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1. Introduction 

In the last 30 years, there is increasing concern about chemical pollutants that have the 

ability to act as hormone mimics. Because of structural similarity with endogenous 

hormones, their ability to interact with hormone transport proteins, or their ability to 

disrupt hormone metabolism, these environmental chemicals have the potential mimic, or in 

some cases block, the effects of endogenous hormones (Safe, 2000). In either case, these 

chemicals serve to disrupt the normal actions of endogenous hormones and thus have 

become known as “endocrine disruptors”. An endocrine disruptor is defined as “an 

exogenous agent which interferes with the synthesis, secretion, transport, binding, action or 

elimination of natural hormones in the body which are responsible for maintenance of 

homeostasis, reproduction, development or behavior” (Massart et al., 2006a). This wide 

definition includes all substances that can affect endocrine function via interference with 

estrogen, androgen or thyroid hormone (TH) signaling pathways. 

Chemicals such as dioxins, furans and organohalogens are widespread, man-made and 

persistent environmental pollutants, causing a variety of toxic effects. These environmental 

pollutants tend to degrade slowly in the environment, to bioaccumulate and to 

bioconcentrate in the food chain having long half-lives in mammalian fatty tissues. Animals 

fats and breastfeeding are the most important human dietary sources (Kavlock et al., 1996). 

Several biomonitoring studies have detected many environmental pollutants in adults, 

children, pregnant women and in the fetal compartments (Massart et al., 2005; Takser et al., 

2005). Adverse effects induced by these compounds are due to their potentially toxic effects 

on physiological processes, particularly through direct interaction with nuclear receptors or 

affecting hormone metabolism (Moriyama et al., 2002).  

In humans, adverse health outcomes such as neurodevelopmental toxicity, goiter and 

thyroid diseases are associated with TH disruption (Massart et al., 2007). Polychlorinated 

dibenzo-p-dioxins (PCDDs), polychlorinated dibenzo-p-furans (PCDFs), polychlorinated 

biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) can adversely affect thyroid 

function mainly resulting in hypothyroidism, which is known to cause permanent cognitive 

deficiencies (Guo et al., 2004; Stewart et al., 2003; Walkowiak et al., 2001). Indeed, their 

chemical effects on the brain development may be attributable, at least in part, to their 
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ability to affect the thyroid system (Zoeller et al., 2002). This hypothesis is supported in part 

by the overlap in neurological deficits observed in humans associated with chemical 

exposure and those deficits observed in the offspring to hypothyroxinemic women (Hagmar 

et al., 2001a; Koopman-Esseboom et al., 1994; Mirabella et al., 2000; Rogan et al., 1986). 

2. Chemical interferences with the thyroid system 

Several environmental pollutants (i.e. thyroid disruptors (TDs)) have high degree of 

structural resemblance to the endogenous thyroxine (T4) and triiodothyronine (T3) (Figure 

1), and therefore, may interfere with binding to TH receptors (TRs) (Howdeshell, 2002; 

Massart et al., 2006b).  

 
(a) 

 
(b) 

Fig. 1. Chemical structure of triiodothyronine (a) and thyroxine (b). 

Moreover, because the mechanisms involved in the thyroid system homeostasis are 

numerous and complex (Figure 2), TDs may interfere with TH signaling at many levels 

(Howdeshell, 2002; Massart et al., 2006b). 

A broad range of synthetic chemicals is known to affect the thyroid system at different 

points of regulation disrupting nearly every step in the production and metabolism of THs 

(Table 1) (Brouwer et al., 1998; Brucker-Davis, 1998). Chemical interference with uptake of 

iodide by the thyroid gland and, more specifically with the sodium/iodide symporter 

(which facilitates the iodide uptake), can result as decrease in the circulating levels of T4/T3 

(Wolff, 1998). Chemical exposure can also lead to a decrease in serum protein-bound iodide 

levels, perhaps largely due to inhibition of the thyroid peroxidase enzyme, which disrupts 

the normal production of THs (Marinovich et al., 1997). 

The displacement of T4/T3 from the transport proteins (e.g. thyroid binding globulin, 

transthyretin and albumin) may result in decreased ability of THs to reach its target tissue 

and then, may facilitate the transport of the chemicals into the fetus (Brouwer et al., 1998; 

Van den Berg et al., 1991). 
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Fig. 2. Feedback mechanisms of thyroid system homeostasis (modified from Boas M et al. 
European Journal of Endocrinology 2006;154:599-611). 

