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1. Introduction 

Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia and the fifth 

leading cause of death in Americans older than 65 years.1 Although other major causes of 

death have decreased, deaths due to LOAD have been rising dramatically over the past two 

decades, between 2000 and 2006 they increased by 46.1%.1 Clinically, LOAD is characterized 

by progressive cognitive decline in particular in the memory domain. Neuropathologically it 

is characterized by the aggregation and deposition of misfolded proteins, in particular 

aggregated ǃ-amyloid (Aǃ) peptide in the form of extracellular senile (or neuritic) 

“plaques,” and hyperphosphorlylated tau (τ) protein in the form of intracellular 

neurofibrillary “tangles” (NFTs). These changes are often accompanied by microvascular 

damage, vascular amyloid deposits, inflammation, microgliosis, and loss of neurons and 

synapses. 

Although twin studies suggest that  37% to 78% of the variance in the age-at-onset of LOAD 

can be attributed to additive genetic effects,2 few genes have been identified and validated, 

and these genes likely explain less than 50% of the genetic contribution to LOAD. This is the 

upper bound of explained heritability in other complex diseases for which—unlike LOAD—

significant association has been demonstrated for several common loci of large effect (i.e., 

ORs > 2 to > 3), such as age-related macular degeneration. Thus, a substantial proportion of 

the heritability for LOAD remains unexplained by the currently known susceptibility genes. 

A likely explanation for the difficulty in gene identification is that LOAD is a multifactorial 

complex disorder with both genetic and environmental components, and that multiple 

genes with small effects are likely to contribute. 

Several neuroimaging measures correlate with LOAD risk and progression, in particular the 

volumes of the hippocampus, parahippocampus and entorhinal cortex, and the cerebral 

grey matter. Also these measures appear to have a substantial genetic contribution reflected 
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by heritability estimates ranging from 40% to 80%.3-5 Advances in brain imaging and high 

throughput genotyping enable new approaches to study the influence of genetic variation 

on brain structure and function. As a result, imaging genetics has become an emergent 

transdisciplinary research field, where genetic variation is evaluated using imaging 

measures as quantitative traits (QTs) or continuous phenotypes. Imaging genetics studies 

have advantages over traditional case-control designs. An important consideration is that 

QT association studies have increased statistical power and thus decreased sample size 

requirements. Additionally, imaging phenotypes may be closer to the underlying biological 

etiology of AD, making it easier to identify underlying genes. Together with studies of the 

genetics of brain structure and function among normal individuals which have been 

extended to the entire human lifespan from childhood through extreme old age,6-8 the data 

of such studies provide an invaluable backdrop for understanding the genetic influences on 

neuroanatomy and neurophysiology and are powerful tools for understanding the genetics 

of neurodegenerative diseases associated with changes in these brain structures such as 

LOAD. In this chapter, we summarize the current evidence relating genetic variation with 

LOAD and review the usefulness of imaging endophenotypes in identification of genes 

increasing susceptibility to LOAD. 

2. Imaging endophenotypes in LOAD 

Structural MRI. On structural magnetic resonance imaging (LOAD) is characterized by 

atrophy of the medial temporal lobe, foremostly the hippocampus and the amygdala (Figure 

1),9 which may further involve the posterior cortex,1 occipital lobes, precuneus and posterior 

cingulate.10 Atrophy in the hippocampus and entorhinal cortex is associated with a decline 

in memory function, progression of memory impairment and an increased risk of LOAD.11 

However, these structural changes on MRI are not specific to LOAD and not sufficient to 

establish a definitive diagnosis of LOAD, as similar atrophy is observed in other 

neurodegenerative disorders and normal aging. In addition, while nonspecific white matter 

changes appear frequently in healthy elderly individuals, such changes are also common in 

elderly people with cognitive decline, stroke or MCI. Nevertheless, several studies have 

suggested that certain structural MRI biomarkers possess some degree of discriminative 

diagnostic power. For example, evidence exists that in LOAD, the corpus callosum 

(particularly the anterior area) exhibits atrophy. This change helps to distinguish LOAD 

from frontotemporal dementia, in which the posterior area of the corpus callosum shows 

greater atrophy than the anterior area of this brain structure.12 There is also evidence that 

among patients with amnestic MCI, those who convert to LOAD show greater atrophy in 

the hippocampus and the inferior and middle temporal gyri than those who do not convert 

to LOAD.13 

Functional MRI. Functional MRI (fMRI) can visualize neuronal activity either during rest or 

in association with a task that activates specific brain regions. The most common method is 

blood oxygen level-dependent (BOLD) fMRI, which measures alterations in blood flow on 

the basis of changes in deoxyhemoglobin. As the deoxyhemoglobin concentration depends 

on neuronal activity, BOLD reflects brain activity. This technique is widely used in research 

and in the diagnosis of various brain disorders because of its high sensitivity and easy 

implementation. 
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Fig. 1. LOAD Endophenotypes on MRI 

