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1. Introduction  

Considering the complexity of genetic and epigenetic events that occurs during colorectal 
carcinogenesis and the uncertainty in relying solely on extrapolation from cell culture 
models, it is essential to use animal models relevant to the molecular characteristics of 
colorectal cancer (CRC). Requirements for a mouse model of CRC are that the model has 
relevance to the molecular pathways involved in human CRC, that there are correlates with 
factors that affect the frequency of the disease in human populations, and that the 
chemopreventive/therapeutic agent-induced signal is sufficient to carry out the project with 
an affordable and statistically significant number of mice. In this chapter we will discuss 
how animal models have not only advanced our understanding of CRC initiation and 
progression but have also greatly facilitated the development of newer chemopreventive 
and therapeutic strategies to reduce mortality and incidence.   

2. Animal models of colorectal cancer 

Use of animal models could significantly expedite not only the delineation of molecular 
pathogenesis of colorectal carcinogenesis but could also aid in the development of newer 
preventive and therapeutic strategies. Animal tumor models can be classified as 
spontaneous and artificially transplanted systems. Spontaneous tumor models are now 
being widely considered for studying the biology of carcinogenesis and development of 
chemopreventive or chemosuppressive drugs. 
Initial animal models of CRC involved use of chemical carcinogens in mouse, rat, as well as in 
guinea pig. In the last two decades genetically modified mice such as APCMin/+ (Min: multiple 
intestinal neoplasia) with germline APC mutations at different sites have been extensively 
used for the investigation of therapeutic, chemopreventive and dietary factors for management 
of colorectal cancer (Hu et al., 2006; Gerner, 2007). Furthermore, studies to identify genetic 
modifiers of CRC are undertaken by generating mouse models representing molecular events 
involved in colorectal carcinogenesis like mismatch repair deficiency (MSH2-/-) and crossing 
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them with APCMin/+(Kwong & Dove, 2009). Other models for CRC targeting relevant pathway 
are also being developed to elucidate chemopreventive and chemotherapeutic response to 
newer molecules (Kwong & Dove, 2009). Because there is no ideal animal tumor model, which 
can mimic all the complexities associated with human CRC, the selection of an appropriate 
experimental model is crucial to study specific biologic end points towards the understanding 
of mechanistic, preventive and therapeutic aspects of the cancer.  

2.1 Rat models 

In the last few decades many murine models have been established that are useful for the 
investigation of initiation, expansion and progression of gastrointestinal (GI) cancers. In 

most of these models, Wnt signaling, mismatch repair, and TGF pathways are targeted not 
only to understand initiation and progression of CRC but also to evaluate various 
pharmaceutical and biological agents for prevention and treatment of CRC.  
Normally CRC is not observed in rats (<0.1%) (Goodman et al., 1980) except the Wistar-
Furth/Osaka strain that spontaneously develops adenocarcinomas in 30-40% of the animal 
(Miyamoto & Takizawa, 1975). The rat models of colon cancer are developed using common 
carcinogens like AOM (azoxymethane), DMH (dimethylhydrazine), or PhIP (2-amino-1-
methyl-6-phenylimidazo [4,5-b]pyridine)(Corpet & Pierre, 2003, 2005). Most of the 
carcinogen-treated rat models develop tumors in the colon and often progress to 
adenocarcinomas. However, long latency period of tumor development is a distinct 
disadvantage. Efforts have been made to generate target-selected mutations, including 
nonsense alleles by several laboratories resulting into development of a rat strain carrying a 
nonsense allele in codon 1137 of APC (Corpet & Pierre, 2005). Interestingly, multiple 
intestinal neoplasms mostly in the colon were observed in F344 rats, commonly known as 
PIRC (polyposis in the rat colon) model, heterozygous for this allele and these animals 
survive for about one year (Zan et al., 2003; Smits et al., 2006; Amos-Landgraf et al., 2007). 
The rat models due to their size allows investigators to perform procedures like endoscopy, 
microCT (Computerized Tomography), and microPET (Positron Emission Tomography) 
imaging to evaluate chemoprevention or therapeutic interventions without sacrificing the 
animal.  

2.1.1 Rat models in chemoprevention and therapeutics development  

Although, dimethylhydrazine and its metabolites azoxymethane (AOM) and 
methylazoxymethanol are commonly used in the induction of colonic tumors in rat models, 
other carcinogens, like nitrosomethyl urea (MNU), specific nitrosamines and heterocyclic 
amines are also in frequent use. Many potential chemopreventive agents of colorectal cancer 
have been assessed in rat models. The effects of chemopreventive and therapeutic agents on 
initiation and progression of carcinogen-induced colonic tumors can be studied by varying 
the time of intervention. In rat models over 160 compounds have been screened for 
chemopreventive properties (Corpet et al., 2008) and the compounds found to be of 
chemopreventive and therapeutic importance are summarized in Table 1. Complete 
inhibition of cancer induction has been detected in ursodeoxycholic, polyethylene glycol 
(PEG), methylmethanethiosulfonate (MMTS) treated rats and in rats given exercise.  
Also, celecoxib, acetoxychavicol,  selenium, p53 vaccination, piroxicam with 
difluoromethylornithine (DFMO), cellulose, aspirin, S-allylcysteine, obacunone, sulindac 
sulfone and hesperidin (flavanone glycoside) reduced the incidence of adenocarcinoma 
more than 78% (Corpet et al., 2008). Moreover, a DMBDD (7-hydroxy-7'-methoxy-4,4'- 
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Rat model Name of the compound Reference 