Chemical disruption of T4/T3 metabolism can influence deiodinase, glucuronidase and 
sulfatase activity, and may ultimately result in increased biliary elimination of T4/T3. 
Inhibition of deiodinase enzymes can result as decrease in T3 available to elicit thyroid 
action at tissue level (Maiti & Kar, 1997). Conversely, deiodinase activity may increase in 
response to TD exposure, either as direct effect or in response to increased clearance of 
T4/T3 by the chemical stimulation of glucuronidase or sulfatase enzymes (Spear et al., 1990; 
van Raaij et al., 1993). Brucker-Davis (Brucker-Davis, 1998) suggested that such increases in 
the metabolism and in the clearance of T3 could result in goiter as the thyroid gland 
increases production to maintain proper TH levels.  

The TD list in Table 1 capable of disrupting normal TH production, transport, and 
metabolism is by no means exhaustive; further discussion of the effects of disruption of 
these processes can be found in specific reviews (Brouwer et al., 1998; Brucker-Davis, 1998). 
There are many more chemicals that have effects on the thyrotrophin-stimulating hormone 
(TSH) and T4/T3 levels, and thyroid histopathology for which no mechanism has been 
tested (Brucker-Davis, 1998). It is unlikely that these are working as T4/T3 agonists or 
antagonists at level of TR binding, as no chemical tested this far has demonstrated high 
affinity binding to the mammalian TRs (Cheek et al., 1999). 
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Uptake of iodide by thyroid gland
Aldrin 
Amitrole 
3-Amino-1,2,4-triazole 
Aroclor 
Catechol 
4-Chlororesorcinol 
Clofentezine 
Cresol 
Cythion 
2,4-Dichlorophenoxyacetic Acid 
Dihydroxynaphthalene 
2,4-Dihydroxybenzaldehyde 
2,4-Dihydroxybenzoic Acid 
Ethiozin 
Ethylene thiourea 
Fipronil 
Hexachlorobenzene 
Hexadrin 
4-Hexylresorcinol 
Hydroxyquinol 
Hydroxyquinol Triacetate 
Lead 
Mancozed 
Mercuric Chloride 
3-Methylcholanthrene 
Methylmercuric Chloride 
Methylparathion 
2-Methylresorcinol 
Mull-Soy 
Nabam 
Orcinol 
Pendimethalin 
Pentachloronitrobenzene 
Phenobarbital 
Phenol 
Phloroglucinol 
Polybrominated Biphenyls 
Pregnenolone-16α-carbonitrile 
Propylthiouracil 
Pyrogallol 
Pyrimenthanil 
Resorcinol 
Saligenin 
Selenium 
Thiocyanate 
 

Sodium/iodide symporter 
Perchlorate 
Perrhenate 
 

Serum protein-bound iodide level 
Amitrole 
Aroclor 
Cythion 
2,4-Dichlorophenoxyacetic Acid 
1,1-Dichloro-2,2-bis (p-chlorophenyl) 
ethane 
2,4-Dinitrophenol 
Hexadrin 
Malathion 
Mancozeb 
Mercuric Chloride 
3-Methylcholanthrene 

Thyroid peroxidase reactions
Aminotriazole 
Amitrole 
Ammonia 
Cadmium Chloride 
Endosulfan 
Ethylene Thiourea 
Fipronil 
Lindane 
Malathion 
Mancozeb 
Mercury Chloride 
Methamizole 
4,4’-Methylenedianiline 
Polybrominated Biphenyls 
Thiocyanate 
Thiourea 
 
Binding to albumin 
Pentachlorophenol 
 
Binding to thyroglobulin 
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethane 
Pentachlorophenol 
 
Binding to transthyretin 
Bromoxynil (3,5-bibromo-4-
hydroxybenzonitril) 
4-(Chloro-o-tolyloxy)acetic Acid 
4-(4-Chloro-2-methylphenoxy) butyric Acid 
Chlorophenol 
Chlororoxuron 
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethanes 
2,4-Dichlorophenoxyacetic Acid 
2,4-Dichlorophenoxybutric Acid 
Dioxtylphthalate 
Dichlorophenols 
Dichloroprop 
Difocol 
2,4-Dinitrophenol 
2,4-Dinitro-6-methylphenol 
Ethyl-bromophos 
Ethyl-parathion 
Fenoprop 
Hexachlorobenzene 
Hexachlorophene 
Hydroxybiphenyls 
Lindane 
Linuron 
Malathion 
Pentachlorophenol 
Phenol 
Pyrogallol 
Polybrominated Biphenyl 77 
1,4-Tetrachlorophenol 
Trichloroacetic Acid 
Trichlorobenzene 
Trichlorophenols 
2,4,5-Trichlorophenoxyacetic Acid 

