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1. Introduction 

Congenital hypothyroidism (CH) is a condition of thyroid hormone deficiency present at 
birth and can result in severe neurodevelopmental impairment, growth failure and 
permanent mental retardation if treatment is delayed for several months after birth (1-3). 
Girls are more frequently affected than boys (female to male ratios ranging from 2:1 to 
4:1)(4). The mental retardation and neurodevelopmental impairment include poor motor 
coordination, ataxia, spastic diplegia, muscular hypotonia, strabismus, learning disability 
and diminished attention span (5). Consequently, most countries operate neonatal screening 
programs to enable early detection of cases and therapeutic intervention. Treatment consists 
of a daily dose of thyroid hormone (thyroxine) by mouth (6, 7). Because the treatment is 
simple, effective, and inexpensive, nearly all of the developed world practices newborn 
screening to detect and treat CH in the first weeks of life. The diagnosis is based on the 
measurement of TSH on the second or third day of life. If the TSH is high, the infant's doctor 
and parents are called and a referral to a pediatric endocrinologist is recommended to 
confirm the diagnosis and initiate treatment (6). Often a technetium (Tc-99m pertechnetate) 
thyroid scan is performed to detect a structurally abnormal gland. The Tc-99m pertechnetate 
exam will help differentiate thyroid dysgenesis from thyroid dyshormonogenesis. Most 
children born with CH and correctly treated with thyroxine grow and develop normally in 
all respects. Even most of those with athyreosis and undetectable T4 levels at birth develop 
with normal intelligence. However, in some cases mild learning problems, subtle 
neurological dysfunctions, and subnormal IQ have been reported (2, 5). In a 5 year follow-
up study of children with CH, Arenz et al reported that children with an initial thyroid-
stimulating hormone (TSH) value of >200 mU/L performed significantly worse in motor 
skills than children with TSH value of < or =200 mU/L although intellectual development 
was normal (8).  Glorieux et al reported that 27 patients with congenital hypothyroidism 
diagnosed by neonatal screening were examined at the age of 12 years. The 12 patients with 
severe hypothyroidism at diagnosis (thyroxine <  26 nmol/L, and area-of-the-knee 
epiphyses < 0.05 cm2) had a lower IQ than the 15 patients with less severe hypothyroidism 
(9). Salerno et al evaluate the intellectual outcome in 40 12-year-old patients with CH 
detected by neonatal screening, 13 patients showed subnormal IQ score (72.4+/-4.9) 
compared with their siblings (86.7+/-9.6; P<0.0001) and with the other patients (96.1+/-9.6; 
P<0.0001). The low IQ score was associated with lower serum concentrations of thyroxine at 
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diagnosis, poor treatment compliance during follow-up and lower familial IQ. Interviews 
with parents of CH children revealed that a refusal to acknowledge the disease was linked 
to poor attention to the child's emotional life and to poor treatment compliance in some 
cases (11%) (10). These data suggest that neurodevelopmental impairment may be 
associated with inadequate treatment in some of CH cases. 

2. Congenital hypothyroidism in Saudi Arabia  

Since CH is the most common preventable cause of mental retardation, the newborn 
screening program for CH was started in 1988 at the Ministry of Health Maternity Hospitals 
in Saudi Arabia to detect and treat this disorder (11, 12). The prevalence of CH  in Riyadh is 
1 in 3,450 live births with 279,482 newborn infants screened (11, 12), the most common 
etiology shown by thyroid scan being thyroid ectopy (50%), followed by 
dyshormonogenesis (26%) and athyrosis (24%) (11). Two other studies showed a different 
rate of CH and dyshormonogenesis (13, 14).  The study by Henry et al showed the 
prevalence of 1 in 2759 live births with 121,404 newborn infants screened in the same 
Central region (Riyadh), the predominant cause of congenital hypothyroidism found in the 
study being athyreosis (45%), followed by thyroid ectopia (24%) and dyshormonogenesis 
(17%) (13). The study by Majeed-Saidan et al showed the prevalence of 1 in 2096 live births 
with 44,778 newborn infants screened and 8/17 (47%) CH had dyshormonogenesis (14). 
However, the number of the newborn infants screened is smaller in these two studies. The 
prevalence of CH in other regions of Saudi Arabia is about 1 in 2931 live births in the South 
region with 100,000 newborn infants screened (Najran province) (15) although 1 in 1400 live 
births was reported in a separate study with 30810 newborn infants screened (16), 1 in  4200 
live births with 193,613 infants screened in the North-West region (Madina Al-Munawara 
region) (17), and  1 in 5061 live births in the Eastern region (18). The overall prevalence of 
CH in Saudi Arabia is similar to those reported in the literature from other countries 
although the prevalence of dyshormonogenesis appears to be higher than other parts of the 
world. The nationwide efforts to promote neonatal screening programs in recent years in the 
Kingdom have likely prevented severe mental and growth retardation in newborn infants 
and also sparked the interest of researchers in CH (12, 13, 17-19). However, molecular 
characterization of underlying genetic defects has not been systematically conducted yet 
among the patients.  There is also a paucity of data on clinical treatment and follow-up of 
the patients. Major misconceptions are still very common among young parents in Saudi 
Arabia. First, many do not fully understand the seriousness of the disease, refuse to 
participate in the neonatal screening or otherwise show poor compliance in diagnosis, 
treatment and follow-up. Second, others believe that the treatment of CH implies a life-long 
dependency on drug administration and therefore feel highly distressed when confronted 
with their child’s disease. Inadequate treatment can lead to poor academic performance and 
learning problems which tend to be overlooked by the child’s parents (2)  