Azoxymethane (AOM) 
/Dimethylhydrazine  
model 

Etoricoxib (selective COX-2 inhibitor) (Kaur Saini &Nath 
Sanyal, 2010)  

Diclofenac (preferential COX-2 inhibitor) (Kaur Saini &Nath 
Sanyal, 2010)  

Adlay bran ethanol extract (ABE-Ea) (Chung et al., 2010)  

Soy isoflavones (Min et al., 2010)  

Arabinoxylan-oligosaccharide (Femia et al., 2010)  

Probiotic soy products (Silva et al., 2009)  

Physical exercise (Silva et al., 2009)  

Astaxanthine (Prabhu et al., 2009)  

Soy isoflavones (Raju et al., 2009)  

R-Flurbiprofen (Martin et al., 2010)  

Copper-indomethacin (Bonin et al., 2010) 

Naproxen (Steele et al., 2009)  

Nitric Oxide-Naproxen (Steele et al., 2009)  

CP-31398 (a p53 modulator) (Rao et al., 2009)  

Celecoxib (Rao et al., 2009)  

Symbiotic association of Bifidobacterium 
lactis and carbohydrate ‘resistant starch 

(Le Leu et al., 2010)  

Melatonin (Tanaka et al., 2003)  

Prebiotic germinated barley foodstuff (GBF) (Kanauchi et al., 
2008)  

High amylose maize starch and butyrylated 
high amylose maize starch 

(Clarke et al., 2008)  

MNU model TAC-101 (a retinobenzoic acid derivative) (Nakayama et al., 
2009)  

DMBDD model PJJ-34 (13 alpha, 14alpha-epoxy-3beta-
methoxyserratan-21 beta-ol), a triterpenoid 

(Doi et al., 2010)  

Orthotropic model Combined use of bevacizumab and 
irinotecan (CPT-11) as postoperative 
adjuvant chemotherapy 

(Mizobe et al., 2008)  

AOM model or 
Dimethylhydrazine 
model 

Combinatorial therapy using HMG-CoA 
reductase inhibitor (HRI) lovastatin (LOV) 
and the selective apoptotic antineoplastic 
drug (SAAND) exisulind (EXS) 

(Kim et al., 2004)  

Ursodeoxycholic acid (UDCA) (Hess et al., 2004) 

Protective effect of Fullerenol on heart and 
liver toxicity induced by doxorubicin  

(Injac et al., 2009)  

Table 1. Rat models used in chemoprevention & chemotherapy. 
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bis(1,3-benzodioxole)-5,5'-dicarboxylic acid dimethyl ester) rat multiorgan carcinogenicity 
model has also been developed for carcinogen testing (Takahashi et al., 1992; Imaida et al., 
2003). The DMBDD model can be used for prediction of intestinal carcinogenesis risk 
assessment as well as for chemoprevention studies. 

