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1. Introduction 

Yeast Saccharomyces cerevisiae has been associated with human beings for more than 6000 years 

due to its use in food production, baking, wine and beer making. Potable and industrial 

ethanol production constitutes the majority of use of S. cerevisiae in biotechnological 

applications. However, baker’s yeast also plays an important role as a model organism in the 

field of biochemistry, genetics and molecular biology. S. cerevisiae was the first eukaryotic 

organism to be sequenced in 1996 [Goffeau et al., 1996], and is clearly the most ideal eukaryotic 

microorganism for biological studies. Furthermore, the ease of genetic manipulation of yeast 

allows it to be used for analyzing and functionally dissecting gene products from other 

eukaryotes. The field of metabolic engineering, which utilizes genetic tools to manipulate 

microbial metabolism to enhance the production of compounds of interest has a particularly 

strong impact by providing new platforms for chemical production and facilitating the 

expansion of industrial (white) biotechnology [Nevoigt, 2008]. Baker’s yeast can also be used 

as host organism for novel production of some industrially relevant chemicals. Our review 

focuses on the progress that has been achieved in the production of fine chemicals, bulk 

chemicals and fuels by genetic manipulation of the enzymatic activity of yeast, the combining 

of enzyme pathways from different microorganisms into S. cerevisiae and expressing genes 

from S. cerevisiae in other hosts. Attention to biotransformations catalyzed by genetically 

modified yeast will also be considered.  

2. Bioethanol production 

Bioethanol is usually obtained from the conversion of carbon based renewable feedstock and 
can be used as a fuel for vehicles in its pure form or as a gasoline additive to increase octane 
rating and improve vehicle emissions. Bioethanol is primarily produced by fermentation of 
sugar or the sugar components of starch. However, there has been constant research on its 
production from fibrous substances such as cellulose and hemicelluloses, which make up the 
bulk of most plant matter. Two chemical reactions take place during  biomass conversion to 
ethanol: the hydrolysis of complex polysaccharides in the raw feedstock to simple sugars 
followed by their subsequent fermentation to ethanol. The second step of bioethanol 
production is caused by yeast or bacteria which feed upon the sugars. Therefore high ethanol 
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yields from lignocellulosic biomass from agricultural and agro-industrial residues are 
dependent upon efficient hydrolysis of sugar polymers and utilization of all the available 
sugars including D-glucose, D-xylose, L-arabinose and other fermentable compounds. 

S. cerevisiae, which plays a traditional and major role in industrial bioethanol production, 
has several advantages due to its high ethanol productivity as well as its high ethanol 
tolerance. However, baker’s yeast cannot hydrolyze cellulose and is not able to use pentoses, 
which constitute up to 20% of lignocellulosic biomass. Many studies regarding the use of S. 
cerevisiae in metabolic engineering for xylose utilization have been reported and several 
reviews have been published [Chu & Lee, 2007; Hahn-Hägerdal et al., 2007; Matsushika et 
al., 2009]. The first step of D-xylose metabolism is its direct isomerization to D-xylulose 
catalyzed by bacterial xylose isomerase XR (EC 5.3.1.5) or stepwise transformation  in yeast 
cells, firstly to xylitol (xylose reductase XR EC 1.1.1.21) and then to D-xylulose (xylitol 
dehydrogenase XDH EC 1.1.1.19). After phosphorylation of D-xylulose to D-xylulose-5-
phosphate (xylulokinase XK EC 2.7.1.17) further metabolizm proceeds via a pentose 
phosphate pathway. Different strategies have been applied to engineering yeast including 
the introduction of initial xylose metabolism and xylose transport. However, these change 
the intracellular redox balance and result in over-expression of xylulokinase and further 
metabolism via a pentose phosphate pathway. Nevertheless they are insufficient for 
industrial bioprocesses mainly due to a low rate of reaction as compared with glucose 
fermentation [Kondo et al. 2010; Young et al., 2010].  

3. Yeast cells as microbial chemical factories 

Many plant secondary metabolites (i.e. small molecules, with complicated structures which are 
not involved in basic metabolic pathways and are not directly essential for photosynthetic or 
respiratory processes) have been identified as having beneficial effects on human health or 
nutrition, but their chemical synthesis is generally laborious and their isolation from natural 
sources is a difficult process with low yields. Furthermore, there is a wide range of chemicals 
essential in many industries as substrates in production processes or compounds necessary for 
appropriate process progress, that are produced by many microorganisms with low efficiency 
or during chemical synthesis, which is nowadays considered as non-ecological. 

Baker’s yeast can produce a diverse array of secondary metabolites [Pscheidt & Glieder, 
2008], therefore the metabolic engineering of microorganisms is a new area of effective 
biosynthesis of these compounds and yeast is an important and attractive host for the 
heterologous and function expression of foreign genes encoding many important secondary 
metabolites of plants. Moreover baker’s yeast possesses GRAS status, which is an advantage 
in the production of compounds that are intended for human consumption (e.g. the 
formation of antioxidants and aroma compounds during wine fermentation). A few 
examples in which modified S. cerevisiae were used as a whole-cell factories in production of 
chosen chemical compounds are presented in this chapter. 

3.1 Alcohols (other than ethanol) 

3.1.1 Butan-1-ol 

Butan-1-ol can be regarded as superior biofuel to ethanol because of its greater 
hydrophobicity, higher energy density and the possibility of mixing with gasoline and 
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transporting through existing pipeline infrastructure. Microbial butanol production is  
performed by members of the genus Clostridium [Inui et al. 2008]. The butanol pathway is 
expressed in S. cerevisiae from a range of organisms (Escherichia coli, Clostridium beijerinckii 
and Ralstonia eutropha) and owing to the tolerance of baker’s yeast to alcohols, the 
production of butanol is raised ten-fold to 2.5 mg dm-3. The most productive strains harbour 
the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, 
and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli [Steen et al., 2008]. 