3. The etiology of congenital hypothyroidism 

The etiology of congenital hypothyroidism is heterogeneous and is caused by either thyroid 
dysgenesis (75-80%) or dyshormonogenesis (15-20%) (1, 20). The most common cause of CH 
is thyroid dysgenesis, a spectrum of defective thyroid gland development leading to 
athyrosis (without visible thyroid tissue in imaging studies) (35–40%), thyroid ectopy 
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(frequently located in a sublingual position) (55–60%), and hypoplasia (a small-sized thyroid 

or remnants of thyroid tissue in the normal position) (5%) (21, 22). These forms represent 75-
80% of all cases of CH (20). The pathogenesis of thyroid dysgenesis is largely unknown. The 
disorder is usually sporadic but up to 2% of familial cases have been reported (23-25). Genes 
associated with thyroid gland dysgenesis include the TSH receptor in non-syndromic 
congenital hypothyroidism, Gsα, and the thyroid transcription factors (TTF-1, TTF-2, and 
Pax-8) (22, 24, 25). The extrathyroid genes involved in the control of migration of the median 
thyroid bud during embryogenesis, such as adhesion molecules, and vascular factors 
involved in the stabilization of the bi-lobed structure of the thyroid may also play a role (22).  
Thyroid dyshormonogenesis  account for 15–20% of CH cases (20).  In thyroid 
dyshormonogenesis (defects of thyroid hormone biosynthesis), patients have a normal sized 
or enlarged thyroid gland (goitre) in the normal position and are often recessively inherited 
(1). Thyroid dyshormonogenesis is a genetically heterogeneous group of inherited disorders 
in the enzymatic cascade of thyroid hormone synthesis. The underlining genetic defects 
causing dyshormonogenesis include gene mutations in the enzymatic cascade of thyroid 

hormone synthesis such as Na+/I- symporter (26), Tg (27), thyroperoxidase (TPO) (28), dual 
oxidase 2 (DUOX2 or THOX2)(29), dual oxidase maturation factor 2 (DUOXA2)(30), pendrin 
(SLC26A4/PDS/(31), and iodotyrosine dehalogenase1(DEHAL1) (32).  Mutations in the 
TPO or Tg are the most frequent genetic defects in thyroid dyshormonogenesis.  