2.2 Mouse models 

2.2.1 APC related models 

The first heritable mouse model of colon cancer, APCMin/+, was reported in 1990 as a result 
of ethylnitrosourea (ENU)-induced germline truncating mutation at the codon 850 of APC 
(Moser et al., 1990, 1992; Su et al., 1992). In the C57BL/6J mouse background APCMin/+ mice 
develop about 30 small intestinal polyps with occasional adenocarcinoma and essentially no 
tumor in the colon (McCart et al., 2008). Although this contrasts human FAP (familial 
adenomatous polyposis) where most of the adenomas are in the colon and these adenomas 
certainly progresses to invasive adenocarcinoma, the APCMin/+ models due to their 
phenotypic and histopathological similarities to human intestinal neoplasm are used not 
only to test therapeutic and chemopreventive interventions but also to understand the role 
of APC gene in CRC (Fodde & Smits, 2001).  The APCMin/+ models also proved to be 
important for the study of genetic modifiers-of-Min (Mom) locus. When APCMin/+ C57BL/6J 
mice were crossed to AKR and MA mice, only 6 to 7 intestinal adenomas were observed and 
backcrossing F1 hybrids to the C57BL/6J helped identify a number of loci modifying 
number and distribution of adenomas (Moser et al., 1992; Gould et al., 1996; Fodde & Smits, 
2001). The adenomas in the small intestine of the APCMin/+ mouse have dysplastic and 
hyperplastic crypts and villi but the colonic tumors are spherical and peduncular with 
dysplastic cells. Importantly, these adenomas display higher mitotic index than surrounding 
normal crypts (Kwong & Dove, 2009). The Min mice due to their many advantages have 
been extensively used by scientists to study molecular pathogenesis of CRC – i] Min mice 
contains a single genetic change that produces a organ-specific, consistent, and discrete 
tumor phenotype, ii] Adenomas in Min mice develop rapidly, with lesions visible as early as 
60 days, iii] high tumor multiplicities (>100 /intestinal tract) providing strong statistical 
power, and iv] multiple pathways impacting tumorigenesis enable many entry points for 
basic or applied study (Kwong & Dove, 2009). Importantly, other mouse models with 
targeted genetic manipulations at different locations on APC have also been generated 
(summarized in Table 2). When heterozygous, the Δ474, Δ14, Δ716, lacZ, and Δ1309 mouse 
models show phenotypes similar to that of Min (Sasai et al., 2000; Oshima et al., 2001; Niho 
et al., 2003; Colnot et al., 2004). In contrast, heterozygosity for the 1638N allele results in 0-2 
tumors (none in the colon) while the 1638T model is tumor-free and unlike any other 
truncating allele, 1638T homozygous is viable. The 1638N has only approximately 1-2% of 
the truncated protein and is referred to as leaky allele (Fodde & Smits, 2001). In contrast, 
1638T has the full expression level of the truncated protein and is known as truncated allele. 
Furthermore, Li Q et al., (2005) inserted a neomycin cassette in either orientation (reverse 
(neoR) or forward (neoF)) into the 13th intron of APC to generate full-length hypomorphic 
(expression reduced to 10-20%) alleles and showed that these heterozygous mice developed 
fewer than two adenomas per mouse (Li et al., 2005). The Cre/loxP conditional gene 
targeting system is developed to generate additional APC models to induce tumors 
specifically in the colon (Shibata et al., 1997; Colnot et al., 2004; Gounari et al., 2005; Hinoi et 
al., 2007).  
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Allele/trunc
ation 
location 

Average 
life- 
span 

Genetic 
back-
ground 

Homozyg
ous 
pheno-
type 

Heterozygous 
phenotype 

Average 
no. of 
spontaneo
us tumors 

References 

Min/850 4-6 
months 

C57BL/6J Embryonic 
lethality  

Multiple adenoma 
in GI-tract (mainly 
small intestine) 

50-70 (Moser et al., 
1990;  
Su et al., 1992)  
 

Min/850 3-5 BTBR/Pas Embryonic 
lethality 

Multiple adenoma 
in GI-tract (mainly 
small intestine) 

Up to 600 (Kwong  
et al., 2007)  
 

716/716 5-7 
months 

C57BL/6J Embryonic 
lethality 

Multiple adenoma 
in GI-tract 

Up to 300 (Oshima 
et al., 1995)  

580S/580* 
(based on 
Cre-LoxP 
recombinatio
n system) 

N/A Mixed N/A N/A No tumor 
up to 1year 
of age 

(Shibata  
et al., 1997)  

580D/580* N/A Mixed Embryonic 
lethality 

Multiple 
adenomas at 4 
week after 
conditional 
deletion 

7-10 (Shibata 
et al., 1997)  

1638N/1638 >1Year C57BL/6J Embryonic 
lethality 

Adenoma and 
adenocarcinomas 
in GI-tract, 
desmoids tumors 

3-4 (Fodde  
et al., 1994)  

1638T/1638 Up to 2 
Years 

C57BL/6J Viable Normal 0 (Smits  
et al., 1999)  

474/474 <6 
months 

C57BL/6J Embryonic 
lethality 

Develops tumor 
mainly in small 
intestine, but also 
in colon and 
stomach 

120 (Sasai  
et al., 2000)  

1309/1309 N/R C57BL/6J N/R  25-40 (Niho et al., 2003) 

14/580* N/A C57BL/6J N/A Multiple 
adenomas 

40-50 (Colnot  
et al., 2004)  

468/468 N/R N/R Embryonic 
lethality 

Polyps starting 
after 2 months of 
age 

N/R (Gounari  
et al., 2005)  

Ex13NeoR/ 
Full-length 

>15 
months 

C57BL/6J N/R Small 
microadenoma 

1.1 (Li et al., 2005)  

Ex13NeoF/ 
Full-length 

>15 
months 

C57BL/6J N/R Small 
microadenoma 

0.3 (Li et al., 2005)  