3.1.2 Glycerol 

Glycerol is considered to have a positive effect on the sensory properties of wine. Its 
concentration in wine varies between 1 - 15 g/dm3. Many growth and environmental factors 
have been reported to influence the amount of glycerol produced by yeast in wine. In S. 
cerevisiae metabolism glycerol is a byproduct of the fermentation of sugar to ethanol. It is 
synthesized in the cytosol from dihydroxyacetone phosphate in two steps that are catalyzed 
by glycerol-3-phosphate dehydrogenase (GPDH) and glycerol-3-phosphatase (GPP) 
respectively. The former is the key enzyme in glycerol production [Wang et al., 2001]. More 
recently, genetic engineering approaches have been successful in redirecting the carbon flux 
towards glycerol. GPDH, a limiting enzyme for glycerol formation, is encoded by GPD1 and 
GPD2 genes. Overexpression of GPD1 in a laboratory strain of baker’s yeast and in a haploid 
strain V5 resulted in a marked increase in glycerol production at the expense of ethanol. Up 
to 28 g of glycerol per liter was formed by an engineered S. cerevisiae strain under conditions 
simulating wine fermentation [Remize et al., 1999].  

Nowadays, the demand for glycerol is restricted due to the large quantity of glycerol 
generated during biodiesel production, so this direction of study is impractical. 

3.1.3 Propane-1,3-diol 

Propane-1,3-diol (1,3-PD) has numerous applications in production of polymers for 
cosmetics, foods, lubricants and medicines. Recently, there has been a strong industrial 
interests in a new kind of polyester, poly(trimethylene terephtalate), with 1,3-PD as a 
monomer. Nevertheless, its availability is restricted owing to its expensive chemical 
synthesis.  

Non-modified S. cerevisiae can produce glycerol from D-glucose but cannot synthesize 1,3-
propanediol. By taking advantage of genetically engineered S. cerevisiae 1,3-PD production is 
possible in two ways [Celińska, 2010]. One is to clone the yqhD gene from E. coli and dhaB 
gene from K. pneumonia required for the production of propane-1,3-diol from glycerol, and 
to integrate them into the chromosome W303-1A of S. cerevisiae by the Agrobacterium 
tumefaciens genetic transfer system. Both the yqhD and dhaB genes function in the 
engineered S. cerevisiae and lead to the production of 1,3-propanediol from D-glucose, but 
the amount of 1,3-PD is relatively small, due to low availability of glycerol in the reaction 
medium [Rao et al., 2008]. An alternative method of microbial 1,3-PD synthesis is described 
by Mendes et. al. using two recombinant microorganisms. The first step of the process is the 
conversion of sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain 
HC42 adapted to high glucose concentrations (> 200 g dm−3). The second step, carried out in 
the same bioreactor, is performed by the engineered strain Clostridium acetobutylicum DG1 
(pSPD5) which converts glycerol to propane-1,3-diol [Mendes et al., 2011].  
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3.2 Organic acids – Pyruvic, lactic and malic  

Saccharomyces cerevisiae does not naturally produce organic acids in large amounts, but its 
robustness and pH tolerance make it an excellent microorganism for researches in this field 
[Abbott et al., 2009]. The first attempts involved blocking the ethanol formation via deletion 
of four structural genes for alcohol dehydrogenase. Better results were obtained by 
eliminating the pyruvate decarboxylase (PDC) activity. Deletion of all three PDC genes 
completely eliminated alcoholic fermentation. Aerobic fermentation at pH 5 yielded pyruvic 
acid (fig. 1) at a concentration of aproximately 135 g dm-3 [Ischida et al., 2006]. The strategy 
for lactic acid (fig. 1)  production consisted of two steps – deletion of one or more of three 
functional genes encoding pyruvate decarboxylase and the introduction of the bovine lactate 
dehydrogenase (L-LDH) in the genome  under the control of PDC1 promoter.  

Two enzymes, pyruvate carboxylase and malate dehydrogenase, produced by S. cerevisiae 
are involved in L-malic acid accumulation (Fig. 1). Overexpression of cytosolic malate 
dehydrogenase (MDH2) caused up to a 3.7 fold increase in L-malic acid production and an 
elevated accumulation of fumaric and citric acids [Pines et al., 1997]. Alternative way of L-
malic production, including biotransformations, will be described in the chapter 4.4. 

HOOCCHCH3 COOH

OH

CHCH2 COOH

OH

CCH3 COOH

O

pyruvic acid                       lactic acid                                          malic acid  

Fig. 1. Organic acids produced by genetically modified S. cerevisiae  

3.2.1 Sugar alcohols 

Sugar alcohols (polyols, Fig. 2) can be synthesized from carbohydrates as a result of 
carbonyl group reduction to a hydroxyl one and  can be used as a sweetners. Xylitol is the 
most popular one, due to its lower energy value than sucrose and the comparable 
sweetening power. 

xylitol               ribitol

H

H OH

CH2OH

HO

H OH

CH2OH

OH

CH2OH

H OH

H

CH2OH

H OH

 

Fig. 2. Sugar alcohols 

Toivari et al described recombinant Saccharomyces cerevisiae strains that produce xylitol and 
ribitol from D-glucose in a single fermentation step. 8.5-fold enhancement of the total 
amount of the excreted sugar alcohols was achieved via expression of the xylitol 
dehydrogenase-encoding gene XYL2 of Pichia stipitis in the transketolase-deficient strain of 
S. cerevisiae. The additional introduction of the 2-deoxy-glucose 6-phosphate phosphatase-
encoding gene DOG1 into the transketolase-deficient strain expressing the XYL2 gene 
induced further 1.6-fold increase in ribitol production [Toivari et al., 2007]  
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3.3 Lipid compounds 