BOLD signals depend on several anatomical, physiological and imaging parameters, and 
can be interpreted qualitatively or semiquantitatively. As a result, interindividual and 
intraindividual variability limits the use of such signals in the differential diagnosis of 
dementia- causing disorders. Nevertheless, fMRI can facilitate the characterization of 
functional abnormalities in specific diseases. People with LOAD exhibit reduced brain 
activity in parietal and hippocampal regions in comparison with healthy controls when 
undergoing memory encoding tasks.14-16 In addition, some studies have found different 
neuronal activity patterns in healthy controls and patients with MCI. Recent advances in 
fMRI have allowed intrinsic functional networks in the human brain to be defined. The 
study of cognitive–behavioral function in the early stages of neurodegenerative disorders 
may allow the identification of the neuroanatomical networks affected by these diseases, 
and may assist in the differential diagnosis of the various disorders that underlie dementia. 
PET and single-photon emission CT. PET and single-photon emission CT (SPECT) have 

been widely explored as diagnostic tools for dementia, and both techniques have shown 

good diagnostic and prognostic capabilities. PET studies have mostly used the tracer 

2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG), which provides a measure of cerebral glucose 

metabolism and, hence, indirectly demonstrates synaptic activity. In the early stages of 

LOAD, 18F-FDG-PET reveals a characteristic pattern of symmetric hypometabolism in the 

posterior cingulate and parietotemporal regions that spreads to the prefrontal cortices 

(Figure 2a). These changes are distinct from the changes in cerebral glucose metabolism that 

are seen in healthy controls and cases of other forms of dementia, and the extent of 

hypometabolism inversely correlates with the degree of cognitive impairment.17 18F-FDG-

PET has a high sensitivity (94%) but a low specificity (73–78%) for the diagnosis of 

dementia.18 SPECT, which involves studying regional blood flow with Tc-

hexamethylpropyleneamine oxime, has a similar specificity to 18F-FDG-PET for this 

condition.19 A number of low-molecular-weight tracers have been developed for PET to 
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assess Aǃ deposits in vivo. The most frequently used tracer is Pittsburgh compound B (PIB). 

Compared with healthy controls, patients with LOAD show increased 11C-PIB retention in 

cortical regions targeted by Aǃ deposits (Figure 2b).20 Deposition of this peptide seems to 

reach a plateau by the early stages of LOAD. In MCI, PIB binding is bimodal, with ≈ 50% of 

patients showing an increase in 11C-PIB binding, resembling the 11C-PIB retention that is 

seen in LOAD, while the other ≈ 50% of patients exhibit low levels of 11C-PIB binding that 

are similar to the levels seen in controls.21 In MRI studies, 11C-PIB binding correlated 

positively with atrophy in the amygdala and hippocampus but not other cortical areas, 

suggesting that various brain areas have different susceptibilities to Aǃ deposit-mediated 

toxicity, or that amyloid deposition is nonessential for neurodegeneration.21 New PET 

tracers for amyloid deposits, such as 18F-FDDNP, are being developed. In studies 

comparing 11C-PIB and 18F-FDDNP, these tracers showed differences in regional binding 

and in the cognitive domains with which they seem to be associated, suggesting that these 

tracers measure related but different characteristics of LOAD.22 

 

 

Fig. 2. A) FDG PET patterns characteristic of metabolic activity in cognitively normal 

individuals and patients with LOAD. Red: high FDG uptake, Blue: low FDG uptake. 

Compared to persons aging normally, persons with LOAD show decreased bilateral glucose 

metabolism particularly in the temporal and parietal regions. B) PIB PET images 

characteristic of elderly individuals without cognitive impairment and patients with LOAD.  

Red: high PiB retention, Purple: low PiB retention. The image of the LOAD case shows red 

and yellow areas indicating high concentrations of PiB in the brain thereby suggesting high 

amounts of amyloid deposits. 