*Conditional expression; N/A=Not applicable; N/R=Not reported 

Table 2. Adematous polyposis coli (APC) based intestinal tumor models 
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Because APCMin/+ mice rarely develop invasive cancer, efforts were made to develop 
compound mouse models by introducing alterations of genes known to be involved in CRC 
signaling pathways and produce invasive tumors mimicking human disease. The oncogene 
Kras, which is mutated in 40-50% of human CRC, is not altered in APCMin/+ polyps and the 
APCMin/+ mice with the introduction of Kras develop aggressive adenocarcinoma (Fodde & 
Smits, 2001). Loss of EphB receptor is an important event in the progression of CRC and 
APCMin/+ carrying a dominant negative EphB2 transgene showed 10 fold more tumor 
formation with greater number of invasive adenocarcinomas (Fodde & Smits, 2001; Batlle et 
al., 2005). The APCMin/+ mouse model has been quite useful as an experimental system for 
studying colorectal tumorigenesis and CRC chemoprevention strategies (Moser et al., 1990) 
because Min mice have two distinct advantages i] numerous adenomas with the same 
inherited APC mutation are available for analysis and ii] these adenomas develop in 
animals of uniform genetic background (Luongo et al., 1994). 

2.2.2 Mismatch repair (MMR) deficient models 
The HNPCC (hereditary nonpolyposis colorectal cancer) is an inherited condition with 
inactivated DNA mismatch repair (MMR) genes, like MLH1, MSH2, MSH6, and PMS2 
(Fishel et al., 1993; Lynch & de la Chapelle, 2003) and leads to the development of a variety 
of cancers including that of the colon (Lynch & Smyrk, 1996). Mouse models with loss of 
function of MMR genes have been generated and mice lacking Mlh1, Msh2 and Msh6 
develop tumors in stomach, small intestine, and colon. However, these mice also develop 
cancers of the lymphatic system, skin and lung (Reitmair et al., 1996; Edelmann et al., 1997, 
1999, 2000). Enhanced development of adenomas was observed in the APCMin/+ mice 
lacking Msh2 with increase in colonic adenoma numbers. Interestingly, these mice show 
normal growth and can reproduce but have reduced life span (Reitmair et al., 1996). 
Although loss of Msh3 is not associated with increased tumors, loss of both the Msh3 and 
Msh6 leads to an increase in GI tumors at a younger age, similar to Mlh1 or Msh2-deficient 
mice (Edelmann et al., 2000). Mice bearing mutations in the Msh6 gene have a life span of 18 
months and develop GI tumors within one year. The MMR mouse models carrying one 
functional copy of APC showed increasing mutation of APC and an enhanced frequency of 
intestinal neoplasia (Reitmair et al., 1996; Kuraguchi et al., 2001). Furthermore, mice lacking 
Mlh1 in APC1638N model have a 40-fold increase in adenomas compared to APC1638N 
mice alone (Edelmann et al., 1999). Interestingly, the PMS2-/- mice are vulnerable to 
lymphomas but they do not develop GI tumors. However, the PMS2-/- mice in APCMin 
background showed an increased number of adenomas in the GI-tract compared to Min 
alone (Prolla et al., 1998; Prolla, 1998; Baker et al., 1995). In contrast, the Mlh1/APC1638N 
mice showed a greater percentage of tumors progressed to invasive carcinomas (Edelmann 
et al., 1999). The MMR models are useful for screening of agents known to interfere with 
DNA mismatch repair processes for their therapeutic or carcinogenic effects. 

2.2.3 TGF- models 

The TGF- (transforming growth factor-) signaling pathway regulates a number of cellular 
processes including cellular differentiation, growth suppression, deposition of extracellular 
matrix and apoptosis (Figure 1). The TGF ligands through a heteromeric receptor mediate 
their effects on cells and dysregulation of the TGF- receptor 2 (TGF-R2) is the most 
common occurrence in the CRC (Bellam & Pasche, 2010; Grady et al., 1999). Although 
TGFR2 has been suggested to have a tumor suppressor function in CRC, recent reports 
indicate that it could act as a tumor suppressor as well as a tumor promoter (Tang et al., 1998;  
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Fig. 1. Integrated molecular pathway implicated in development of colorectal cancer 
(Courtesy: KEGG pathway, www.genome.jp/kegg).  Alterations in Wnt signaling including 
Wnt, APC, Axin and TCFs are associated increased -catenin level and increased cell 
proliferation. The MAPK signaling is associated with the oncogenic activation of RAS and 
ERK signaling leading to increase cell proliferation). The TGF- pathway is mainly a growth 
inhibitory pathway and any perturbations leads to suppressed apoptosis and increased cell 
proliferation. The mismatch repair (MMR) pathway maintains DNA homeostasis by 
facilitating post-replication repair and dysfunction results in accumulation of potential 
mutations and genetic instability implicated in the development of CRC. Important 
candidate proteins altered in CRC are highlighted in red color. 
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Yang et al., 2002a, b; Blobe et al., 2000). Mouse models related to the TGF- pathway have been 
used to delineate the multifaceted role of this pathway during colorectal carcinogenesis. It has 