4. Thyroid hormone synthesis and the genes involved in the process  

Thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are critical determinants of 
brain and somatic development in infants and of metabolic activity in adults; they also affect 
the function of virtually every organ system(33). They are tyrosine-based hormones 
produced by the thyroid gland. The synthetic process occurs in three major steps as shown 
in Figure 1(33, 34): production and accumulation of the raw materials, biosynthesis of the 
hormones on a backbone of Tg, release of the free hormones from Tg and secretion into 
blood. Tyrosines are provided from Tg, a large glycoprotein which is synthesized by thyroid 
epithelial cells and secreted into the lumen of the follicle forming colloid (essentially a pool 
of Tg). A molecule of Tg contains 134 tyrosines, although only a handful of these are 
actually used to synthesize T4 and T3. Another important component in the synthesis of 
thyroid hormones is iodine, which is taken up from blood by sodium-iodide symporters 
located on the outer plasma membrane of thyroid epithelial cells. Once inside the cell, iodide 
is transported into the follicular lumen presumably in part by the anion transporter pendrin, 
and oxidized by the membrane-bound enzyme TPO. This oxidation requires the presence of 
hydrogen peroxide, which is generated by DUOX2, an enzyme that requires a specific 
maturation factor dual oxidase 2A (DUOXA2). The biosynthesis of thyroid hormones is 
conducted by TPO, an integral membrane protein present in the apical (colloid-facing) 
plasma membrane of thyroid epithelial cells. TPO catalyzes two important reactions: the 
iodination of selected tyrosine residues (also known as organification of iodide) on Tg which 
serves as the matrix for thyroid hormone synthesis, producing monoiodotyrosine and 
diiodotyrosine, and the intramolecular coupling reaction of iodinated tyrosines from two 
monoiodotyrosine or diiodotyrosine, leading to the formation of either triiodothyronine (T3) 
or thyroxine (T4). Only a small fraction of iodotyrosines are used in this process. Through 
the action of TPO, thyroid hormones accumulate in colloid, on the surface of thyroid 
epithelial cells, but are still tied up with Tg. To release T4 and T3, thyroglobulin is engulfed 
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by the thyrocytes through pinocytosis, digested in lysosomes, and then secreted into the 
bloodstream. In contrast, monoiodotyrosine and diiodotyrosine are found only in minute 
amounts in the bloodstream. The major form of thyroid hormone in the blood is thyroxine 
(T4) (approximately 80%), which has a longer half life than T3. The ratio of T4 to T3 released 
in the blood is roughly 20 to 1. T4 is converted to the active T3 (three to four times more 
potent than T4) within cells by deiodinases (5'-iodinase).  

The transportation and concentration of iodide within the thyroid gland are mediated 
through the sodium iodide symporter (NIS) located in the basolateral membrane of the 
thyroid follicular cell. NIS, a specialized plasma membrane glycoprotein with 13 
transmembrane domains, belongs to the family of sodium-dependent cotransporters and 
has most sequence similarity with the human sodium/glucose cotransporter 1(26). NIS 
couples the inward translocation of two Na+ down their electrochemical gradient to the 
simultaneous inward translocation of one I– against its electrochemical gradient (35). The 
driving force for NIS activity is the Na+ gradient generated by the Na+/K+ ATPase. Human 
NIS is located on chromosome 19, consists of 15 exons, and encodes a protein of 643 amino 
acids with a predicted molecular mass of 68.7 kDa (36, 37).Although NIS mutation is 
relatively rare, up to 12 mutations have been reported (V59E, G93R, R124H, M143-Q323, 
Q267E, C272X, T354P, G395R, A439-P443, frame-shift 515X, Y531X, and G543E) (38-40). 

Tg is a large 660-kD glycoprotein synthesized by the thyroid gland. It functions as a matrix 

where thyroid hormones (T4 and T3) are produced from the coupling of iodotyrosyl 

residues, catalyzed by TPO (41).  The human TG gene is 270 kb and contains an 8307 bp 

coding sequence divided into 48 exons. The preprotein is composed of a 19-amino acid 

signal peptide, followed by a 2749-residue polypeptide (42). To date, up to 50 different TG 

gene mutations have been identified (43). These mutations lead to varying degrees of 

hypothyroidism.   

TPO is a thyroid-specific glycosylated hemoprotein of 110 kDa with a short trans-membrane 

domain that binds it to the apical membrane of the thyrocyte (44), with the catalytic part 

facing inside the follicle. It consists of 933 amino acids that are encoded by an mRNA of 3048 

nucleotides (44). The TPO gene spans over 150 kb on the short arm of chromosome 2, locus 

2p25, and consists of 17 exons (45). TPO gene mutations are one of the most common causes 

of thyroid dyshormonogenesis, with several different inactivating mutations being 

identified in patients with total iodide organification defects (46-49). 

The thyroid oxidase 2 (THOX) gene, known as dual oxidase 2 (DUOX2) is located at the 

apical membrane of thyrocytes and is involved in the Ca2+/reduced nicotinamide adenine 

dinucleotide phosphate-dependent generation of H2O2 (50, 51).  In thyroid hormone 

synthesis, H2O2 is used as a substrate by TPO to catalyze both the iodination of tyrosine 

residues and incorporation of iodine  into TG (52). DUOX2 is located on chromosome 15 and 

consists of 33 exons encoding a mRNA of 6376 nucleotides long. The DUOX2 protein is a 

1548-amino-acid polypeptide, including a 26-amino-acid signal peptide. Because defects in 

DUOX2 result in lack of H2O2, this protein is essential for thyroid hormone synthesis. 