3. Genetic influences on brain morphological endophenotypes 

Elucidating the extent to which genetic and environmental factors influence normal brain 

structure is of great importance for understanding age-related normal and pathological 

changes in brain and cognition. Twin studies, which estimate heritability based on data from 

monozygotic (MZ) and dizygotic (DZ) twin pairs, provide the optimal genetic method for 

clarifying this issue because they allow decomposing the variance of any variable into genetic, 

shared environmental influences, and unique individual-specific environmental influences.  
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As MZ twin pairs are genetically identical (with rare exceptions due to somatic mutations) 

while DZ twin pairs share on average 50% of their segregating genes, variation of a certain 

measure is considered heritable if MZ twin pairs resemble each other for this measure more 

closely than DZ twin pairs. An influence of shared environmental factors is suspected when 

correlations in DZ twin pairs are >50% of the MZ twin pair correlation.23 Unique 

environmental factors determine the extent to which MZ twins do not resemble each other. 

Extended twin-studies include additional relatives thereby increasing the statistical power 

to detect the influences of environmental influences shared by members from the same 

family.  

Heritability of Brain Volumes and Structures. To date, more than 30 twin studies on brain 

imaging measures have been performed that aim to define the genetic contribution to brain 

structures (reviewed by Krasuski et al. and Karas et al9, 10). Overall, these studies 

demonstrated substantial heritability of these endophenotypes, particularly for larger 

structures.  

Twin studies using magnetic resonance imaging (MRI), found high heritability estimates of 

global brain measures including intracranial volume (>72%),3, 9, 11, 24-26 total brain volume 

(66–97%),3, 11, 24, 27-30 lobar tissue (in particular the temporal and parietal cortices),25, 30, 31 total 

gray matter volume3, 11, 24 and total white matter volume.3, 11, 24 Brain areas that in contrast 

seem to be under stronger environmental control include the gyral patterning of the 

cortex,27, 32 the volume of the lateral ventricles,12, 24, 26, 29, 33 and the volume of the 

hippocampus.11, 12, 24, 29, 34, 35  It is important to point out that some of these studies did not 

correct for total cranial volume or height when measuring brain volumes. Although it is 

likely that the ratio of brain volume/total cranial volume is comparable among monozygotic 

twins, it remains possible that this lack of correction has led in some studies to spurious 

results.  

More recent studies have predominantly examined possible genetic effects on specific brain 

areas using voxel-based morphometry36 and cortical thickness measures. Overall, these 

studies confirmed in particular the high heritabilities for the frontal, parietal and temporal 

cortices. In a study by Thompson et al., that constructed detailed three-dimensional maps 

based on a genetic continuum of similarity in grey matter in groups of unrelated subjects as 

well as DZ and MZ twins, genetic factors influenced in particular anatomical regions that 

include frontal and language-related cortices (ie., sensorimotor, middle frontal, anterior 

temporal and Wernicke’s cortices; r2(MZ) > 0.8, p < 0.05).5 In a study by Holshoff Pol et al.37 

which examined both gray and white matter density in a large sample of 54 monozygotic 

and 58 dizygotic twin pairs and 34 of their siblings, genetic factors significantly influenced 

white matter density of the superior occipitofrontal fascicle, corpus callosum, optic 

radiation, and corticospinal tract, as well as grey matter density of the medial frontal, 

superior frontal, superior temporal, occipital, postcentral, posterior cingulate, and 

parahippocampal cortices (heritability>0.69).37 In a study by Wright et al., voxel-based 

morphometry revealed moderate heritabilities (42-66%) for temporal/parietal neocortical 

areas and paralimbic structures.29 In a study by Rijsdijk et al.,38 heritability estimates were 

only significant for left posterior cingulate and right dorsal anterior cingulate gray matter 

concentrations (46% and 37%, respectively). In a  recent study that derived both surface-

based and voxel-based representations of brain structure,39 both  heritability estimates for 

thickness and surface area were highest for the temporal and parietal lobes. In addition, this 
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study suggested that grey matter volume is more closely related to surface area than cortical 

thickness suggesting that surface area and cortical thickness measurements should be 

considered separately and preferred over gray matter volumes for imaging genetic studies. 

Only one study has measured the heritability estimates for changes in brain volumes over 
time.  In this study which used structural MRI, the genetic contributions to variability in 
intracranial volume, corpus callosum, and lateral ventricles in healthy elderly were high (88-
92%)26 but did not change after 4 years follow-up.40 