been reported that the TGF-1 deficient mice due to widespread inflammation die around 
three weeks of age (Shull et al., 1992; Kulkarni & Karlsson, 1993). Importantly, in the absence 

of Rag2 the TGF-1-deficient mice survive until adulthood (Diebold et al., 1995). Due to the 

significant incidence of carcinoma of the cecum and colon in these mice, the Rag2/TGF-1-
deficient mice remains a useful model to study the role of inflammation in CRC in relation to 

the TGF1 signaling (Engle et al., 1999; Maggio-Price et al., 2006). Mouse lacking TGF-2 in the 
colonic epithelium showed increased adenoma and adenocarcinoma formation after 

carcinogen treatment. Apart from TGF-, mouse models representing alterations in the other 
factors in this important pathway like SMAD2, SMAD4 and SMAD3 have been reported. 
(Eppert et al., 1996). Although mice lacking SMAD2 and SMAD4 are embryonically lethal, the 
SMAD3 deficient mice are viable and are a useful model of CRC (Zhu et al., 1998). Importance 

of the TGF- related models lies in the fact that the APC remains intact in the adenomas of 

these mice and these models could serve as a valuable tool to investigate non-WNT/APC/-

catenin-mediated colorectal carcinogenesis (Kaiser et al., 2007). Interestingly, the TGF- related 
models in the APCMin/+ background showed increased incidence of invasive carcinoma 
specifically in the distal colon (Takaku et al., 1998; Sodir et al., 2006). 

2.2.4 Inflammation mediated models  

Inflammatory bowel diseases (IBD) like ulcerative colitis (UC) and Crohn's Disease are 
predisposing conditions of CRC (Itzkowitz & Harpaz, 2004; Itzkowitz & Yio, 2004). 
Prolonged administration of dextransulfate sodium (DSS) in mice resulting in chronic 
colitis and formation of high-grade dysplasia confirmed the involvement of chronic 
inflammation in colorectal carcinogenesis (Okayasu et al., 1990). Interestingly intestinal 
tumorigenesis was augmented by combined administration of AOM and DSS. (Tanaka et 
al., 2003). To demonstrate that deficiency of Sigirr (single immunoglobulin and toll-
interleukin 1 receptor domain) along with bacteria-induced inflammation increases 
susceptibility to CRC investigators effectively utilized the combined AOM/DSS model 
(Wald et al., 2003; Xiao et al., 2007; Uronis & Threadgill, 2009). Furthermore, the combined 
AOM/DSS model was also an important instrument in defining the role of the JAK/STAT 
(Janus kinase/signal transducers and activators of transcription) and NFkB (nuclear factor 
of kappa light chain gene enhancer in B-cells) pathways in inflammation-induced CRC 
(Wirtz & Neurath, 2007). The role of the JAK/STAT pathway in colorectal carcinogenesis 
was further confirmed by the fact that dysfunctional Socs1 and Socs3 (suppressors of 
cytokine signaling) leads to enhanced activation of STAT1, STAT3 and NFkB and 
subsequent growth of colorectal tumors (Hanada et al., 2006). Although lack of only Socs3 
in the intestinal epithelial cells is not associated with chronic inflammation or tumor 
formation, these mice when treated with AOM/DSS showed distinct inflammatory 
response followed by colonic tumors (Hanada et al., 2006; Rigby et al., 2007). In contrast to 

increased nuclear -catenin in the Socs3 deficient mice, the colorectal tumors in Socs1 
deficient mice display enhanced expression of Myc (Sutherland et al., 2006). In addition, 
the Muc2-/- is an important animal model to study the role of inflammation in the 
colorectal carcinogenesis. This model specifically targets mucin-forming Muc2 and unlike 
other models tumor formation is also observed in the rectum (Mack & Hollingsworth, 
1994; Yang et al., 2005; Femia et al., 2009). 
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2.2.5 Immune system related models 

Models have been developed to investigate the role of immune system in colorectal 
carcinogenesis. Immune cells are involved in inflammatory response and inflammation is 
intimately related to CRC. Therefore, the IL-2 (interleukin-2), IL-10, and TCR knockout 
models were developed and used in studying role of diet and inflammation in colorectal 
cancer initiation and progression. (Rudolph et al., 1995; Kullberg et al., 1998; Mizoguchi et 
al., 2000; Seril et al., 2005).  

