification of aerodynamic parameters of an
aircraft. We emphasize that tables characterizing a sufficiently high accuracy of aerodynamic
parameter identification are obtained when there are no iterations and d = 1, which

corresponds to the case when the estimation vector ˆ(ϑ + η)(WN(d)) is represented by the
vector linear combination of measured data that is optimal on the family of linear operators
over the vector of measurements. This is due to good (in terms of the identification problem)
properties of the parametric system of equations of the pitching motion of the "pseudo F-16 "
aircraft. It can become much more complicated when it comes to the identification problem
of the parametric system of equations of complete (spatial) motion of the aircraft. In such
case, we may need to use polynomials of the power d > 1 and increase requirements on the
computer performance and RAM. This was the case for identification attempts made for some
parameters of F-16 complete motion equations. We emphasize that the inputs of the MPA
algorithm we considered were not real (were not the results of operation of real sensors of the
aircraft during its test flight); they were determined by mathematical simulation - by means
the numerically integrations motion equations for perturbed parameters of aerodynamic
forces and moments.

6. Appendix A: An estimate of the vector of the conditional mathematical

expectation that is optimal in the root-mean-square sense

A.1. An algorithm fundamental (AF)

We consider the algorithm fundamental (AF) for solving the problem of finding the estimate
of the vector E(η|YN) that is optimal in the root-mean-square sense. This vector is known to
be the estimate optimal in the root-mean-square sense of the vector η once the vector YN is
fixed. Therefore, it is justified that it is the vector of conditional expectation that AF tends to
estimate.

We construct AF that ensures polynomial approximation of the vector E(η|YN). To do this,
we find the approximate estimate of the vector E(η|YN), which is linear with respect to
components of the vector WN(d) and optimal in the root-mean-square sense. We denote the
vector of this estimate by η̂(WN(d)) . To obtain the explicit expression for the estimation
vector, we calculate elements of the vector V(d, N) and the covariance matrix CV(d, N) that
are the first and second (centered) statistical moments for the vector V(d, N). These vector
and matrix can be divided into blocks of the following structure

E(E(η|YN)) = E(η);

E(E(W(d, N)|YN)) = E(W(d, N));

= E((E(η|YN)− E(η))(E(η|YN)− E(η))T) =

E((η − E(η))(η − E(η))T).

LN(d) = E((E(η|YN)− E(E(η|YN(d)))(WN(d)− E(WN(d)))T) =

E(η)WN(d)T)− E(η)E(WN(d))T ,

135An Algorithm for Parameters Identification of an Aircraft’s Dynamics

www.intechopen.com



18 Will-be-set-by-IN-TECH

QN(d) = E((WN(d)− E(WN(d)))(WN(d)− E(WN(d)))T);

The right-hand sides of these blocks are the first and second (centered) statistical moments
calculated by the Monte-Carlo method. However, their left-hand sides also serve as the
first and second (centered) statistical moments of components of the vector of conditional
mathematical expectations. Hence, we can use mathematical models of form (0.1) and (0.2) to
find these statistical moments experimentally for vectors of conditional expectations as well.
This obvious proposition gives us the basis for practical implementation of the computational
procedure of estimating the vector of the conditional expectation.

We introduce

η̂(WN(d)) = E(η) + ΛN(d)(WN(d)− E(WN(d))), (A.1)

where the matrix ΛN(d), r × m(d, N) satisfies the equation

ΛN(d)QN(d) = LN(d).

We also introduce

η̃(WN(d)) = z + Λ̃N(d)(WN(d)− E(WN(d))), (A.2)

where z and Λ̃N(d) are the arbitrary vector and matrix of dimensions r × 1 and r × m(d, N).
Suppose C(d, N) and C̃(d, N) are the covariance matrices of estimation errors for the vector
E(η|YN) generated by the estimates η̂(WN(d)) and η̃(WN(d)).

Lemma. The matrix C̃(d, N)− C(d, N) is a nonnegative definite matrix : C(d, N) ≤ C̃(d, N).