4. Genetic epidemiology of LOAD 

Genetically, AD is categorized into two forms: (1) familial cases with Mendelian inheritance 
of predominantly early-onset (<60 years, early-onset familial AD [EOFAD]), and (2) 
“sporadic” cases with less apparent or no familial aggregation and later age of onset (≥60 
years, late-onset AD [LOAD]). It is important to note that this traditional dichotomization is 
overly simplistic as there are cases of early-onset AD without evidence for Mendelian 
transmission while, conversely, LOAD is frequently observed with a strong familial 
clustering, sometimes resembling a Mendelian pattern.  
In contrast to early-onset Alzheimer’s disease which is caused by autosomal dominant 

mutations in the APP (amyloid precursor protein), PSEN1 (presenilin 1) and PSEN2 

(presenilin 2) genes, the genetics of LOAD is more complex. The genes involved in LOAD 

increase disease risk and are not inherited in a Mendelian fashion. First-degree relatives of 

patients with LOAD have twice the expected lifetime risk of this disease of people who do 

not have a LOAD-affected first-degree relative.41 In addition, LOAD occurs more frequently 

in monozygotic than in dizygotic co-twins,42 suggesting a substantial genetic contribution 

to this disorder. In the largest twin study of dementia, involving 11,884 participants in the 

Swedish registry who were aged >65 years, 395 twin pairs were identified in which either 

one or both twins had LOAD.42 This study demonstrated a heritability of 58–79% for 

LOAD, depending on the model that was used in the data analysis. 

Apolipoprotein E. APOE is the only established susceptibility gene for LOAD and maps to 

chromosome 19 in a cluster with the genes encoding translocase of outer mitochondrial 

membrane 40 (TOMM40), apolipoprotein C1 and apolipoprotein C2. APOE is a lipid-

binding protein that is expressed in humans as one of three common isoforms, which are 

encoded by three different alleles, namely APOE ε2, APOE ε3 and APOE ε4. The presence of 

a single APOE ε4 allele is associated with a 2–3-fold increase in the risk of LOAD, while the 

presence of two copies of this allele is associated with a fivefold increase in the risk of this 

disease. 

Each inherited APOE ε4 allele lowers the age of LOAD onset by 6–7 years. Furthermore, the 

presence of this allele is associated with memory impairment, MCI, and progression from 

MCI to dementia.38 APOE ε4 has been suggested to account for as much as 20–30% of LOAD 

risk. 

Despite the studies linking APOE ε4 with LOAD, the presence of this allele is neither 
necessary nor sufficient for disease: among participants in the Framingham study,39 55% of 
those who were homozygous for APOEε4, 27% of those with one copy of this allele and 9% 
of those without an APOE ε4 allele developed LOAD by 85 years of age. Segregation 
analyses conducted in families of patients with LOAD support the presence of at least four 
to six additional major LOAD risk genes.43 Additional genetic risk variants. After APOE, 
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the best-validated gene LOAD risk is the sortilin-related receptor 1 (SORL1) gene, which is 
located on chromosome 11q23. SorL1 belongs to a group of five type I transmembrane 
receptors (the others being sortilin, SorCS1, SorCS2 and SorCS3) that are highly expressed in 
the CNS and are characterized by a luminal, extracellular vacuolar protein sorting 10 
domain. From family-based and population-based studies that, together, included over 
6,000 individuals from four ethnic groups, Rogaeva et al. identified two haplotypes in the 3’ 
and 5’ regions of SORL1 that are associated with LOAD risk.44 In addition, these researchers 
demonstrated that SorL1 promotes the translocation and retention of APP in subcellular 
compartments that exhibit low secretase activity, thereby reducing the extent of proteolytic 
breakdown into both amyloidogenic and nonamyloidogenic products.44 As a consequence, 
underexpression of SORL1 leads to overexpression of Aǃ and an increased risk of LOAD. 
Several subsequent studies replicated these initial genetic association findings, and the 
results were further validated by a collaborative, unbiased metaanalysis of all published 
genetic data sets that included a total of 12,464 LOAD cases and 17,929 controls.45 In the 
past year, several studies demonstrated that, in addition, genetic variation in the SORL1 
homolog SORCS1 influences LOAD risk, cognitive performance, APP processing and Aǃ1–
40 and Aǃ1–42 levels through an effect on Ǆ-secretase processing of APP,46, 47 further 
emphazising the role of sortilin-related proteins in LOAD etiology. 
Genome-wide association studies48-50 for LOAD using large numbers of cases and controls 
have revealed modest effect sizes for several genes on LOAD risk, with odds ratios in the 
range of 1.1–1.5, although most of these studies have only confirmed the association of 
APOE with this disease. One such study showed that variants of TOMM40—which is 
proximally located to and in linkage disequilibrium with APOE—were associated with 
LOAD risk, but whether these genetic associations are independent of the APOE locus 
remains unclear. 
Together, two genome-wide association studies identified variants in the clusterin gene 