2.2.6 Carcinogen-induced models  

Although important information on familial and sporadic colorectal carcinogenesis was 
obtained from genetic animal models, it is the carcinogen-induced animal models that were 
instrumental in delineating molecular events specifically in the sporadic CRC. It is worth 
mentioning that the colon-specific carcinogen dimethylhyrdrazine (DMH) along with AOM 
has been useful in developing our current understanding of the molecular mechanisms 
underlying sporadic colorectal carcinogenesis (Druckrey et al., 1966). To its advantage the 
carcinogen-induced mouse model develops tumor which show much similarities to the 
pathophysiology of the human CRC (Kaiser et al., 2007; Uronis et al., 2007). The carcinogen-

mediated tumors show alterations in the WNT/-catenin pathway (Takahashi et al., 2000). 
Interestingly, the AOM-induced colorectal carcinogenesis, unlike in the APCMin/+, is mainly 

due to the mutations in the Ctnnb1 gene, which encodes -catenin protein.  Mutations in the 
Ctnnb1 results in ubiquitination-resistant stabilization of the -catenin leading to growth of 
colorectal adenomas associated with upregulation of proliferation markers like cyclin D1 
and cMyc (Wang et al., 1998; Kaiser et al., 2007). The carcinogen-induced model was also a 
key player in the identification of the modifier loci like the Ptprj (a receptor-type protein 
tyrosine phosphatase), which has been shown to modify susceptibility to DMH and has 
shown frequent loss of heterozygosity in human colon cancer (Ruivenkamp et al., 2002). 
Additionally, the carcinogen-induced models led to the recognition of Pref1 as a modifier of 
CRC and the promoter of the Pref1 is suggested to contain a -catenin/TCF response 
element (Dong et al., 2004; Ruivenkamp et al., 2002; Uronis et al., 2007). 

2.2.7 Mouse models in chemoprevention and therapeutics development 

The genetic mouse models as well as the carcinogen-induced models of CRC (APC, TGF- 
and mismatch repair based models) are used to evaluate the effect of diets and 
chemopreventive agents. The chemopreventive and dietary interventions are usually started 
between 3 and 6 weeks of age and invariably the principal biological endpoint is the number 
and grade of the tumors. It is important to note that in contrast to human CRC where no 
small intestinal tumors are observed, the tumors in the mutant models are mostly in the 
small intestine. However, the concept that the non-steroidal anti-inflammatory drugs 
(NSAID) have a chemopreventive role in the CRC was first established in these models 
showing reduction in tumor number in the small intestine. The chemopreventive properties 
of NSAIDs like celecoxib and piroxicam were also validated in the carcinogen-induced 
models showing decrease in polyp number and size. Due to commercial availability, the 
APCMin/+ is the model of choice in many studies and a list of agents screened in APCMin/+ 
mouse model is shown in Table 3. Most of the other CRC mouse models are used for specific 
biological end points. But a few of them such as APC1638N model because of its longer life 
span and good signal to noise ratio is used for carcinogen testing and is suggested to be 
more useful than APCMin/+ mice (Trani et al., 2010). 
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Name of compound References 

Aspirin (Barnes&Lee, 1998)  

Piroxicam (Ritland&Gendler, 1999)  

Phenanthridinone derivative (PJ 34) (Mabley et al., 2004)  

Non-steroidal anti-inflammatory drugs (NSAIDs) (Gescher, 2004)  

DMU-135 (3-4 methylenedioxy-3’4’5’-trimethoxy 
chalcone), a potent tyrosine kinase inhibitor prodrug 

(Sale et al., 2006)  

Atorvastatin (Swamy et al., 2006)  

Celecoxib (Swamy et al., 2006)  

Sulforaphane (Isothiocynate compound) (Khor et al., 2006)  

Anthocyanin (Bobe et al., 2006)  

Difluoro methylornithine (DFMO) (Telang&Katdare, 2007)  

Epigallocatechin 3- gallate (EGCG) (Telang&Katdare, 2007)  

Dibenzoylmethane (Tammariello&Milner, 2010)  

PPAR ligand MCC-555 (Yamaguchi et al., 2008)  

Metformin (Tomimoto et al., 2008)  

Alpha-phenyl-tert-butyl-nitrone (PBN) and 4 
hydroxy-PBN 

(Floyd et al., 2010)  

Chafuroside (Tammariello&Milner, 2010)  

Sodium Taurocholate (Smith et al., 2010)  

COX-2 inhibitors (Nakanishi et al., 2011)  

Scopolamine butylbromide (muscarinic receptor 
antagonist) 

(Raufman et al., 2011)  

Curcumin (Murphy et al., 2011)  

Silibinin (Rajamanickam et al., 2010)  

Ellagic acid (Mutanen et al., 2008)  

Epigallocatechin gallate (EGCG) (Telang&Katdare, 2007)  

Dietary sphingolipids (Symolon et al., 2004)  

Dietary Folate (Song et al., 2000)  

Dietary isoflavones (Sorensen et al., 1998)  

Apple polyphenol extract (APE) (Fini et al., 2011)  

Grape Seed extract (GSE) (Velmurugan et al., 2010)  

Berries (bilberry, lingonberry, cloudberry) (Mutanen et al., 2008)  

Green tea (Issa et al., 2007)  

Orange peel extract (OPE) (Fan et al., 2007)  