3.3.1 Fatty acids 

Fatty acids are of considerable interest due to their pharmaceutical and nutritional values. 
These compounds are also necessary for cellular functions such as regulation of 
membrane fluidity. Saccharomyces cerevisiae are able to synthesize de novo only some 
saturated and monounsaturated fatty acids, mainly the C-16 and C-18 acids [Daum et al., 
1998]. To reconstitute other long-chain and polyunsaturated fatty acids it is necessary to 
introduce genes of suitable enzymes such as desaturases and elongases eg. A. thaliana 
oleate desaturase gene (FAD2) or fatty acid desaturase from the fungus M. alpina. The 

simultaneous expression of ∆12-desaturase and ∆6-desaturase from M. alpina resulted in an 

increase in the content of γ-linolenic acid (18:3) to 8% of total fatty acids in yeast cells 
[Veen & Lang, 2004].  

Due to the important roles of polyunsaturated fatty acids (PUFAs) in human health and 

nutrition the effect of overexpression of cytochrome b5 genes on fatty acid desaturation has 

been explored. The modification does not affect the fatty acid synthesis very much, but 

significantly enhances the synthesis of PUFA at 30 °C [Yazawa et al., 2010]. A number of 

desaturases from different sources (e.g. Mucor rouxii, M. alpine) have been functionally 

expressed in S. cerevisiae with a view to attain PUFAs formation [Chemler et al., 2006].  

3.3.2 Isoprenoids 

Isoprenoids (terpenoids) are ubiquitous in nature. They are a structurally diverse group of 

compounds and range from essential cell components to unique secondary metabolites. 

Terpenoids are based on combinations of isoprene units (C5H8), and their carbon skeleton is 

multiples of five carbon atoms e.g. monoterpenoids (10-carbon), sesquiterpenoids (15-

carbon), diterpenoids (20-carbon) and carotenoids (40-carbon). Biosynthesis of these 

compounds proceeds via formation of isopentenyl pyrophosphate (IPP), dimethylallyl 

pyrophosphate (DMAPP), geranyl pyrophosphate (GPP),  farnesyl pyrophosphate (FPP), 

and geranylgeranyl pyrophosphate (GGPP) (Fig. 3). 

OPP

geranyl

pyrophosphate (GPP)

OPP

(DMAPP)

(IPP)

dimethylallyl 

prophosphate

isopentenyl 
pyrophosphate

PPO

 

OPP OPP

farnesyl pyrophosphate (FPP) geranylgeranyl  pyrophosphate (GGPP)  

Fig. 3. Some terpene alcohols pyrophosphates  – precursors of other terpenoids (OPP- 
pyrophosphate group) 
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Isoprenoids exist in low concentrations in their host organisms. They are complex molecules 
with a specified stereochemical structure, which makes them difficult to synthesize by 
chemical methods. Therefore, these compounds are of particular interest for microbial 
production. E. coli, A. thaliana and S. cerevisiae are the organisms with the most advanced 
genetic tools and are applied as heterologous hosts for terpenoids production, but they 
usually have very limited isoprenoid secondary metabolism minimizing competing 
metabolic fluxes.  

Phosphorylated derivatives of geraniol (monoterpene) and geranylgeraniol (diterpene) are 
important molecules in the synthesis of various isoprenoids. (E,E,E)-geranylgeranyl 
pyrophosphate (GGPP) is an intermediate in carotenoids and ubiquinone biosynthesis 
[Tokuhiro et al., 2009] and was synthesized in engineered S. cerevisiae as a result of 
enhancement of the mevalonate pathway and redirection of carbon flux through 
overexpression of several key enzymes. The production achieved was 70.9 mg g-1 of dry cell 
weight (3.31 g dm-3), which is very high in comparison to the production of other 
isoprenoids reported in the literature (e.g. 5.9 mg g-1 for carotene) [Verwaal et al., 2007]. 

Commercially important terpenoids are artemisinin and paclitaxel, so much work has 
focused on the introduction of exogenic metabolism in yeast  to synthesize the precursors of 
these compounds [Chang & Keasling, 2006; Huang et al., 2008]. 

Artemisinin, an endoperoxide sesquiterpene lactone (Fig 4), was originally isolated from 
the chinese plant Artemisia annua. Its derivatives are now a group of drugs used 
worldwide for the treatment of malaria by means of artemisinin-combination therapies 
(ACTs). Engineered yeast systems are able to produce artemisinin or its precursor 
(artemisinic acid), which can be converted to artemisinin via chemical reactions (Fig. 4) 
[Shiba et al., 2007; Arsenault et al., 2008]. 

Amorpha-4,11-diene                                          Artemisinic acid                                            Artemisinin

H

H
HO

O

H

H
O

O

O O

H

H

O

H

 

Fig. 4. Synthesis of artemisinin [Ro et al., 2006] 

Ro et al. cloned a gene from A. annua, which codes a cytochrome P 450, enabling the 

transformation of amorpha-4,11-diene to artemisinic acid, which in turn was converted to 

artemisinin by chemical synthesis [Ro et al., 2006]. In order to achieve a higher yield of 

amorpha-4,11-diene (Fig. 4), which is synthesized by cyclization of farnesyl pyrophosphate 

Shiba et al. engineered the pyruvate dehydrogenase bypass in S. cerevisiae [Shiba et al., 2007]. 

A partial biosynthesis of paclitaxel (trade name taxol, Fig. 5) – terpenoid, which is widely 
used in cancer therapy and produced as a secondary metabolite of yew trees (Taxus sp.), was 
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constructed in S. cerevisiae. Dejong reported the functional expression of eight taxoid 
biosynthetic genes from Taxus brevifolia in yeast, elevating the accumulation of intermediate 
taxadiene [Dejong et al., 2006]. 