Type I & II 5’-deiodinase 
catabolism 
Aminotriazole 
Amiodarone 
Aroclor 
Cadmium Chloride 
Dimethoate 
Fenvalerate 
Hexachlorobenzene 
3,3’,4,4’,5,5’-Hexachlorobiphenyl 
Lead 
3-Methylcholanthrene 
Phenobarbital 
Propylthiouracil 
Polybrominated Biphenyl 77 
TCDD 
 
Glucuronidation of T4/T3 

Acetochlor 
Aroclor 1254 
3,4-Benzopyrene 
Clofentenzine 
Clofibrate 
DDT 
Fenbuconazole 
3,3’,4,4’,5,5’-Hexabromobiphenyl 
Hexacholorobenzene 
Hexacholorobiphenyls 
3-Methylcholanthrene 
Pendimethalin 
Phenobarbital 
Polybrominated Biphenyls 
Pregnenolone-16�-carbonitrile 
Promadiamine 
Pyrimethanil 
TCDD 
Thiazopyr 
 
Catabolism & biliary T4/T3 
elimination  

Aroclor 
3,4-Benzopyrene 
DDT 
Hexachlorobenzene 
3-Methylcholanthrene 
Phenobarbital 
Polybrominated Biphenyls 
 

Table 1. Environmental chemical pollutants interfering with the normal production, 
transport, metabolism, and excretion of thyroid hormones (modified from Howdeshell KL. 
Environmental Health Perspects 2002;110:337-348). 
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Relatively few studies evaluated the mechanism of TD action in the fetal/neonatal 
organism. Darnerud et al. (Darnerud et al., 1996) reported that developmental exposure to 4-
OH-3,5,3’,4’-tetracholorobiphenyl, a major metabolite of polychlorinated biphenyl (PCB) 
congener 3,3’,4,4’-tetrachlorobiphenyl (PCB77), binds to fetal and maternal transthyretin in 
mice on the gestation day 17 (GD17); significant decrease in the fetal T4 (free and total) was 
reported. Aminotriazole inhibited the catabolism of T4 to T3 in renal primary cell cultures 
from 4 to 5 months of gestation in human fetuses, indicating an interference with type 1 
iodothyronine deiodinase function in the kidney (Ghinea et al., 1986). In utero exposure to 
PCB congener 3,3’,4,4’,5,5’-hexachlorobiphenyl alone or in combination with PCB77 
increased type II deiodinase activity in whole-brain homogenates from fetal (GD20) and 
neonatal rats; total T4 levels in plasma were decreased by both treatments (Morse et al., 
1992). Uridine diphosphoglucuronosyl transferase (UDP-GT) activity was increased in 
neonatal rats at postnatal day 21 (PND21) weanlings exposure to PCB congeners or TCDD 
(2,3,7,8-tetrachlorodibenzo-p-dioxin) on the GD10 (Seo et al., 1995). The increase in UDP-GT 
activity was seen in the near absence of significant decreases in T4 concentration on the 
PND21 (Seo et al., 1995). Gestational exposure to Aroclor 1254 depressed UDP-GT activity in 
GD20 rat fetuses, while increasing the enzyme in PND21 rats (Morse et al., 1996). The total 
and free T4 levels in GD20 fetuses were significantly suppressed by both levels of Aroclor 
1254 exposure during development, whereas the total T4 and total T3 were significantly 
depressed on the PND21 only by the highest dose of Aroclor 1254 (Morse et al., 1996).  