(CLU),16, 51 the phosphatidylinositol- binding clathrin assembly protein gene (PICALM)16 

and complement receptor type 1 gene (CR1)51 as being associated with LOAD and several 

subsequent studies replicated these findings, but functional data confirming the roles in 

LOAD of the proteins encoded by these genes are still lacking. Clusterin is a lipoprotein that 

is expressed in mammalian tissues and is incorporated into amyloid plaques. This protein 

binds to soluble Aǃ in CSF, forming complexes that can penetrate the BBB. Clusterin levels 

are positively correlated with the number of APOE ε4 alleles, suggesting a compensatory 

induction of CLU in the brains of LOAD patients with the APOE ε4 allele, who show low 

brain levels of APOE. CR1 encodes a protein that is likely to contribute to Aǃ clearance from 

the brain, while PICALM protein is involved in clathrin-mediated endocytosis, allowing 

intracellular trafficking of proteins and lipids such as nutrients, growth factors and 

neurotransmitters. PICALM protein also has a role in the trafficking of vesicle-associated 

membrane protein 2, a soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor that is involved in the fusion of synaptic vesicles to the presynaptic membrane in 

neurotransmitter release. A third large genome-wide association study confirmed the 

associations of PICALM and CLU with LOAD and reported two additional loci as being 

associated with LOAD52: rs744373, which is near the bridging integrator 1 gene (BIN1) on 

chromosome 2q14.3, and rs597668, which is located on chromosome 19q13.3. BIN1 is a 

member of the BAR (BIN–amphiphysin–Rvs) adaptor family, which has been implicated in 

caspase-independent apoptosis and membrane dynamics, including vesicle fusion and 
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trafficking, neuronal membrane organization, and clathrin-mediated synaptic vesicle 

formation. Of note, the latter process is disrupted by Aǃ. Changes in BIN1 expression have 

also been shown in aging mice and in transgenic mouse models of LOAD. The locus 

rs597668 is not in linkage disequilibrium with APOE, suggesting that the effect of this locus 

on LOAD risk is independent. Six genes are found in this region, of which at least two 

(genes encoding biogenesis of lysosomal organelles complex 1 subunit 3 and microtubule 

associated protein–microtubule affinity-regulating kinase 4) are implicated in molecular 

pathways linked to LOAD or other brain disorders. 

It is important to note, that the results of the published genome-wide association studies are 

informative, but that the genetic associations need functional validation. Indeed, such 

studies alone cannot prove causality or assess the biological significance of an observed 

genetic association. Genomewide association studies represent a method of screening the 

genome, but are limited in their ability to detect true associations. 

5. Genetic variation and neuroimaging measures in LOAD 

As described above, multiple neuroimaging measures that correlate with LOAD risk and 

progression appear to have genetic underpinnings, with heritability estimates ranging from 

40% to 80%. Recent studies that aimed to determine whether the discovered genetic risk 

factors for LOAD also influence these neuroimaging traits suggest that several of these 

candidate genes also influence specific LOAD imaging endophenotypes. Most studies chose 

hippocampal volume as the quantitative phenotype because of its sensitivity to the changes 

of early LOAD, and by far the best studied gene is APOE. In line with the strong and 

consistent results for APOE when using LOAD as the phenotype, most T-1 weighted MRI 

studies reported an association of APOE e4 with accelerated LOAD-related volume loss in 

the hippocampal region.53-56 This is supported by several studies exploring the effect of the 

APOE e4 allele on glucose metabolism using FDG-PET,57-60 or amyloid deposition using 

([¹¹C] PiB-PET. 61-63 

Few studies have examined the association between other genes and LOAD imaging 

measures, and most of these were GWAS studies. In a GWAS of 381 participants of the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, 21 chromosomal areas were 

associated with hippocampal atrophy.64 These candidate regions included the APOE, 

EFNA5, CAND1, MAGI2, ARSB, and PRUNE2 genes, which are involved in the 

regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. In the 

same study, APOE and TOMM40 were confirmed when LOAD was used as the 

phenotype of interest.64 Additional studies by the same group, that included a larger set 

of imaging phenotypes and used T1-weighted MRI, 65 voxel-based 

morphometry/FreeSurfer methods 66or 3D mapping of temporal lobe volume differences 

using tensor-based morphometry,67 confirmed  SNPs in APOE and TOMM40 as strongly 

associated with multiple brain regions (including hippocampal volume, entorhinal cortex 

volume, amygdala volume, cortical thickness measures, grey-matter density) and 

revealed other SNPs in or close to candidate genes that have been repeatedly associated 

with LOAD as described above (PICALM, SORL1, SORCS1, APP, CR1, BIN1). In addition 

these studies reported novel SNPs in proximity to the EPHA4, TP63, NXPH1, GRIN2B, 