O

O

O
H

O

O OH

O
HO

O

O

O

NHO

OH

O

H
H

Taxadiene                                                                  Paclitaxel  

Fig. 5. Taxadiene and paclitaxel [Dejong et al., 2006] 

Another way of synthesis of taxol building blocks is the biotransformation catalyzed by 
modified whole cell S. cerevisiae catalysts. This will be described in chapter 4.1. 

3.3.3 Steroids 

Steroids are the other group of compounds originating from the terpenoids precursors 
dimethylallyl pyrophosphate and isoprenylpyrophosphate (Fig. 3). One of them, 
hydrocortisone (Fig. 6), is an important starting material for synthesis of drugs with anti-
inflammatory effect.  

O

H

HO

OHO

OH

HH

 

Fig. 6. Hydrocortisone 

Hydrocortisone can be synthesized in Saccharomyces cerevisiae cells from simple carbon 
sources [Szczebara et al., 2003]. To optimize its yield the natural yeast pathway for sterols 
synthesis was rerouted after expressing genes from one plant enzyme and eight 
mammalian proteins including four of the P450 superfamily oxidases, three electron 
carriers and 3ǃ-hydroxysterol oxidase/isomerase (3ǃ-HSD). Under optimum conditions, a 
70% yield of hydrocortisone was produced from the total steroid formation from glucose 
[Dumas et al., 2006].  
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3.4 Flavonoids 

Flavonoids are a diverse class of plant secondary metabolites derived from the 

phenylpropanoid pathway. There has been increasing interest in flavonoids because many 

of them exhibit antioxidative activity due to free-radical scavenging. This is an attractive 

feature for drugs in coronary heart disease prevention and anticancer activity. 

OHO

OH O

OH

 

Fig. 7. Naringenin – flavanone 

The biosynthesis of flavanone naringenin (Fig. 7), the central precursor of many flavonoids, 

is accomplished by introducing the phenylpropanoid pathway into Saccharomyces cerevisiae 

strains. It is achieved with the genes for phenylalanine ammonia lyase (PAL) from 

Rhodosporidium toruloides, 4-coumarate:coenzyme A (CoA) ligase (4CL) from Arabidopsis 

thaliana and chalcone synthase (CHS) from Hypericum androsaemum [Jiang et al., 2005] or 

with plant genes from heterologous origin such as 4-coumarate:coenzyme A ligase 4CL from 

Petroselium crispum, chalcone synthetases CHS from Medicago sativa  and Petunia x hybrida 

and chalcone reductase CHR and chalcone isomerase from M. sativa [Yan et al., 2005]. 

Another method to produce flavonoid or isoflavonoid compounds in engineered yeast is to 

clone five soybean (Glycine max) chalcone isomerases (CHIs), key enzymes in the 

phenylpropanoid pathway [Ralston et al., 2005].  

4. Biotransformations catalyzed by yeast cells 

Baker’s yeast may be considered as a producer of wide range of chemical compounds, a 

kind of microbial cell factory. However, Saccharomyces cerevisiae is a commonly applied to 

whole-cell biocatalysis in biotransformation, reactions based on enzymatic transformations 

of chemical compounds. Biotransformations, known as a branch of “white” biotechnology, 

provide efficient procedures in organic synthesis owing to the high chemo- and 

stereoselectivity of enzymes and offer a viable alternatives to chemical methods. Today, 

biotransfomation is a commonly accepted method for generating optically pure substances 

and for developing efficient synthesis of target compounds. In general, biotransformations 

are performed by the hydrolases or oxidoreductases. The remaining classes (transferases, 

isomerases, liases and ligases) are of lower, but increasing utility [Faber 2004]. 

Biotransformations may be carried out using isolated enzymes or microorganisms cells 

producing enzymes (whole-cell biocatalysis). The application of isolated and purified 

enzymes is profitable since the formation of undesired byproducts is avoided, whereas in 

cellular biotransformation systems undesirable product formation is possible due to the 

presence of other enzymes or simultaneous catalysis of several reactions. However the 

whole-cell biocatalysis has two important advantages: it is particularly beneficial when 
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the regeneration of the cofactor is necessary (e.g. in redox reactions) and is favorable due 

to the cost effectiveness.  

Baker’s yeast has a great potential as a catalysts in organic chemistry owing to ease of 
handling, broad substrate acceptability and production of enzymes belonging to different 
classes. S. cerevisiae may be used in dry and pressed form, as raw yeast or lyophilized 
biomass and is capable of catalyzing many reactions in water or in organic media. These 
features are very important for chemists, because chemical laboratories are not usually 
equipped with the microbiological apparatus required for yeast cultivation [Csuk & Glanzer 
1991; Servi, 1990; Białecka-Florjańczyk & Majewska, 2006].  

The full sequencing of the S. cerevisiae genome, accompanied with the achievements in 
genetic engineering, have allowed new strains of yeast to be designed with specific high 
conversion yields and reaction selectivity. There is a growing interest in application of 
modified yeast in biotransformation reactions. Modern directions to improve catalytic 
abilities of baker’s yeast include the use of surface display technology for enzymes and 
optimization or increase in availability of cofactor (required for bio-reduction reactions) or 
gene knock-out, to eliminate the activity of enzymes with conflicting and unwanted 
stereoselectivities. As commonly used technique is overexpression of the desired protein or 
expression of heterologous enzymes in yeast cells. 