In addiction, as reviewed by Zoeller et al. (Zoeller et al., 2002), many TDs can disrupt TH 
signaling without affecting circulating levels of THs. Many studies use circulating levels of 
THs as the sole indicator of an effect on the thyroid system by pollutants, or focus on 
mechanisms by which chemicals affect TH levels (Zoeller et al., 2002). Therefore, the 
prevailing view is that TDs interfere with TH signaling by reducing circulating levels of 
THs, thereby limiting the hormone available to act on the target tissues (Brouwer et al., 
1998). However, the developmental effects of TD exposure in experimental animals are not 
fully consistent with mechanism attributable to hypothyroidism. For example, PCB 
exposure induces hearing loss in rats (Goldey et al., 1995) similarly to that observed in 
hypothyroid rats. Moreover, this PCB-induced hearing loss can be at least partially restored 
in PCB-treated rats by TH replacement (Goldey et al., 1998). On the other hand, circulating 
levels of TSH were not elevated by PCB exposure as it is after exposure to the goitrogen 
propylthiouracil (Goldey et al., 1995; Hood & Klaassen, 2000). Moreover, the timing of eye 
opening was advanced by PCB exposure, rather than delayed after exposure to the 
goitrogen 6-n-propyl-2 thiouracil (Goldey et al., 1995). These and other observations suggest 
that different TDs or their mixtures may produce heterogeneous disrupting effects on the 
thyroid system also without affecting circulating T4/T3 levels. 

3. Thyroid toxicants 

From the earliest reports in 1950s (Wyngaarden et al., 1952), many TDs have been identified 

by improving analytical methods. Here, we focused on some historical and emerging TDs.  

3.1 Perchlorate 

Over 50 years ago, Wyngaarden and colleagues (Wyngaarden et al., 1952; Stanbury & 

Wyngaarden, 1952) reported the inhibitory effect of perchlorate (ClO4–) (Figure 3) upon the 
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accumulation and retention of iodide by human thyroid gland. Such observation had 

immediate therapeutic application for thyrotoxicosis using 250-500 mg/day doses of 

potassium perchlorate (Loh, 2000).  

 

Fig. 3. Perchlorate 

Because of its chemical properties, perchlorate is a competitive inhibitor of the process by 

which iodide, circulating in the blood, is actively transported into thyroid follicular cells 

(Clewell et al., 2004). The site of this inhibition is the sodium-iodide symporter, a membrane 

protein located adjacent to the capillaries supplying blood iodide to the thyroid gland 

(Carrasco, 1993). If sufficient inhibition of iodide uptake occurs, pharmacological effect 

results in subnormal levels of T4 and T3, and an associated compensatory increase in TSH 

secretion (Loh, 2000). Therefore, perchlorate exposure both results in hypothyroidism 

leading to the potential for altered neurodevelopment if observed in either dams or 

fetus/neonates, and increases in serum TSH leading to the potential for thyroid hyperplasia 

(Strawson et al., 2004). 

Beside its pharmacological applications, perchlorate has been widely used as solid rocket 

propellants and ignitable sources in munitions, fireworks and matches (Strawson et al., 

2004). Furthermore, perchlorates are laboratory waste by-products of perchloric acid. 

Perchlorate also occurs naturally in nitrate-rich mineral deposits used in fertilizers. An 

analysis of 9 commercial fertilizers revealed perchlorate in all samples tested ranging 

between 0.15-0.84% by weight (Collette et al., 2003).  

In humans, there is clear and apparently linear relationship between perchlorate levels and 

inhibition of iodine uptake (Greer et al., 2002; Lawrence et al., 2000). Serum perchlorate 

levels of approximately 15 μg/l result in minimal inhibition of iodine uptake (about 2%) 

compared to serum 871 μg/l level, which results in about 70% inhibition of iodine uptake 

(Strawson et al., 2004). By contrast, several adult studies of differing exposure duration, 

reported serum T4 levels do not decrease after perchlorate exposure resulting in serum 

perchlorate levels up to 20,000 μg/l (Gibbs et al., 1998; Greer et al., 2002; Lamm et al., 1999; 

Lawrence et al., 2000). 

3.2 Dioxins and furans 

Dioxins (e.g. PCDDs) and furans (e.g. PCDFs) are a group of structurally related compounds 

(Giacomini et al., 2006) (Figure 4). PCDDs and PCDFs are not commercially produced but 
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are formed unintentionally as by-products of various industrial processes (e.g. chlorine 

synthesis, production of hydrocarbons) during pyrolysis and uncompleted combustion of 

organic materials in the presence of chlorine.  