Evidence for the involvement of DUOX2 in thyroid hormonogenesis came from the 

identification of naturally occurring mutations; biallelic homozygous or compound 

heterozygous DUOX2 mutations lead to goitrous CH (29, 53, 54), whereas monoallelic 

nonsense defects cause transient CH (29, 31) although biallelic DUOX2 mutations have also 
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been reported recently in transient CH (55). Up to 23 DUOX2 mutations have been 

identified in patients with congenital hypothyroidism (29, 55-57). Recently, two novel genes, 

called DUOX maturation factors (DUOXA1 and DUOXA2) were cloned (58). These genes are 

oriented head-to-head to the DUOX genes in the DUOX1/DUOX2 intergenic region(58). The 

DUOXA2 gene encodes an endoplasmic reticulum (ER) resident protein comprising five 

membrane-integral regions. DUOXA2 mRNA is predominantly expressed in thyroid gland 

with lower levels in gastrointestinal epithelia, reminiscent of the expression profile of 

DUOX2. Whereas DUOX2 expressed in nonthyroidal cells is completely retained in the ER 

(59), coexpression of DUOXA2 rescues ER-to-Golgi transition, maturation, and translocation 

to the plasma membrane of functional DUOX2 (58). A genetic defect in DUOXA2 impairs 

expression of DUOX2, resulting in decreased H2O2 production by thyrocytes, and CH (30). 

Pendred’s syndrome (PS) is an autosomal recessive disease characterized by goitre without 

or with hypothyroidism, impaired iodide organification, and congenital sensorineural 
deafness(60), although studies on CH patients also show that a direct relation exists between 
the extent of hearing loss and the age at which treatment for CH was initiated (61). It is 
caused by biallelic mutations in the SLC26A4 (solute carrier family 26, member 4), the PS 
gene (62), which contains an open reading frame of 2343 bp and encompasses 21 exons. The 
780 amino acid transmembrane protein (pendrin) expressed in the thyroid gland, inner ear, 
endometrium, and kidney, where it is involved in iodide, chloride, formate, and nitrate 
transport (63). In the thyroid gland, pendrin acts at the apical pole of thyrocytes to transport 
intracellular iodide into the follicular lumen (64). Loss of pendrin function causes a failure in 
iodine supply and an organification defect often leading to euthyroid goitres (65). Because 

both TPO defects and PS may present with goitre, hypothyroidism, partial iodide 
organification defects, and a positive perchlorate test (31, 66), a definite etiologic diagnosis is 
impossible without molecular diagnosis. 

Iodine is an essential component of thyroid hormone. To ensure that iodine is available for 
thyroid hormone biosynthesis, two highly specialized systems evolved in the thyroid gland. 
One accumulates iodide in thyroid cells by active membrane transport via the sodium-
iodide symporter (67). The other recycles iodide through the deiodination of 
monoiodotyrosine and diiodotyrosine (but not T4), the main iodinated by-products of 
thyroid hormone synthesis by thyroidal iodotyrosine dehalogenase (DEHAL1), a flavin 
mononucleotide-dependent enzyme(68). The gene is 36 kb and contains an 867 bp coding 
sequence divided into 5 exons and is located on chromosome 6 (6q24-25)(69-71). Mutation of 
the gene has been recently reported in patients with severe hypothyroidism (32). 

5. Thyroid dysgenesis and the genes involved in the process  

Thyroid dysgenesis is a defect in the organogenesis of the gland resulting in hypoplastic, 
ectopic or absent-thyroid gland and the underlying pathogenesis is largely unknown. 
Although the disorder is usually sporadic, a minority of cases are transmitted as Mendelian 
diseases (21-25, 72). Genes associated with thyroid gland dysgenesis include the TSH 
receptor in non-syndromic congenital hypothyroidism, Gsα, and the thyroid transcription 
factors (TTF-1, TTF-2 or FOXE1, Pax-8, NKX2.1 and NKX2.5) (22, 24, 25, 73-75). The 
extrathyroid genes involved in the control of migration of the median thyroid bud during 
embryogenesis, such as adhesion molecules, and vascular factors involved in the 
stabilization of the bi-lobed structure of thyroid may also play a role (22). 
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6. Congenital hypothyroidism and thyroid cancer 

Although rarely reported in the literature, malignant transformation from dyshormonogenic 

goitres is one of the most serious complications of CH. More than 20 cases of thyroid cancer 

have been reported in the literature with similar frequency of either papillary or follicular 

cancer type (Table1) (27). The most common genetic defects are TG mutation, resulting in 

dyshormonogenesis and CH. All the reported cases of thyroid carcinoma have long-

standing congenital goitres and elevated thyroid stimulating hormone (TSH) (27, 76, 77), 

indicating that TSH plays a central role in the development and/or progression of thyroid 

carcinoma.  