4.1 Reduction of carbonyl compounds 

Baker’s yeast is considered to produce over 20 different reductases. At present most of the 
characterized carbonyl (and dicarbonyl)-reducing enzymes of S. cerevisiae are grouped into 
two distinct protein categories - the aldo–keto reductase (AKR) and the short-chain 
dehydrogenase/reductase (SDR) superfamilies. They have been shown to reduce a broad 
array of ketones and ketoesters with different enantioselectivity and to have overlapping 
activities [Katz et al., 2003]. Reductions catalyzed with baker’s yeast require the presence of 
nicotinoamide cofactors (mostly NADPH) [Johanson et al., 2005], which can be regenerated 
during the growth of microorganisms. 

Enantioselectivity (or diastereoselectivity) of carbonyl compounds reduction is connected 
with the formation of an asymmetric center in the product (alcohol) molecule (Fig. 8). 
According to Csuk et al. and Servi, reduction of aliphatic methyl ketones using baker’s 
yeast leads to synthesis of secondary alcohols with the (S) configuration [Csuk, Glanzer 
1991; Servi, 1990]. 

C

O

C

H OH

R R'

C

HHO

and/or

R R'R R'

NAD(P)H NAD(P)

Reductase
 

Fig. 8. Two enantiomeric alcohols formed during the reduction of carbonyl compound  

Practical difficulties associated with the use of yeast as a chiral reducing agent arise from 
the presence of multiple enzymes overlapping substrate characteristics, but with differing 
enantio- and diastereoselectivities. Nakamura et al. isolated and characterized four 
oxidoreductases of raw baker’s yeast in the reduction of 4-chloro-3-oxobutanoate 
[Nakamura et al., 1999]. The enantioselectivity of all of the  enzymes examined was >99%, 
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but two of them produced (R) and the others (S) isomers. Thus the different specificity of 
enzymes produced by S. cerevisiae is the reason for the low specificity of unmodified cells 
in this biotransformation. A recombinant Saccharomyces cerevisiae strain over-expressing 
the fatty acid synthase of S. cerevisiae (FAS) and the glucose dehydrogenase of Bacillus 
subtilis was applied by Engelking et al. for enantioselective reduction of ethyl 4-chloro-3-
oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (Fig. 9) as well as the reduction of 
ethyl benzoylacetate to ethyl (S)-3-hydroxy-3-phenylpropanoate. The enantiomeric excess 
(ee) was 90% in the case of the former and >97% in the case of the latter product 
[Engelking et al., 2006]. 

OC2H5

O O

Cl
OC2H5

O

Cl

OH

  (3S)
 

Fig. 9. Bioreduction of ethyl 4-chloroacetylacetate with S. cerevisiae yeast [Engelking et al., 2006] 

A method performed by Rodriguez et al. involved modified baker’s yeast  for ǃ-ketoesters 
reduction by using recombinant DNA techniques such as overexpression of carbonyl 
reductase with desirable stereoselectivities. Manipulating the levels of three proteins, fatty 
acid synthase, (Fasp); aldo-ketoreductase, (Ypr1p); ǂ-acetoxy ketone reductase, (Gre2p) 
the stereoselectivity of ǃ-ketoester reduction was improved and reached > 85 % in all 
cases [Rodriguez et al., 2001]. Conversely, the strain lacking aldo-ketoreductase produced 
hydroxyester with reversed stereoselectivity from unmodified baker yeast [Rodriguez et 
al., 1999].  

One example of efficient genetic modification concerns the asymmetric reduction of the 
bicyclic diketone (Fig. 10) bicyclo[2.2.2]octane-2,6-dione (1) to (1R,4S,6S)-6-hydroxy-
bicyclo[2.2.2]octane-2-one ((-)-2), which is used as an intermediate in the synthesis of 
transition metal based chiral chemical catalysts [Sarvary et al., 2001; Katz et al., 2002]. When 
carrying out the experiment with baker’s yeast, ketoalcohol (-)-2 was obtained in 92–97% 
enantiomeric excess with 92% yield [Almqvist et al., 1993], but the diastereoselectivity of 
reduction of bicyclo[2.2.2]octane-2,6-dione catalyzed by whole cells of a modified strain of S. 
cerevisiae TMB4110 overexpressing the reductase gene YDR368w, was significantly 
improved. The product was achieved with 97% diastereomeric excess (de) and >99 
enantiomeric excess (ee) [Johanson et al., 2008; Parachin et al., 2009]. 

(-)-2                                        31

S.cerevisiae

O

HO

O OHOO

 

Fig. 10. Reduction of bicyclo[2.2.2]octane-2,6-dione (1) [Katz et al., 2003] 

Another practical solution of this problem was uncovered by expression of appropriate 
endogenous enzymes in host cells, which do not produce these proteins. For example, 
expression of GCY1 and GRE3 genes from S. cerevisiae in E. coli cells achieved chiral ǃ-

www.intechopen.com



Genetically Modified Baker’s Yeast Saccharomyces  
cerevisiae in Chemical Synthesis and Biotransformations 

 

221 

hydroxyesters with high optical purities with over 98% enantiomeric excess [Rodriguez et 
al., 2000]. 