The lemma follows from the identity

C̃(d, N) = C(d, N) + (ΛN(d)− Λ̃N(d))(ΛN(d)− Λ̃N(d))T+

(ΛN(d)QN(d)− LN(d))(Λ̃N(d)− ΛN(d))T+

((ΛN(d)QN(d)− LN(d))(Λ̃N(d)− ΛN(d))T)T + (z − E(η)(z − Eη)T . (A.3)

Corollary of the lemma. For the vector E(η|YN , the vector η̂(WN(d)) is the estimate optimal
in the root-mean-square sense among the set of estimates linear with respect to components
of the vector WN(d). If QN(d) > 0, the estimation vector is unique and

η̂(WN(d)) = E(η) + LN(d)QN(d)−1(WN(d)− E(WN(d))). (A.4)

The covariance matrix C(d, N) of estimation errors of the vector E(η|YN) is given by the
formula

C(d, N) = Cη − ΛN(d)LN(d).(A.5)

If QN(d) ≥ 0, the vectors that provide linear and optimal in the root-mean-square sense
estimate are not unique; however, the variances of components of the difference between
these vectors are zeros.

Formula (A.1) gives explicit expressions for the vector coefficients of the form λ(a1, ..., aN) in
(1.1). To find these relations, we open the explicit expressions for components of the vector
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WN(d) and the right-hand side of (A.1) and equate them to the right-hand side of formula
(1.1).

We consider asymptotic estimation errors when we use (A.1). Suppose the vector YN is fixed.
We assume that the vector E(η|YN is given by the function of YN on some a priori region that
is a compact; the function is continuous on this region. Then, the following theorem holds.
Theorem.

Sup YN∈ΩYN
|η̂(WN(d))− E(η|YN)| ⇒ 0, d ⇒ ∞. (A.6)

Proof. The multidimensional analogue of the K. Weierstrass theorem, which is the corollary
of the M. Stone theorem [9], states that for any number ε > 0 there exists a multidimensional
polynomial P(WN(dε)) such that

Sup YN∈ΩYN
|P(WN(dε))− E(η|YN)| < ε.

We can rewrite this relation as

Sup YN∈ΩYN
|P(WN(d))− E(η|YN)| ⇒ 0, d ⇒ ∞. (A.7)

We assume that C is the covariance matrix of the random vector P(WN(d)− E(θ|YN) :

C = E((P(WN(d))− E(η|YN))(P(WN(d))− E(η|YN))T .

It follows from (A.7) that
C ⇒ 0n, d ⇒ ∞ (A.8).

By construction, the vector η̂(WN(d)) provides the estimate of the vector η that is linear with
respect to components WN(d) and optimal in the root-mean-square sense. However, it follows
from the lemma that for any other non-optimal linear estimate, including estimates of the form
P(WN(d), the relation C ≥ C(d, N) holds. Hence, taking into account (A.8), we obtain

C(d, N) ⇒ 0n, d ⇒ ∞. (A.9)

Proposition (A.9) is equivalent to (A.6) if we recall that

C(d, N) =
∫
(ZE(η|YN)(WN(d))− E(η|YN))(ZE(η|YN)(WN(d))− E(η|YN))T

p(η, YN)dηdYN ,

where p(η, YN) is the joint probability density of the random vectors η and YN . The theorem
is proved.

Thus, by (A.1), AF determines the vector series that, with the increasing number m(d, N) of
its terms, approximates the vector of conditional mathematical expectation of the vector θ of
the estimated parameters with an arbitrary uniformly small root-mean-square error.

A.2. Recurrent (Realizable) MPA algorithm

To use formula (A.1), we need to find the matrix inverse to the matrix QN(d). When the
dimension m(d, N)× m(d, N) of the matrix QN(d) is high and QN(d) is close to the singular
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matrix, it is difficult to calculate elements of the inverse matrix. Below, we give the recurrent
computational process based on the principle of decomposing observations, described in [6,
7]. Above, we specified the vector WN(d) of dimension m(d, N) × 1 with the components
w1, ..., wm(d,N). The computational process consists of m(d, N) successive steps. At each step,
we use new updated prior data to find the new estimate of the vector θ and perform the
prediction, which provides estimates for the rest part of the observation vector. At the same
time, we determine the covariance matrix of the estimation errors attained at this step. There
is no prediction at the last m(d, N)− th step, and the vector θ is refined for the last time.

Let us construct the recurrent algorithm (the MPA algorithm) that does not calculate inverse
matrices and consists of m(d, N) steps of calculating the first and second statistical moments
for the sequence of special vectors V1, ..., Vi, ..., Vm(d,N) performed after prior moments V̄(d, N)
and CV(d, N) are found for the basic vector V(d, N). We assume that V1 is composed of r +
m(d, N)− 1 components of the basic vector V(d, N) left after the component w1 was excluded,
w1, ...; Vi composed of components of the vector Vi−1 left after the component wi was excluded,
etc. The component wm(d,N) is the last component of the vector WN(d), and once we exclude
it, the resulting vector Vm(d,N) turns out to equal the estimation vector η̂(WN(d)).

