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1. Introduction 

Ischemic stroke is one of the leading causes of persistent disability in Western countries 

(Bejot et al., 2007). It results from cessation of blood supply due to an occlusion of a cerebral 

artery. Many patients benefit from thrombolysis with the approved drug recombinant tissue 

plasminogen activator (rtPA). Nevertheless, the clinical effect of intravenously administered 

rtPA is variable (Hallevi et al., 2009; Wahlgren et al., 2008) which is of particular importance 

for middle cerebral artery (MCA) stroke: It has been demonstrated that early artery 

recanalisation yields unevenly distributed, circumscribed infarct lesions within the MCA 

territory with a great potential for functional recovery; in contrast, failed recanalisation 

results in large infarcts with a limited potential for functional recovery (Figure 1). 

Accordingly, an important factor contributing to recovery from stroke is the early 

restoration of cerebral blood flow. Spontaneous recovery is known to continue for the 

subsequent weeks to months (Cramer, 2008). Furthermore, recovery can be facilitated by 

dedicated rehabilitative training with greater effects in greater dosing of training (Kwakkel, 

2006) even years after the stroke (Stinear et al., 2007). 

Animal studies (Dancause et al., 2005) as well as imaging and electrophysiological studies in 

humans (Butefisch et al., 2006) have suggested that recovery is brought about by cerebral 

plasticity. Cerebral plasticity pertains to functional changes such as synaptic efficiency as 

well as structural changes such as synaptic sprouting (Dancause et al., 2005; Nudo et al., 

1996). Even in the adult brain, a loss of hand motor function due to small cortical lesions 

within the sensorimotor cortex can be completely restored (Binkofski and Seitz, 2004). 

However, there are limits to plasticity. For example, severe damage to major pathways such 

as the pyramidal tract (PT) can be compensated for to some extent, but full functional 

recovery is often not possible (Lang and Schieber, 2004).  

To date, neuroimaging studies of brain infarcts have mostly examined grey matter 
alterations. Recent advances in diffusion tensor imaging (DTI) and lesion-symptom 
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mapping techniques provided novel ways to investigate the white matter in the context of 
recovery from stroke (Johansen-Berg et al., 2010). The crucial role of the white matter for 
functional outcome can be illustrated by the observation that small cortical infarcts, e.g. in 
the precentral gyrus, typically allow for profound recovery from stroke, whereas infarcts of 
similar volume in the peri-ventricular white matter or the internal capsule may induce a 
severe and persistent hemiparesis (Kretschmann, 1988; Wenzelburger et al., 2005). Focusing 
on DTI and lesion mapping, we will discuss recent studies that established white matter 
damage as an important factor for functional outcome in the acute stroke phase. 
Furthermore, alterations of fibre tracts will be presented as a critical determinant of 
functional recovery due to cerebral plasticity in the subacute and chronic phases after stroke. 
 

 

Fig. 1. Neurological deficit as assessed with the NIHSS in 108 MCA stroke patients. 
Successful thrombolysis with early MCA recanalization resulted in a significant neurological 
improvement (*: p<0.0001). Adapted from (Seitz et al., 2009). 

2. Lesion mapping in the acute phase after stroke 

Different modalities of magnetic resonance imaging (MRI) are widely used to visualise brain 
lesions. In acute stroke, perfusion-weighted imaging (PWI) and diffusion-weighted imaging 
(DWI) can identify the area of acute ischemia. After reperfusion, PWI deficits can be 
resolved (Davis et al., 2008; Seitz et al., 2005), and also DWI alterations are partly reversible 
(Kranz and Eastwood, 2009). By use of lesion mapping it has been found that the 
hemispheric white matter is preferentially affected in patients with major MCA stroke as 
compared to patients with lesion regression (Stoeckel et al., 2007). Similarly, patients with a 
lacking response to rtPA and no recanalization of the MCA, showed larger brain lesions 
with greater hemispheric white matter damage than those with successful thrombolysis 
(Seitz et al., 2009). The large infarct lesions in patients non-responsive to thrombolysis 
occurred adjacent to the insular cortex and basal ganglia in the internal capsule and 
periventricular white matter and were predicted by the maximal perfusion deficit in the 
acute phase of stroke. These infarcts corresponded to the type II.2 MCA infarcts as described 
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recently (Seitz and Donnan, 2010). Note the close topographic correspondence of the mean 
area of the most severe perfusion deficit, the DWI abnormalities, and the lesion overlap in 
the periventricular white matter found in the patients with severe MCA stroke (Figure 2). 
Since the structural alterations project onto the corona radiate, the corresponding damage of 
well-defined fibre bundles—such as corticospinal motor tracts—can be assessed specifically 
by electrophysiology and MRI techniques such as DTI in order to correlate imaging 
measures with parameters of functional outcome. 
 