NEDD9, DAPK1, IL1B, MYH13, TNK1, ACE, PRNP, PCK1 and GAPDHS genes.  Several 

www.intechopen.com



 
Genetic Risk Factors of Imaging Measures Associated with Late-Onset Alzheimer’s Disease 

 

301 

of these genes are biologically plausible. NXPH1 codes for neurexophilin-1, a protein 

implicated in synaptogenesis, that forms a tight complex with alpha neurexins, a group of 

proteins that promote adhesion between dendrites and axons. This adhesion is a key 

factor in synaptic integrity, the loss of which is a hallmark of AD. GRIN2B encodes the N-

methyl-D-aspartate glutamate receptor NR2B subunit, which is a target for memantine 

therapy to decrease excitotoxic damage. ACE has been shown to cleave amyloid beta in 

vitro and is in addition involved in blood pressure regulation. Both high and low blood 

pressure have been associated with LOAD.  

There have been few studies exploring the effects of specific candidate genes (other than 
APOE) on brain imaging phenotypes. Ho et al.68 investigated the relationship between an 
obesity-associated candidate gene (FTO) and regional brain volume differences in 206 ADNI 
control participants. Systematic brain volume deficits were detected in cognitively normal 
obesity-associated risk allele carriers, as well as in subjects with increased body mass index 
indicating that this obesity susceptibility gene is associated with detectable deficits in brain 
structure, which may indirectly influence future risk for neurodegenerative disease. In 129 
hypertensive individuals from a family-based cohort sampled from a Dutch genetically 
isolated population,69 four SNPs located at the 3'-end of SORL1 (rs1699102, rs3824968, 
rs2282649, rs1010159) were associated with frequency of microbleeds  which is potentially 
related to amyloid angiopathy. In the MIRAGE Study70 several SORL1 SNPs that have been 
reported to be associated with LOAD, were associated with hippocampal atrophy, 
cerebrovascular disease, and white matter hyperintensities. In a candidate gene study that 
used (FDG-PET) measurements as a quantitative pre-symptomatic endophenotype  in 158 
cognitively normal late-middle-aged APOEε4 homozygotes, heterozygotes, and non-
carriers,71 the GAB2 protective haplotype was associated with higher regional-to-whole 
brain FDG uptake in APOEε4 carriers. 

6. Discussion 

The work reviewed above indicates that there are various brain imaging measures that are 

useful endophenotypes associated with genetic liability for LOAD. The strongest evidence 

of heritability, linkage and/or association in studies of normal brain aging have been found 

for the medial frontal cortex, Heschl’s gyrus and postcentral gyrus, Broca’s area, anterior 

cingulate, gray matter of the parahippocampal gyrus and white matter of the superior 

occipitofrontal fasciculus. The high heritability for these endophenotypes seems to be 

present throughout life and seems to be functionally relevant. In contrast, the heritability of 

volume of the hippocampus, which is central to the formation of new memories and 

memory consolidation, the process for converting short-term memory into stored or long-

term memory,72  seems to be modest.  Support for an environmental component of 

hippocampus volume comes from a twin study of Ammon’s horn sclerosis73 in which only 

the twin of MZ pairs who had experienced prolonged, childhood febrile seizures developed 

sclerosis. This discordance in hippocampal response to trauma suggests susceptibility of this 

structure to environmental events. Mammalian studies reporting neurogenesis of the 

hippocampal dentate gyrus in adult animals even into senescence74, 75 suggest that the 

relatively stable size of the hippocampus throughout adulthood76, 77 may reflect a lifelong 

relative maintenance of volume 78, 79 through mechanisms such as neurogenesis and 

synaptogenesis with rich environmental stimulation75 even when genetically 
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compromised.80, 81 This speculation must, however, be tempered by the relatively small 

number of new neurons generated in confined regions of the hippocampus82 and the lack of 

evidence that volume necessarily reflects cell number. In any case, if neurogenesis could be 

adequately and functionally amplified, it may carry new promise for conditions affecting 

the hippocampus such as LOAD.  

The GWAS and candidate gene studies, however, which explored the impact of genetic 

variation on imaging endophenotypes of LOAD, do support an impact of genetic factors. In 

particular studies exploring the effect of APOE genotype on morphological changes 

consistently suggest a modulation of volume/structure dependent on level of genetic risk. 