Anthocyanin rich tart cherry extract (Bobe et al., 2006)  

Fermented brown rice and rice bran (Phutthaphadoong et al., 2010)  

Fish oil (Bose et al., 2007)  

Dietary /caloric restriction (Tammariello&Milner, 2010)  

Exercise/physical activity (Baltgalvis et al., 2008)  

Table 3. Use of APCMin/+ mouse model in chemoprevention development. 
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2.3 Xenograft models of colon cancer 

Colon cancer xenograft models are created by implantation of cells subcutaneously, 
intrasplenically, or into the renal capsule. It is important to implant the xenograft into the 
immunocompromised mice and commonly the T-cell deficient ‘‘nude’’ mice or NOD-SCID 
(non-obese diabetic/severe combined immunodeficiency) mice are used (Rygaard & 
Povlsen, 1969). The xenograft models of CRC are commonly used to assess newer 
therapeutics and understand the pathogenesis of human disease. Indeed, subcutaneous 
xenografts have found an important place in CRC research due to the fact that anesthetics 
are not required and the tumors are accessible for external measurement. Some of the 
disadvantages of the subcutaneous model are i] lack of tumor microenvironment 
representative of the CRC, and ii] in contrast to the >50% hepatic metastatic incidence of 
CRC, no metastasis is observed in the subcutaneous xenograft models. However, xenograft 
models involving intrasplenic or intra-renal-capsule, although have shown metastasis similar 
to human CRC, does not represent tumor microenvironment of CRC and signaling pathway 
could be different than the human disease (Furukawa et al., 1993; Fidler, 1991a, b, c). 
Consequently, implantation of CRC xenografts into mouse colon, the orthotopic model, is 
much preferred by the investigators due to their similar characteristics of the human ailment.  

2.4 Orthotopic mouse model 

An orthotopic mouse model involves placing of colorectal cancer cell or tumor tissue into 
the intestinal sub-mucosa (Tseng et al., 2007). The orthotopic model, unlike the 
subcutaneous model, is associated with all of the components of the tumor 
microenvironment as well as all of the angiogenic and growth factors, and cytokines. In 
addition to mimicking the human CRC in terms of metastasis and microenvironments, the 
orthotopic model also allows assessment of the alterations in the microenvironment on 
tumor initiation and progression. From a technical point of view, generation of orthotopic 
models demands specific expertise and more time than subcutaneous models. Because of 
technical difficulties in the physical measurement of the tumors, the orthotopic model also 
requires that an appropriate reporter like luciferase be in place for measuring tumor growth 
to determine the efficacy of a drug treatment. As with any animal model of human diseases 
there are inherent shortcoming and the orthotopic animal model is no exception. Because 
the tumors are in the colon, the orthotopic model requires sacrifice of the animals at a 
predetermined time for quantitative and qualitative analysis of the tumor. However, the 
orthotopic model has the advantage of mimicking human CRC including tumor 
microenvironment.  

3. Zebrafish – A non-murine model of colorectal cancer 

Signaling pathways involved in colorectal carcinogenesis are conserved across species and 
zebrafish, a well-characterized simple model system for human disease, are widely used to 
understand the molecular basis of cancer including CRC. Water borne carcinogens induce a 
wide variety of benign and malignant tumors in many organs of zebrafish. Zebrafish due to 
its easy maintainence and breeding along with conservation of human cancer-relevant 
oncogenes, and tumor suppressor and cell cycle genes makes it a useful model to study 
carcinogenesis. Interestingly, the zebrafish mutants display phenotypes similar to many 
human disorders, including cancer, cardiovascular disease, and neurodegeneration. 
Zebrafish carrying a mutation in the region representing most of the observed human APC 
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mutations were identified recently and like murine models the heterozygous fish develop 
intestinal adenomas (12%), which resembles its murine counterpart (Goessling et al., 2007). 
The APC-heterozygous fish when exposed to dimethylbenzanthracene, showed significant 
increase in the tumor number with 44% developing liver tumors and 35% developing 
intestinal tumors and could serve as an important model system to screen carcinogens 
(Goessling et al., 2007).  

3.1 Zebrafish model in chemoprevention and therapy  

Zebrafish model is in use for the target selection, bioactive compound screening as well as in 
the drug toxicity and efficacy studies (Lieschke & Currie, 2007). Angiogenesis supports 
cancer progression including CRC and anti-angiogenic therapy inhibits cancer growth. On 
the contrary anti-angiogenic therapy has been implicated in inflammation a known risk 
factor of colorectal carcinogenesis. Our understanding of the correlation between tumor 
angiogenesis, inflammation, and metastasis was much enhanced by studies in the zebrafish 
model (Moshal et al., 2010). Furthermore, the zebrafish model has been used to study 
potential therapeutic agents like SKLB610 (inhibitor of angiogenesis related tyrosine kinase), 
which was reported to inhibit angiogenesis in zebrafish sub-intestinal veins (Cao et al., 
2011). The zebrafish model was useful in determining the role of DNA demthylase in 
maintaining intestinal epithelial cells lacking APC in an undifferentiated state (Rai et al., 
2010). Additionally, it has been reported that the zebrafish expressing a truncated form of 