At step 1, we use the particular case of formulas of form (A.1) and (A.5) to calculate the vector
V̄1 that estimates the vector V1 and is optimal in the root-mean-square sense and linear with
respect to w1, and the covariance matrix of the estimation errors C(V1).

The estimation vector is formed of the estimate of the vector of conditional mathematical
expectation E(η|YN) and the vector of dimension m(d, N) − 1) × 1. Once we fix the value
w1, the latter becomes the vector of statistical prediction of the mean values of "future"
values w2, ..., wm(d,N). We emphasize that calculations performed at step 1 are based on the

preliminary found prior , V̄(d, N), CV(d, N).

Suppose steps 1, ..., i of the computational process yielded the vector V̄(d, N) and the matrix
C(Vi) after the values w1, ...wi, wi were fixed. At step i + 1, we have from the particular case
of formulas (A.1) and (A.5) the vector V̄i+1 that estimates the vector Vi+1 and is optimal in
the root-mean-square sense and linear with respect to w1, ..., wi+1, and the covariance matrix
C(Vi+1) of estimation errors. The vector V̄i+1 is still formed of the estimate of the vector of
conditional mathematical expectation E(η|w1, ..., wi+1 (first r components of the vector V̄i+1)
and the vector of statistical prediction of mean values of "future" - h values wi+2, ..., wm(d,N)

after w1, ..., wi+1 (the rest m(d, N) − (i + 1) components of the vector V̄i+1 ) are fixed. We
emphasize that calculations at step i + 1 are based on the preliminary found V̄iand C(Vi),
which can be naturally called the first and second statistical moments for "future" random
values wi+1, ..., wm(d,N). These vectors and matrices represent a priori data on statistical
moments of components of the vector Vi+1 before the algorithm receives the value wi+1 at
its input.

Recurrent formulas that corresponds exactly to the above given qualitative description of the
computational process have the form

Vi+1 = V
1
i + q−1

i bi(wi+1 − zwi+1 ), (A.10)

C(Vi+1) = C(Vi)
1 − q−1

i bib
T
i , (A.11)
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where the scalar zwi+1 is the (r + 1)-th component of the vector V̄i, the scalar is the linear
and optimal in the root-mean-square sense estimate of the component after the algorithm
has processed the components w1, ..., wi, V̄−1

i is the vector obtained from the vector V̄i by
eliminating its component zwi+1 , the scalar qi is the (r + 1)-th diagonal element of the matrix
C(Vi), which is the variance of the estimation error of the component wi+1 after components
w1, ..., wi were processed, C(Vi)

1 is the matrix formed of C(Vi) after the (r + 1)-th row vector
and (r + 1)-th column vector were excluded, and bi is the (r + 1)-th column vector of the
matrix C(Vi) with its (r + 1)-th component deleted.

If the scalar qi turned out to be close to zero, the component wi+1 corresponds to a linear
combination of components w1, ..., wi. Then, wi+1 do not give any new information on θ

and should be excluded from the computational process. Note that the sequence of random
variables like (wi+1 − zwi+1 ) forms an updating sequence. The upper left block of the
(r × r)-matrix C(Vi) includes the covariance matrix C(d, i) of estimation errors of the vector
E(η|wi, ..., wi) after the algorithm processed the vector Wi(d).

We assume that l(i) is the vector composed of r first components of the vector bi. The formula
representing the evolution of the covariance matrix C(d, i) in the function of the number i of
observable components of the vector WN(d) has the form

C(d, i) = Cη(0)− q−1
1 l(1)l(1)T − ... − q−1

i l(i)l(i)T . (A.12)

To test this MPA algorithm, we solved numerically several problems of estimating the
components of the state vector for essentially nonlinear dynamic systems. The estimated
components are unknown random constant parameters η1, ..., ηr of the dynamic system.

As for particular applied problems, we considered smoothing problems and the filtration
problem.

In the above examples, we applied the Monte-Carlo method for the number of random
realizations lying within 5000 - 10000. This number does not affect the estimation errors
provided by the MPA algorithm significantly. The estimated random parameters are assumed
to be statistically independent and are a priori uniformly distributed. The value of the
root-mean- square deviation σ(i, theo) is determined theoretically by calculating variances
:the diagonal elements of the covariance matrix C(d, N). The value of the root-mean-square
deviation σ(i, exp) is obtained experimentally by applying the Monte-Carlo method for 5000
realizations. Experimental and theoretical root-mean-square deviations almost coincide,
which proves that the above given formulas of the MPA algorithm are correct.
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