Thus, taken together these studies of the genetics of brain structure and function among 

normal individuals suggest that variation in brain structure and function can be expected 

and that pathological states represent the extremes of this variation. They further indicate 

that the morphological characteristics of several brain structures represent both differential 

vulnerability to environmental influences and phenotypical expressions of different sets of 

genes, which may operate on morphology at different times throughout development and 

aging. As a consequence, these data provide a valuable background for understanding the 

genetics of neurodegenerative diseases associated with changes in brain structures including 

LOAD. They suggest that using these quantitative imaging traits may provide an 

informative phenotype and may increase statistical power.    

Although encouraging, this also raises some additional questions and challenges. First, are 

the genes mediating each endophenotype involved in abnormal brain aging and cognition at 

least partially distinct from each other? This is a key assumption of the endophenotype 

approach, yet empirical proof of this remains to be determined. A substantial degree of 

overlap appears likely for a number of the known genes associated with early- and late-

onset AD, at least including the APP, PSEN1, PSEN2, APOE, SORL1 and SORCS1, given 

that these genes are involved in either the production or processing of the ǃ-amyloid 

peptide. Nevertheless, each gene has a unique role in this cascade and it thus seems likely 

these loci will differ in their magnitudes of influence across the brain systems affected in this 

disorder. How do these genes (along with others that remain to be identified) coalesce in 

influencing liability to overt expression of LOAD? Are their effects additive or interactive? 

The answers to these questions depend on large-scale studies of genetically at-risk samples 

with and without environmental exposures and the use of sophisticated statistical modeling 

algorithms that can powerfully probe the resulting datasets for evidence of gene-gene and 

gene-environment interactions. Finally, are these endophenotypes and associated genes 

unique to cognitive impairment in LOAD, or are they shared by other diseases such as 

Dementia with Lewy Bodies, Parkinson’s disease or depression? Lewy body inclusions and 

Lewy neurites, the key pathological hallmarks of dementia with Lewy Bodies and 

Parkinson’s disease, are a frequent coexistent pathologic change observed in autopsy-

confirmed LOAD.   

The questions posed above raise considerable challenges for investigators attempting to 
unravel the genetic complexity of LOAD. Nevertheless, we have entered a new era in which 
conjoint advances in molecular genetics and dissection of the dementing phenotype are 
enabling rapid progress with multiple gene discoveries. These discoveries validate the 
dissection of this disorder into its more discretely determined subcomponents in order to 
elucidate the mechanisms underlying cognitive impairment in the elderly.  
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Author Subjects Age in years, mean (range) Brain region Heritability  
in % (95% CI) 

Reveley et 
al.33 (1984) 

18 MZ, 18 DZ NA LV 82-85% (NA) 

Bartley et 
al.27 (1997) 

10 MZ, 9 DZ MZ: 31 (19-54), DZ: 33 (18-29) TB 94% (NA) 

Carmelli et 
al.25 (1998) 

74 MZ, 71 DZ 68-79 years IC 91% (NA) 

Pennington 
et al.28 
(2000) 

Reading 
disability: 25 
MZ, 23 DZ; 
Non-Reading 
disability: 9 MZ, 
9 DZ 

Reading disability: MZ: 17.1, 
DZ: 16.8; Non-reading 
disability: MZ: 19.4, DZ: 18.7

TB 
Neocortex 

97% (NA) 
56% (NA) 

Pfefferbau
m et al.26 
(2000) 

45 MZ, 40 DZ MZ: 72.2, DZ: 71.4, range: 68-
78 

Subcortex 
IC 
CC 
LV 

70% (NA) 
81% (72-90) 
79% (69-89) 
79% (55-100) 

Posthuma 

et al.3 (2000) 

See Baaré et al 

(2001) 

See Baaré et al (2001) CB 88% (81-92) 

Sullivan et 

al.34 (2001) 

45 MZ, 40 DZ MZ: 72.2, DZ: 71.4, range: 68-

78 

HIP 40% (NA) 

Thompson 

et al.5 (2001) 

10 MZ, 10 DZ 48.2 ±3.4 Middle frontal 

sensimotor and 

anterior 

temporal 

cortices, Broca`s 

and Wernicke`s 

region (cortical 

thickness) 

90-95% (NA) 

Baaré et 

al.24 (2001) 

54 MZ, 58 DZ, 

34 sibs 

15 MZ, 18 DZ 

MZM: 31.2, MZF: 34.1, DZM: 

30.3, DZF: 30.6, OS: 30.3, sibs: 

29.0; range: 19-69 

75.7 ± years 

IC 

TB 

GM 

WM 

LV 

Size CC 

Microstructure 

CC (DTI) 