Genetically modified cells of S. cerevisiae can catalyze biotransformation reaction, producing 
chiral building blocks important in the pharmaceutical industry (especially those obtained 
by reduction of ǂ- and ǃ –oxoesters or amides). Optically pure alcohols are important chiral 
blocks in the synthesis of valuable pharmaceuticals such as carnitine (required for the 
transport of fatty acids from the cytosol into the mitochondria during the breakdown of 
lipids) or paclitaxel [Stewart, 2000]. Using the structural analogy between substrate and 
molecules of ǃ-oxothioesters participating in biosynthesis of fatty acids, the S. cerevisiae 
strain with punctual mutation in the FAS-2 gene (fatty acid synthase) catalyzed the 
stereoselective reduction of the ketone group in the ǃ-lactam molecule (Fig. 11), eliminating 
trans-isomer [Kayser et al., 1999]. This reduction was applied in the synthesis of the 
paclitaxel (after coupling with readily available 10-deacetylbaccatin III) with a C13 side chain 
- (2R,3S)-N-benzoyl-3-phenylisoserine. 
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cis-(3R,4S)                          cis-(3S,4R)                     trans-(3S,4S)  

Fig. 11. Baker’s yeast reduction of ǃ-keto-ǂ-lactam [Kayser et al., 1999] 

Application of pure enzymatic preparations in organic chemistry generates a demand for 
coenzymes, which have to be added to the reaction medium. The use of baker’s yeast in 
oxidoreductions is interesting, due to the ability of S. cerevisiae cells to synthesize not only 
the molecules of the specific enzymes, but also an essential coenzymes [Faber, 2004].  

Although improvement of enantiomeric excess is critical for the product yield, 
regeneration of the co-factor is also important. This can be improved by genetic 
engineering. S. cerevisiae dicarbonyl reductases are NADPH-dependent and the reduced 
co-factor NADPH requires regeneration through the assimilation of a co-product, usually 
glucose, sucrose or ethanol. Glucose can be used as a co-substrate under both aerobic and 
anaerobic conditions. Unfortunately yeast generates large amounts of by-products from 
glucose, which may cause problems during downstream processing, with large amounts 
of glucose required to reduce small amounts of substrate. Ethanol is an interesting 
alternative to glucose as a co-substrate since it has a much lower utilisation rate and 
generate less CO2. However, ethanol is toxic to the cells at high concentrations and 
NADPH cannot be regenerated from ethanol under anaerobic conditions.  

Strain engineering for the design of efficient biocatalysts using glucose as a co-substrate has 
two potential objectives, to redirect the carbon flow towards NADPH-regenerating 
pathways and to slow down the rate of co-substrate utilisation in order to balance the 
reduction rate. In the S. cerevisiae strain the activity of phosphoglucose isomerase (PGI) was 
decreased and the baker’s yeast strain alcohol dehydrogenase activity was deleted. In both 
cases the glucose consumption was limited without lost of reductase activity [Johanson et 
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al., 2005]. The yeast phosphoglucose isomerase activity was decreased, and the short-chain 
dehydrogenase/reductase encoded by YMR226c was overexpressed in the genetically 
engineered Saccharomyces cerevisiae strain TMB4100 (1% PGI, YMR226c).  

The whole cell biocatalyst was used for the kinetic resolution of racemic 
bicyclo[3.3.1]nonane-2,6-dione (rac-1, Fig. 12). This framework is a commonly occurring 
motif amongst natural products, displaying a wide scope of biological activities. Genetic 
modification reduced the demand for the glucose to regenerate NADPH, resulted in a 
greater reaction rate and produced higher selectivity towards the (+)-1 stereoisomer, 
reaching an enantiomeric excess of 100% after 75% conversion of the isomer (Fig.12) 
[Carlquist et al., 2008]. 

S.cerevisiae

 

Fig. 12. Kinetic resolution of bicyclo[3.3.1]nonane-2,6-dione by genetically modified baker’s 
yeast [Carlquist et al., 2008] 

In addition (+)-5,6-epoxybicyclo[2.2.1]heptane-2-one, ((+)-1, Fig. 12), and endo-(−)-5,6-
epoxybicyclo [2.2.1]heptane-2-ol, endo-(−)-2, were obtained by asymmetric bioreduction 
catalyzed by the same S. cerevisiae yeast strain. Rac-1 was kinetically resolved to give (+)-1 

with 95% enantiomeric excess and endo-(−)-2 with 74% enantiomeric excess (Fig. 13) 
[Carlquist et al., 2009]. 

O

O S.cerevisiae

rac-1 endo-(-)-2                      exo-2                                (+)-1
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Fig. 13. Kinetic resolution of 5,6-epoxybicyclo[2.2.1]heptan-2-one [Carlquist et al., 2009] 

4.2 Baeyer–Villiger oxidation 

“Designer yeast” is a new catalyst for Baeyer–Villiger (BV) oxidation, an organic reaction in 
which a ketone is oxidized to an ester by treatment with peroxy acids (Fig. 14). 
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Fig. 14. Baeyer-Villiger reaction 
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The enzymatic Baeyer–Villiger oxidation represents an  efficient approach to the asymmetric 
synthesis of chiral lactones and can be performed by biocatalysis with flavoenzymes called 
Baeyer-Villiger monooxygenases (BVMOs). BVMOs catalyze nucleophilic oxidation of ketones 
as well as electrophilic oxidation of heteroatoms such as boron, sulfur, selenium, nitrogen or 
phosphorus in organic compounds. Depending on the type of cofactor necessary for running 
the reaction BVMOs are distinguished between FAD- and NADPH-dependent enzymes and 
FMN- and NADH-dependent enzymes. Baeyer-Villiger monooxygenases are produced by the 
bacteria Acinetobacter sp. and Pseudomonas sp. and fungi such as Aspergillus sp. [Alphand et al., 
2003]. Although a number of Baeyer–Villiger monooxygenases (EC 1.14.13.22) have been 
isolated from a variety of organisms, the NADPH-dependent cyclohexanone monooxygenase 
from the bacterium Acinetobacter sp. NCIB 9871 has been studied in the most detail. This 
enzyme catalyzes the second step in a catabolic pathway that allows the cells to utilize 
cyclohexanol as their sole source of carbon and energy. The ability of the purified enzyme or 
whole Acinetobacter cells to oxidize a diverse array of cyclic ketones to the corresponding 
lactones with high stereoselectivity is well established [Stewart et al., 1998]. 