TSH is a well-known growth factor for thyroid epithelial cells, and can promote thyroid 

nodule formation and cancer progression (78). It has been suggested that constant and 

prolonged stimulation by TSH may result in the malignant transformation of thyroid 

follicular cells (76, 79), although a causal role for TSH in thyroid cancer initiation has not 

been conclusively demonstrated. In experimental studies, Morris et al found that 

prolonged exposure of transplanted thyroid tissue to excessive amounts of TSH in mice 

led to the development of malignant thyroid neoplasms with pulmonary metastases (79). 

Induction of papillary thyroid carcinoma following subtotal thyroidectomy has also been 

reported in rats (80). These data indicate that chronic TSH stimulation may be associated 

with thyroid cancer development. The significance of TSH in thyroid cancer initiation has 

recently been demonstrated in mice with a thyroid-specific knock-in of oncogenic 

BRAFV600E, mutations of which are found in about 45% of papillary thyroid carcinomas 

(81). BRAFV600E -expressing thyroid follicular cells become transformed and progress to 

invasive carcinomas with a very short latency. These mice also develop hypothyroidism 

with high TSH levels due to deregulation of genes involved in thyroid hormone 

biosynthesis. However, BRAFV600E induced oncogenic transformation of thyroid follicular 

cells is lost when TSH receptor is knockout, indicating the dependence of TSH mediated 

cAMP signaling in BRAFV600E induced papillary thyroid carcinoma initiation (81). 

Although the study by Franco et al (81) provides experimental support for a strong 

association between TSH levels and thyroid cancer incidence, it remains to be determined 

whether long-term TSH stimulation alone can induce thyroid cancer. It is likely that 

mutations in oncogenes or tumor suppressor genes may be needed for tumor initiation 

apart from long-term TSH stimulation. 

Brewer et al have demonstrated that the mammalian target of rapamycin (mTOR/S6K1) 

signaling pathway is also involved in the TSH mediated proliferative signals (82). 

mTOR/S6K1 signaling pathway is the key effector of phosphoinositide 3-kinase (PI3K) 

initiated proliferative signals in the thyroid follicular cells (83).Constitutive activation of 

PI3K signaling has been frequently found in thyroid cancers including those with aggressive 

clinical behaviors (84). However, genetic defect in the genes involved in this signalling 

pathway has not been investigated in thyroid cancers derived from dyshormonogenic 

goitres. Although less frequently, genetic defects in the MAPK/ERK signaling pathway 

have been reported, for example, BRAFV600E and K601E mutations in one PTC and one 

FTC cases, respectively (85) as well as abnormal p53 expression in one case of  follicular 

carcinoma with anaplastic transformation (77). 
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For CH caused by thyroid dyshormonogenesis, thyroid goitre can develop and, in rare 

cases, thyroid cancer occurs from dyshormonogenic goitre. In our previous studies, we have 

reported two cases of metastatic thyroid carcinoma derived from congenital 

dyshormonogenic goitres (Figure 2) from two consanguineal families (27, 86). They 

presented with large recurrent goitres and hypothyroidism since childhood. They were non-

compliant with L-thyroxine treatment and had multiple surgeries since childhood due to 

recurrence of dyshormonogenic goitres and pressure problems. One of them eventually 

developed a metastatic FTC and the other metastatic FVPTC. The underlying genetic defects 

in these two cases are germline TG mutation. Other genes involved in the different 

signalling pathways are investigated such as mutations in the RAS, BRAF or P53, and 

PAX8/PPAR-γ rearrangement. All come negative and it remains to be seen whether other 

genetic defects leading to malignant transformation can be detected such as mutations in the 

genes involved in the PI3K/Akt and mTOR/S6K1 pathways. These findings suggest that 

many CH cases in remote areas may not be adequately treated. It is unfortunate to see 

goitres and cancer development in these patients given that these complications can be 

easily prevented if proper L-thyroxine treatment is given. The health care cost for treating 

these complications, and physical and mental sufferings for the patients are huge as 

compared to L-thyroxine replacement therapy. 