88% (82-92) 

90% (85-93) 

82% (73-88) 

87% (80-91) 

C: 59%  

(47-69), E: 41% 

(31-53) 

5:1 (NA) 

3:1 (NA) 

Geschwind 

et al.30 

(2002) 

72 MZ, 67 DZ MZ: 72.3, DZ: 71.8 Cerebral 

hemispheres 

65% (NA) 

Eckert  

et al.32 

(2002) 

27 MZ, 12 DZ MZ: 6.9-16.4, DZ: 6.1-15.0 Planum 

temporale 

asymmetry 

NA (NA) 
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Author Subjects Age in years, mean (range) Brain region Heritability  
in % (95% CI) 

Wright et 

al.29 (2002) 

10 MZ, 10 DZ MZ: 31 (19-54), DZ: 23 (18-29) TB 

LV 

CB 

Ventrolateral 

FR, cingulate, 

anterior/superi

or/transverse 

temp, 

retrosplenium 

66% (17-100) 

C: 48% (0-97), 

E: 50% (32-84) 

63%, E: 22% 

(NA) 

58-73% (NA) 

White et 

al.83 (2002) 

12 MZ, 12 

control pairs 

MZ: 24.5±7.2, controls: 

 24.4 ±7.2 

TB, GM, WM, 

CB 

CAU, PUT, 

THAL, cortical 

depth 

r>0.90 

r>0.75 

Scamvouge

ras et al.84 

(2003) 

14 MZ, 12 DZ MZ: 16-41, DZ: 18-32 CC 94% (NA) 

Pfefferbau

m et al.40 

(2004) 

34 MZ, 37 DZ 4-year longitudinal follow-

up 

T1: 68-80 years, T2: 72-84 

years 

CC (T1) 

CC (T2) 

LV (T1) 

LV (T2) 

89% (NA) 

92% (NA) 

92% (NA) 

88% (NA) 

Wallace et 

al.31 (2006) 

90 MZ, 37 DZ MZ: 11.9, DZ: 10.9, range: 5-

19 

TB 

GM 

WM 

FR, TEMP, 

PAR 

CB 

LV 

89% (67-92) 

82% (50-87) 

85% (56-90) 

77-88% (50-90) 

49% (13-83) 

31% (0-67), C: 

24% (0-58), E: 

45% (33-60) 

Hulshoff 

Pol et al.37 

(2006) 

See Baaré et al 

(2001) 

See Baaré et al (2001) WM (SOF, CC, 

CST) 

GM, MFL, SFL, 

STL, CING, 

PARAHIP, 

AMYG, OCC 

69-82% (NA) 

55-85% (NA) 

AMYG, amygdala; CAU, caudate; CB, cerebellum; CC, corpus callosum; CI, confidence interval; CING, 
cingulate; CST, corticospinal tract; DTI, diffusion tensor imaging; DZ, dizygotic; DZF, dizygotic female; 
DZM, dizygotic male; FR, frontal lobe; GM, gray matter; HIP, hippocampus; IC, intracranial volume; 
LH, left handed; LV, lateral ventricles; MFL, medial frontal lobe; MZ, monozygotic; MZF, monozygotic 
female; MZM, monozygotic male; NA, not available; OCC, occipital lobe; occ-front-temp, occipito-
fronto temporal; PAR, parietal lobe; PARAHIP, parahippocampal gyrus; PUT, putamen; SOF, superior 
orbitofrontal; TB, total brain; TEMP, temporal lobe; THAL, thalamus; SFL, superior frontal lobe; STL, 
superior temporal lobe; WM, white matter. 

Table 1. Studies on heritability of human brain volumes 
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It is important to note that - despite their utility in the context of etiological research on 
LOAD - endophenotypes have not proven to have great utility in the clinical distinction of 
dementing disorders. As described above, the different forms of dementia show substantial 
clinical and pathological overlap, and likely do not reflect completely separate underlying 
pathologies or genetic causes but rather a continuous spectrum of disease. Therefore, 
although they more realistically reflect variation in the underlying causes of illness, the use 
of endophenotypic assessments in diagnostic or treatment contexts is difficult. 
In conclusion, given that the pathways from genotypes to end-stage phenotypes are 
circuitous at best, discernment of endophenotypes more proximal to the effects of genetic 
variation can improve statistical power and thereby be a powerful tool in the identification 
of genes linked to complex disorders. They can help understand how environmental and 
genetic factors interact to influence disease susceptibility and expression, and can help 
identify targets for the development of new treatment and prevention strategies. 
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