NADPH-dependent cyclohexanone monooxygenase from Acinetobacter sp. has been 
expressed in baker’s yeast. These genetically modified yeast cells can be used as biocatalysts 
in 4-alkilcyclohexanone oxidation to produce caprolactones (Fig. 15) with high enantiomeric 
excess [Stewart et al., 1998]. 

S. cerevisiae
O

O

R

O

R  

Fig. 15. 4-alkilcyclohexanone oxidation with baker’s yeast [Stewart et al., 1998]  

The same recombinant yeast can completely convert 2- and 3-substituted cyclopentanones and 

2 and 3- substitued cyclohexanones. These reactions are found to be highly enantioselective, 

allowing the possibility to synthesize different stereoisomers depending upon the size of the 

ring and the sort of  alkyl group. As a result of these modifications, reduction of the carbonyl 

group is minimized [Kayser et al., 1999; Stewart et al., 1998]. Chiral lactones are useful building 

blocks in the pharmaceutical industry since bicyclic and polycyclic lactones have received 

considerable attention as antitumor compounds, cardiac sarcoplasmic reticulum Ca2+-

pumping ATPase activators and as useful intermediates in the synthesis of potent drugs for 

the treatment of glaucoma and hypertension [Alphand et al., 2003]. 

4.3 Hydrolysis and esterification 

About two thirds of reported practical biotransformations may be categorized as hydrolytic 
reactions involving ester and amide bonds using proteases, esterases or lipases [Loughlin, 
2000]. Lipases, in addition to their biological significance, hold tremendous potential for 
exploitation in biotechnology. They display exquisite chemo-, regio-, and stereoselectivity, do 
not usually require cofactors and are readily available from microbial organisms [Jaeger & 
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Eggert, 2002]. The crystal structure of many lipases has been solved, facilitating considerably 
the design of rational engineering strategy. For these reasons lipases are commonly used in 
ester synthesis, acylglycerols modifications and in biodiesel production. Consequently, lipase 
genes are often integrated with host cell genomes of other microorganisms.  

“True” lipases are defined as carboxylesterases, catalyzing the bioconversion of long-chain 
acylglycerols. The essential difference between lipases and esterases is the former act at the 
water-lipid interface,  requiring a micelle formation by a water-insoluble substrate [Gill & 
Parish, 1997]. Although S. cerevisiae produces several hydrolytic enzymes such as esterases and 
lipases [Białecka-Florjańczyk et al., 2010] (some of  which have been isolated), it is generally 
used as a host organism to express other microbial lipases of special catalytic activity.  

4.3.1 Cell surface engineered baker’s yeast in esterification reactions 

The whole-cell catalysed reactions are often limited by barrier functions of the cell wall or 
membrane  and thus the localization of enzyme, (extracellular, intracellular and membrane 
bound) plays an important role in lipase activity [Deive et al., 2009]. By the means of molecular 
engineering, the cell surface properties can be designed by displaying various functional 
proteins, especially enzymes. This technique provides to avoid mass transport problems of 
substrate and/or product across the cell membrane as the enzyme, necessary for catalysis, is 
displayed on the cells surface. Besides the anchoring to the cell surface usually results in 
increased biocatalyst stability. A cell surface engineering system of yeast Saccharomyces 
cerevisiae  has been established and novel yeasts displaying lipases in their active form on the 
cell surface were constructed [Ueda & Tanaka, 2000]. Lipase–displaying whole-cell yeast 
biocatalysts have recently attracted attention for their use in biodiesel synthesis. 

Biodiesel, a fuel for diesel engines, represents an alternative environmentally-friendly 
source of energy obtained from renewable materials. It is produced via tranesterification of 
vegetable oils with alcohols (methanol or ethanol) and comprises fatty acid methyl (FAME, 
Fig. 16) or ethyl esters (FAEE). For ecological reasons, the enzymatic transesterification is 
becoming of increasing interest, yet the high cost of enzymes (lipases) obstructs its full 
industrial application [Akoh et al., 2007, Ribeiro et al., 2011]. Much research has focused on 
methods which allow increased whole-cell biocatalytic activity and stability through 
changes in microorganism culture conditions, their immobilization and application of 
genetic engineering techniques [Kucharski et al., 2009].  
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Fig. 16. Biodiesel production scheme 

It has been shown that the application of recombinant baker’s yeast reduces the number of 
operations required in biodiesel production and simplifies the removal of glycerol [Fukuda 
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et al., 2008; Takahashi et al., 1998, 1999]. The possibilities of heterologous expression of 
nonspecific lipases  such as Candida rugosa, Pseudomonas cepacia and Pseudomonas fluorescens 
has been reported, all of which exhibit relatively high conversion rates and methanol 
tolerance [Fukuda et al., 2008]. Whole-cell yeast biocatalysts, which intracellularly 
overproduce a recombinant lipase with a pro-sequence from Rhizopus oryzae (rProROL) were 
constructed and the content of active lipase in S. cerevisiae cells was maximized by 
optimizing the cultivation procedure. Lipase from Rhizopus oryzae (ROL) was chosen 
because its secretory production has been accomplished in S. cerevisiae. Overproducing ROL 
lipase baker’s yeast strain MT8–1 was permeabilized and used for the synthesis of FAME 
with 71 % efficiency [Takahashi et al., 1999].  