 

Fig. 2. Lesion pattern in severe MCA stroke. a) Area of the maximal PWI deficit in severely 
as compared to slightly affected patients. b) Area of common DWI-changes before acute 
stroke therapy (n=64). c) Overlap of the residual infarct lesions in hemispheric white matter 
(n=13). Adapted from (Seitz et al., 2009; Stoeckel et al., 2007).  

3. Diffusion tensor imaging: Methodological considerations 

DTI allows for inferences of the microstructural status of regions of interest in the white 

matter or reconstructed tracts (Beaulieu, 2009). DTI is a DWI technique that uses the 

measurement of Brownian motion of water molecules in different directions to reconstruct  

three-dimensional images of diffusivity (Jones, 2008). Whereas molecules can diffuse 

relatively freely in water, structural boundaries such as cell membranes or myelin sheaths 

cause restrictions and yield anisotropic diffusion (Beaulieu, 2002). The degree of diffusion 

anisotropy can then be used to characterise neural tissue and reveal potential pathological 

processes (Beaulieu, 2002; Jones, 2008). As an example, Figure 3 shows images of fibre 

distributions according to the main directions of diffusivity in each voxel of the image. Here, 

the colour-coding allows for the detection of diffusion abnormalities. Main diffusion 

directions of single voxels also provide the basis for deterministic tractography, which 

reconstructs trajectories through a combination of adjacent voxels with similar main 

directions. Probabilistic tractography, in contrast, propagates numerous pathways through 

the tensor field so that each voxel can be coded with a number that reflects its likelihood of 

being connected with a given seed region from which the tracking is started (see (Jones, 

2008) for a review). 

With both the deterministic and probabilistic approaches, major fibre bundles can be 
reliably reconstructed (Mori and Zhang, 2006; Wakana et al., 2004). Furthermore, 
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tractography not only allows for the visualisation of tract alterations after lesions, but can be 
used to quantify those alterations (Johansen-Berg and Behrens, 2006). Furthermore, 
fractional anisotropy (FA) has been used to describe microstructural abnormalities of white 
matter. FA indicates the coherence of aligned fibres and is calculated from directional 
diffusivities (axial and radial). Based on animal experiments, axial diffusivity is thought to 
primarily reflect axonal integrity whereas radial diffusivity has been suggested to relate to 
myelin degradation (Acosta-Cabronero et al., 2009; Naismith et al., 2009; Sidaros et al., 2008; 
Song et al., 2003; Sun et al., 2008). However, the model of a specific relationship of directional 
diffusivities with discrete pathological processes such as axonal damage or demyelination is 
controversial, especially in regions of complex fibre architecture (Wheeler-Kingshott and 
Cercignani, 2009). Interpretations of these parameters with respect to “fibre integrity” 
should therefore be made with caution.  
 

 

Fig. 3. DTI image of a patient with persistent hemiplegia in a striatocapsular infarct. Arrows 
point to severe diffusion alteration of corticospinal fibres descending in the posterior limb of 
the internal capsule and the cerebral pedunculus. The colour bar indicates the spatial 
orientation of fibres; blue: predominantly inferior—superior orientation, green: 
predominantly anterior—posterior orientation, red: predominantly left—right orientation. 