APC with either retinoic acid or a selective COX-2 inhibitor decreased -catenin in the cell. 
Curcumin-loaded biodegradable polymeric micelles (Cur/MPEG-PCL) has been shown to 
efficiently block angiogenesis in transgenic zebrafish model (Gou et al., 2011). Similarly, the 
incorporation of doxorubicin in MPEG-PCL micelles enhanced the anticancer activity and 
decreased the systemic toxicity of doxorubicin in Zebrafish and has implications for CRC 
treatment (Lee et al., 2006).  

4. Animal models in chemoprevention and chemotherapeutics development 

Rodent models have been used for CRC research providing insight into the complex 
oncogenic events contributing to the loss of cell growth and differentiation control. These 
models also offer prospects to identify and study both therapeutic and chemopreventive 
agents. In general, almost all popular human colorectal cancer prevention strategies, from 
dietary manipulations (such as folate or calcium supplementation), to drug testing (such as 
(NSAIDs) have been evaluated in both carcinogen-induced and genetically modified animal 
models. In most cases, suppression of polyps has demonstrated the preventive effects of 
these strategies, and in some cases, investigators have been able to dissect pathways where 
these agents block the development of aberrant crypt foci (ACF). Moreover, approaches that 
are effective in preventing the early stages of colorectal tumorigenesis have been shown to 
actually promote tumor growth in later stages of the adenoma-carcinoma sequence. This 
type of observation in mice is important in polyp prevention studies in humans where folate 
supplementation may actually be harmful in subjects already predisposed to colorectal 
neoplasia. Although it is important to note that caution has to be exercised in extrapolating 
animal model data to human, at least studies with NSAID have shown similar protective 
effects both in human and animal. However, some differential response of chemopreventive 
drugs has been observed between animal studies and human response. This could be 
because of higher genetic homogeneity of mice compared to humans, physiologic differences 
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in gut motility, hormones and immune surveillance, and differences in genetic events in 
somatic cells during adenoma to carcinoma transition in mouse compared to human 
colorectal neoplasia.  

5. Comparison of human data with animal model data 

With few exceptions, a significant correlation was observed between animal and human 
studies. Both the AOM rat model and the mutant mouse models supported the 
chemopreventive effects of the NSAID. This is supportive of the epidemiological studies 
proposing that, NSAIDs might reduce the colorectal cancer incidence by at least 45% in 
humans. Also supportive is the effects of celecoxib and sulindac shown to decrease the 
number of polyps in FAP patient trials. Similar to human data, rats and mice fed a high-fat 
diet showed increased adenomas than those fed a low-fat diet thus establishing the 
relationship between the colon cancer incidence and the intake of fat. Fatty diets with high 
linoleic acid content and n-6-polyunsaturated fatty acids seem to increase the number of 
tumors in rodents. Moreover, caloric reduction is a strategy that seems very efficient in 
animals. A reasonable agreement is observed between the results of these animal studies 
and the more limited clinical studies with few differences (Corpet & Pierre, 2003).  

6. Limitations of animal models 

Currently a number of animal models are available to dissect various facets of CRC and to 
undertake risk estimation studies. Mutant mouse models provide a unique opportunity in 
studying numerous adenomas under defined experimental conditions and uniform genetic 
background. However, use of animal models in studying human disease has its own 
limitations. For example, in carcinogen-induced models of CRC, the tumor incidence and 
latency period could be modulated by amount of carcinogen used – higher amount of 
carcinogen leading to higher incidence of tumors. However, high ethanol consumption 
reduced carcinogen (DMH)-induced tumorigenesis suggesting that DMH model is not 
useful in determining the role of alcohol in CRC. This discrepancy was resolved using the 
APCMin/+ mice model where ethanol consumption was observed as a risk factor for CRC 
(Roy et al., 2002). Careful consideration is essential for the selection of animal model to 
study a particular agent and requires validation is two or more models for the unequivocal 
demonstration. 

7. Conclusions 

Future advances in animal model development will require combinations of dietary and 
genetic manipulation of rodents or other inexpensive animals to more accurately mimic the 
various factors that contribute to colorectal neoplasia in humans. As epidemiologic and 
molecular studies demonstrate the heterogeneity of colorectal tumor development in diverse 
populations (e.g. the microsatellite instability or CIMP pathways), it is expected that any one 
model will not answer all the questions about the CRC chemoprevention or therapeutic 
intervention strategies under investigation.  
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other healthcare professionals involved in patient management for colorectal cancer will find this volume

useful.
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