The cell surface engineering of yeasts by which functional proteins are displayed on the cell 
surface has enabled the development of a novel strategy for  whole-cell biocatalysts. To 
enhance lipase activity and preserving the conformation of the active site near the C-
terminal portion a linker peptide (spacer) consisting of the Gly/Ser repeated sequence was 
inserted at the C-terminal position. The display of active lipase from Rhizopus oryzae on the 
S. cerevisiae cell surface resulted in production of 2,3-dimercaptopropan-1-ol tributyl ester 
and insoluble triolein [Washida et al., 2001]. This eliminates the cell disintegration step, 
allowing the production of intracellular enzyme and subsequent ease of separation of the 
products from the catalysts. Both these factors influences the costs of the process, making it 
more cost effective [Takahashi et al., 1998]. There are other examples of enzymes displayed 
on  baker’s yeast surface such as the lipase CaLIP4 from Candida albicans [Breinig et al., 
2002], lipase A from Bacillus subtilis [Mormeneo et al., 2008; Roustan et al., 2005] and lipase 
L1 from Bacillus stearothermophilus [Breinig et al., 2002]. 

The other tendency in S. cerevisiae modifications reflects the broadening of  kinds of carbon 
sources that can be utilized by yeast cells for biodiesel production purposes 

Though biodiesel synthesis is the main area of cell wall engineered yeast application 
nevertheless it was employed in some other esterifications. To improve cost-efficiency a 
whole-cell biocatalysts CALB-displaying was constructed using the Flo1p short (FS) anchor 
system. Lyophilized yeast cells were applied to an ester synthesis reaction at 60°C using 
adipic acid and butanol as substrates [Tanino et al., 2007]. Similar whole cell catalyst have 
been applied in the esterification of hexanoic acid with ethanol, yielding 98.2% of the ester 
under optimum conditions [Han et al., 2009]. 

Recombinant R. oryzae lipase (ROL) displayed on the S. cerevisiae cell surface was used in the 
resolution of enantiomers of (R,S)-1-phenylethanol, which serves as one of the important 
chiral building blocks. During enantioselective transesterification of this alcohol with vinyl 
acetate (Fig. 17) the yield of (R)-1-phenylethyl acetate reached 97 % with 93 % enantiomeric 
excess [Matsumoto et al., 2004].  

CHCH3

OH

OOCCH3lipase
CH2=CHOOCCH3

(RS)-1-phenylethanol                   vinyl acetate                           (R)-1-phenylethylacetate  

Fig. 17. Synthesis of (R)-1-phenylethylacetate 
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The ROL-displaying yeast whole-cell biocatalyst catalyzed the stereospecific hydrolysis 
of the pharmaceutical precursor (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. The 
isomer (R) was isolated with the ee up to 95,5% (Fig. 18). Rhizopus oryzae lipase was 
displayed on the cell surface of Saccharomyces cerevisiae via the Flo1 N-terminal region 
(1100 amino acids), which corresponds to a flocculation functional domain [Nakamura 
Y., 2006]. 
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Lipase

(R,S) (R) (S)
 

Fig. 18. Stereospecific hydrolysis of of (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate 

4.4 L-malic acid production 

Biotransformation, using whole cells of modified S. cervisiae can be applied in the synthesis 
of L-malic acid (Fig. 19). Besides the food industry (acidulant E 296), malic acid has 
extensive application in the pharmaceutical and cosmetic industries. L-malic acid is 
enzymatically produced via the hydration of maleic or fumaric acid (FA) catalysed by 
fumarase (EC 4.2.1.2) from bacteria such as Brevibacterium ammoniagenses and B. flavum 
[Yazawa et al., 2010]. 

HOOC
HOOC

COOH

HO H

COOH
H2O

fumarase

fumaric acid                                                       malic acid  

Fig. 19. Biotransformation of fumaric acid to L-malic acid 

In the 1990s, production of L-malic acid from fumaric acid using S. cerevisiae cells was 
studied extensively with the amount of by-products minimized using modified S. 
cerevisiae cells with many copies of the fumarase gene as a biocatalysts [Presečki et al., 
2007]. Conversion of fumaric acid to L-malic acid was carried out also in a bioreactor 
divided into three compartments by two supported liquid membranes. The yeast was 
immobilized in small glasslike beads of an alginate-silicate solgel matrix, allowing the 
reaction to reach almost 100% the conversion with only small amount of succinic acid 
produced. This was much higher than the 70% conversion rate found in industrial 
processes [Peleg et al., 1990]. 

5. Conclusions 

S. cerevisiae has an enormous potential for the production of low and high molecular weight 
compounds by acting as an heterologous host and expressing biosynthetic enzymes or 
pathways. By coupling multiple enzymes, metabolic pathways in a single cell are created. This  
eliminates the need for purification of the chemical intermediates and the desired products can 
be prepared from simple, inexpensive and renewable materials. In the future the metabolic 
engineering of yeast may lead to an alternative production systems, helping overcome the 
limited availability of biologically active, commercially valuable and nutritionally important 
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plant secondary metabolites compounds. It should be possible to significantly reduce 
development and costs of these microbial cell factories. 

S. cerevisiae may be used as a whole-cell biocatalysts in the biotransformations, mostly in 

reduction or hydrolysis reactions. Modern research has lead to improvements in the 

catalytic ability of baker’s yeast, including the surface display of enzymes, optimization or 

increase of the cofactor availability in bioreduction reactions and gene knock–out, which 

eliminates the activity of enzymes with conflicting, unwanted stereoselectivity. 

It was shown that genetically engineered baker’s yeast has a great potential as a 

biocatalysts in many branches of chemistry. The fact is that it is impossible to enumerate 

all of the published application of modified S. cerevisiae cells as to improve valuable 

chemicals production. It is worth mentioning that there are still problems not solved. 

Many studies regarding S. cerevisiae metabolic engineering for lignocellulosic biomass 

utilization have been provided, but this process involving baker’s yeast is still insufficient 

for industrial bioprocesses mainly due to low rate of reaction. Nevertheless it can be 

predicted that engineered baker’s yeast would be an efficient tool in chemical processes as 

to improve people lives. 
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