4. Assessing the impact of white matter damage on motor function using DTI 

Although the concept of disconnection syndromes is well established and helps explaining 
functional deficits after lesions (Geschwind, 1965a; Geschwind, 1965b), the involvement of 
the white matter in stroke has not received much attention until recently (e.g., (Catani and 
ffytche, 2005). White matter damage has been found to be particularly prominent in large 
cerebral infarcts with hemispatial neglect, apraxia and severe hemiparesis (Karnath et al., 
2009; Pazzaglia et al., 2008; Seitz et al., 2009; Stoeckel et al., 2007). However, it is not merely 
the size of the infarct but preferentially its location that determines the functional outcome 
after stroke (Binkofski et al., 1996; Chen et al., 2000; Zhu et al., 2010). 
The importance of corticospinal fibres for recovery of motor function after stroke has been 
demonstrated with different imaging modalities as well as electrophysiological measures 
(Binkofski et al., 1996; Fries et al., 1991; Schaechter et al., 2008; Stinear et al., 2007). Based on 
animal studies, it has been suggested that so-called alternate motor fibres (aMF) can 
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compensate for motor impairment after severe damage to the PT (Lang and Schieber, 2004). 
In monkeys and cats, the cortico-reticulo-spinal and cortico-rubro-spinal tracts may mediate 
motor functions in case of PT lesions (Canedo, 1997), whereas these tracts have been 
described as functionally redundant in healthy animals (Kennedy, 1990). In more detail, it 
has been observed that damage to the PT and the rubro-spinal tract of monkeys yielded 
therapy-refractory impairment of the contralateral upper extremity, but monkeys with 
lesions to the PT that spared the rubro-spinal tract were able to recover considerably 
(Lawrence & Kuypers, 1968a; Lawrence & Kuypers, 1968b). Furthermore, changes in the 
synaptic organization of rubro-spinal neurons in response to PT lesions have been reported 
in monkeys (Belhaj-Saïf & Cheney, 2000). 
The first neuroimaging study that translated these findings into motor recovery after human 
stroke combined structural MRI and electrophysiology to demonstrate that, despite severe 
degeneration of the PT, motor evoked potentials (MEP) could still be elicited from the 
ipsilesional motor cortex in patients who had recovered from stroke (Fries et al., 1991). 
Similarly, patients with hemiparesis due to focal PT lesions were still able to execute 
individuated finger movements contralateral to the lesion, but with reduced selectivity 
(Lang and Schieber, 2004). These studies in humans illustrate the role of aMF after stroke 
similar to that observed in non-human primates. 
Using diffusivity parameters and tractography, researchers can examine fibre degeneration 
at different stages of motor recovery after stroke (Kang et al., 2000; Lindberg et al., 2007; 
Thomalla et al., 2004; Werring et al., 2000). In the chronic stage, structural damage to the PT 
could be related to measures of functional impairment (Schaechter et al., 2009; Stinear et al., 
2007). Besides the PT, DTI has been applied to reconstruct aMF using deterministic fibre 
tracking algorithms and, thereby, to explore their role for motor recovery after stroke 
(Lindenberg et al., 2010). Consistent with previous animal and human studies mentioned 
above, the differential affection of PT and aMF yielded a three-tier classification system 
suggesting that (1) when both PT and aMF could be reconstructed, patients showed only 
mild impairment, (2) when damage occurred to the PT but aMF remained relatively 
preserved, patients were only moderately impaired, and (3) when pronounced damage to 
both the PT and aMF was visible, patients was most severely impaired (Figure 4). In 
addition, DTI-based tractography allows to topographically relate lesions to corticospinal 
fibres and provides insights into their somatotopic organisation (Konishi et al., 2005; 
Kunimatsu et al., 2003; Lee et al., 2005; Nelles et al., 2008; Newton et al., 2006; Yamada et al., 
2004). Furthermore, the calculation of the overlap between lesion and tracts can explain 
some of the variance in motor outcome after stroke (Zhu et al., 2010). 

5. Predicting functional potential for motor recovery using DTI 

One of the most important clinical questions after stroke is a patient’s potential for recovery 
from stroke-induced deficits. Small cortical infarcts in the precentral gyrus typically allow 
for a profound recovery from hemiparesis. In contrast, infarcts of similar volume in the peri-
ventricular hemispheric white matter or the posterior limb of the internal capsule may 
induce a severe persistent hemiparesis (Kretschmann, 1988). Electrophysiological studies 
suggest that the functional integrity of ipsilesional motor circuits as well as inter-
hemispheric interactions play a major role in motor recovery from hemiparesis after stroke 
(Perez and Cohen, 2009). Although transcranial magnetic stimulation (TMS) has been shown 
to strongly correlate with motor impairment in the acute and subacute phase after stroke, its 
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predictive value appears unclear in the chronic stage (Talelli et al., 2006). However, a 
combination of TMS and DTI-derived parameters of corticospinal tracts proved to be useful 
in estimating a patient’s potential for recovery when undergoing motor rehabilitation even 
years after the stroke (Stinear et al., 2007). Similarly, DTI in the acute stroke phase helped 
predicting outcome at three months (Jang et al., 2008). 
 

 

Fig. 4. The course of the pyramidal tract (PT) and alternate motor fibres (aMF) from the 
white matter underlying the precentral gyrus to the brainstem in a healthy subject.  