In summary, the serious detrimental effect of CH on the child’s cognitive and motor 

development, which used to be a major feature of the disease, is now mostly prevented since 

the introduction of newborn screening program. However, inadequate treatment or poor 

compliant with treatment can lead to poor academic performance, and in severe cases, 

thyroid goitre and cancer. Education and close follow-up are warranted for patients with 

poor response to L-thyroxine replacement therapy. Adequate amounts of L-thyroxine 

treatment are essential to prevent cancer development. 

 

Cases Tumor Major Genetic defects Functional 
consequence 

Other genetic 
defects 

1. FTC g.279 del T in PDS (77) Truncated 

pendrin 

abnormal p53 

expression 

2. FTC g.2505_2506 ins C in TPO (87) Truncated TPO  

3. FTC g.IVS5+1G>A in TG(27) Truncated Tg  

4. PTC p.C1245R in TG (85) Impaired 

intracellular 

Tg transport 

 

5. PTC p.C1245R in TG (85) Impaired 

intracellular 

Tg transport 
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Cases Tumor Major Genetic defects Functional 
consequence 

Other genetic 
defects 

6. PTC p.C1245R/G2356R in TG (85) Impaired 
intracellular  
Tg transport 

 

7. FTC p.C1977S in TG (85) Impaired 

intracellular  

Tg transport 

BRAF K601E 

mutation 

8. PTC p.C1977S in TG (85) Impaired 

intracellular  

Tg transport 

 

9. PTC p.C1958S in TG (85) unknown BRAF V600E 

mutation 

10. PTC p.C1958S in TG (85) unknown  

11. FVPTC p.R2223H in TG (88) Impaired 

intracellular  

Tg transport 

 

12. FTC unknown (76) unknown  

13. FTC unknown(76) unknown  

14. PTC unknown(89) unknown  

15. PTC unknown(90) unknown  

16. PTC unknown(91) unknown  

Note:  

1. Cooper et al reported a large kindred of patients with congenital goitre, in which two siblings 

developed metastatic follicular thyroid carcinoma and a leak of nonhormonal iodide from the 

thyroid. However, the underlyning genetic defect is unknown (76). 

2. Medeiros-Neto and Stanbury reviewed 109 patients with dyshormonogenesis, 15 patients had 

thyroid follicular cancer with unknown genetic defects (92). Based on rigid criteria of malignancy 

such as vascular invasion, 8 of the 15 reported cases in the literature appear to be clear examples of 

thyroid malignancy. Five of them had bone or lung metastases (87). 

PDS: Pendred’s syndrome; PTC: papillary thyroid carcinoma; FTC: follicular thyroid carcinoma; 
FVPTC: follicular variant of papillary thyroid carcinoma 

Table 1. Thyroid cancer cases developing from dyshormonogenic goitre. 
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Fig. 1. Key Steps in Thyroid Hormone Synthesis. Monoiodotyrosine and diiodotyrosine 

are synthesized from the iodination of tyrosyl residues within thyroglobulin. After 

organification, iodinated donor and acceptor iodotyrosines are fused in the coupling 

reaction to form either triiodothyronine (T3) or thyroxine (T4), a process that involves only a 

small fraction of iodotyrosines. Thyroglobulin is then engulfed by thyrocytes through 

pinocytosis and digested in lysosomes, and T4 and T3 are secreted into the bloodstream. 

Monoiodotyrosine and diiodotyrosine are deiodinated by iodotyrosine deiodinase, and the 

released iodide is recycled (68). 
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(A) 

                 
a     b 

(B) 

Fig. 2. Follicular variant of PTC (FVPTC) derived from thyroid dyshormonogenesis due to 
biallelic p.R2223H mutation in the TG gene. (A) Hematoxylin and eosin staining shows 
FVPTC with oncocytic features (A, x20; D, x40); Lymph note metastases were also observed 
(B, x 20; E, x 40). The non-tumor area shows hyperplastic thyroid micro-and macro-follicles 
without colloid, and cytological atypia, which are consistent with dyshormonogenesis (C, 
x20; F, x40). (B) Diagnostic 24 h I 123 whole body scan. The scan was performed 24 h 
following the oral administration of 74 MBq (2 mCi) of I 123. Whole body images were 
acquired in anterior and posterior projections before I 131 ablation.  The scan showed large 
neck uptake and multiple foci in the chest, skull, and pelvis suggestive of lung and bone 
metastasis (a). The patient received a therapeutic dose of radioactive iodine I 131 of 3,831.35 
MBq (103.55 mCi). Six month later, a follow-up scan showed complete resolution of the 
neck, lung and bone uptakes (b).  
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