In order to define predictors of therapeutic response to novel rehabilitation techniques such 
as non-invasive brain stimulation, it may be useful to examine transcallosal motor fibres as 
well. Using transcranial direct current stimulation (tDCS) or repetitive TMS, it has been 
demonstrated that both the up-regulation of intact portions of the ipsilesional and down-
regulation of contralesional motor cortices facilitates motor recovery after stroke (Schlaug et 
al., 2008). Together with evidence from electrophysiological investigations (Perez and 
Cohen, 2009) and functional MRI (Carter et al., 2009; Grefkes et al., 2008), there is ample 
evidence for the importance of inter-hemispheric interactions in functional recovery from a 
stroke. To complement these findings, a study in healthy subjects revealed an association of 
function and microstructure of transcallosal motor connections (Wahl et al., 2007). In chronic 
stroke patients, DTI-derived measures of transcallosal motor fibres as well as ipsilesional 
corticospinal tracts (PT and aMF) could be used to explain the therapeutic response to 
rehabilitation: the more the diffusivity profiles resembled those observed in healthy subjects, 
the greater a patient’s potential for functional recovery (Lindenberg et al., 2011). Thus, 
diffusivity profiles of motor tracts, particularly, in combination with electrophysiological 
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measures can serve as predictors of a patient’s potential for spontaneous recovery as well as 
in response to different types of neurorehabilitation techniques. 

6. Impact of white matter damage for functional deficits beyond hemiparesis 

Brain infarcts with white matter involvement lead to disconnection of areas in perilesional 
tissue, but also remote locations. This has been shown using positron emission tomography 
of cerebral blood flow and metabolism as well as with MRI (Feeney and Baron, 1986). Lesion 
analysis by use of statistical parametric mapping revealed that cortical infarcts result in 
remote changes in the ipsilesional thalamus, while striatocapsular infarcts induce changes in 
the contralesional cerebellum (Seitz et al., 1994). Consequently, functional changes occur in 
regions spatially distant from the area of infarction, an event which has been termed 
diaschisis. In the chronic phase after stroke, scar formation and fibre degeneration have been 
shown to result in brain atrophy (Kraemer et al., 2004). Many patients retain functional 
impairments which can be documented by dedicated investigations including 
neuropsychology, electrophysiology and DTI. A clinical example is ataxic hemiplegia 
resulting from infarct lesions around the internal capsule with cortico-cerebellar 
disconnection (Classen et al., 1995). Similarly, callosal infarcts can induce a lasting 
decoupling of both hands (Seitz et al., 2004). Infarcts in the frontal parasagittal white matter 
can produce a deficit of visual face processing probably due to disruption of fronto-
occipitotemporal projections (Schafer et al., 2007). Lesion studies in neglect have 
demonstrated subcortical white matter involvement in the peri-insular area and the internal 
capsule (Karnath et al., 2004). In Gerstmann’s syndrome it has been shown recently that the 
different parietal cortical subareas which process finger naming, colour naming, right-left 
orientation, and calculation can all be impaired by a single subcortical white matter lesion 
affecting the point of convergence of their subcortical projections (Rusconi et al. 2009). These 
data are of considerable interest given the impact of white matter abnormalities for 
cognitive decline and the development of dementia after stroke (Dufouil et al., 2009). Taken 
together, many clinically well-established syndromes are likely to result from cortico-
cortical and cortico-subcortical disconnections. 

7. Fibre tract changes in white matter and cerebral plasticity  

As observed in lesion experiments, intensive rehabilitation allowed animals with damage of 
corticospinal tracts to recover considerably (Maier et al., 2008). In these animals, collateral 
fibres increased their innervation density and extended toward the ventral and dorsal horn 
in response to forced limb use. In contrast, animals that were impeded in their usage of the 
affected limbs remained impaired and did not show such plastic changes. This highlights 
the importance of examining white matter structures to determine the extent of potential 
recovery. In monkeys it has been found that damage of white matter adjacent to lesions in 
the visual cortex determined the extent of remote and transneural degeneration in the dorsal 
geniculate and retina (Cowey et al., 1999). Preliminary results in humans undergoing 
intonation-based speech therapy for chronic aphasia suggest plastic changes in the 
contralesional arcuate fasciculus associated with improvement in speech production 
(Schlaug et al., 2009). In healthy subjects, it has already been demonstrated that DTI allows 
for the detection of white matter changes in response to training, as indicated by an increase 
in FA after training (Scholz et al., 2009). Taken together, homologous contralesional regions 
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or partially preserved perilesional areas and their associated fibre tracts seem to exhibit 
plastic reorganisation upon dedicated training. However, more work in experimental 
animals is needed to come to a better understanding which microstructural and 
physicochemical changes underlie the signal changes assessed with DTI in men. In the 
future, DTI may serve as a surrogate marker of cerebral plasticity and help evaluating a 
patient’s response to rehabilitation. 

8. Conclusions 

White matter changes after stroke are important determinants for presentation and severity 
of the neurological deficits as well as for prospects of recovery or secondary cognitive 
decline. Notably, DTI appears to be a valuable tool for predicting the individual patient’s 
perspective for recovery in order to tailor an optimized rehabilitation regime.  
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