During the last 20 years, an enormous public and scientific interest was focused on these 

substances, resulting in many publications on generation, input, and behavior in the 

environment (Giacomini et al., 2006; Lintelmann et al., 2003; US EPA, 1994). These toxicants 

have a potent concern for public health: several in vitro and in vivo experiments have 

suggested that PCDDs and PCDFs may interfere with thyroid function (Boas et al., 2006; 

Giacomini et al., 2006). 

The 2,3,7,8-tetra-chloro-dibenzo-p-dioxin (TCDD), the most toxic, is the prototype among 

PCDD/F congeners. TCDD, used as standard for toxic equivalent (TEQ) calculation, shows 

high environmentally persistence and extremely long half-life in humans (seven or more 

years) (Michalek et al., 2002). TCDD is detectable at background levels in plasma or adipose 

tissues of individuals with no specific exposure to identifiable sources, usually at 

concentrations lower than 10 ppt (parts per trillion, lipid adjusted) (Michalek & Tripathi, 

1999; Papke et al., 1996). Mean TCDD levels in subjects representative of the European and 

the US populations range between 2-5 ppt (Aylward et al., 2002; Papke et al., 1996). 

Nonetheless, Environmental Protection Agency (EPA) estimated that at least in the US 

population a number of people may have levels up to three-times higher than this average 

(Aylward et al., 2002; Flesch-Janys et al., 1996). 

 

 
(a) 

 
(b) 

Fig. 4. Chemical structure of 2,3,7,8-tetra-chloro-dibenzo-p-dioxin (a) and 

tetrachlorodibenzo-furan (b). 

3.3 Polychlorinated biphenyls 

PCBs (Figure 5) comprise 209 highly environmental persistent, distinct congeners consisting 

of paired phenyl rings with various degrees of chlorination (Chana et al., 2002). It is 

estimated that since 1929, approximately 1.5 million tons of PCBs were produced.  
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Fig. 5. 4OH-Tetrachlorobyphenyl. 

The high persistence of PCBs in adipose tissues and their toxic potential for animals and 

humans (Breivik et al., 2002; Fisher, 1999), resulted in an almost international production 

stop in the 1970-80s (Lintelmann et al., 2003). However, the PCB properties, such as chemical 

and thermal stability, noninflammability, high boiling points, high viscosity, and low vapor 

pressure, are the reason for their worldwide distribution (Safe, 2000). Even after the ban of 

PCB production in most countries, the current world inventory of PCBs is estimated at 1.2 

million tons with about one-third of this quantity circulating in the environment 

(Lintelmann et al., 2003).  

PCBs, and especially the hydroxylated metabolites, have an high degree of structural 

resemblance to THs as well as thyroid-like activities (Hagmar, 2003). Laterally substituted 

chlorinated aromatic compounds such as meta- and para-PCBs particularly when 

hydroxylated, are ideally suited to serve as binding ligands to TRs and to TH-binding 

proteins (Arulmozhiraja et al., 2005; Cheek et al., 1999; Fritsche et al., 2005; Kitamura et 

al., 2005). Indeed, experimental studies indicated that PCB exposure may exert adverse 

effects on the developing brain by reducing circulating levels of THs, causing a state of 

relative hypothyroidism (Brouwer et al., 1998; Crofton, 2004). This is supported by animal 

data that PCBs reduce the TH levels (Gauger et al., 2004; Kato et al., 2004; Zoeller et al., 

2000). PCBs may also exert direct actions on the TR independently from their effects on 

the TH secretion (Zoeller, 2002; Zoeller, 2003). This hypothesis is based in part on in vitro 

observations that PCBs can directly inhibit or enhance TR activity (Arulmozhiraja et al., 

2005; Bogazzi et al., 2003; Iwasaki et al., 2002; Kitamura et al., 2005; Miyazaki et al., 2004; 

Yamada-Okabe et al., 2004) such as other TH-like actions in the developing brain (Bansal 

et al., 2005; Fritsche et al., 2005; Gauger et al., 2004; Zoeller et al., 2000). However, Sharlin 

et al. (Sharlin et al., 2006) demonstrated that PCB exposure during development does not 

recapitulate the full effect of hypothyroidism on the cellular composition of rat white 

matter. 

Multiple studies regarding PCB exposure have been carried out in human populations, the 

majority of which raises concern that environmental PCB levels may alter thyroid 

homeostasis (Hagmar, 2003). In subjects from highly PCB-exposed areas, the PCB 

concentration in blood samples negatively correlated to circulating TH levels (Hagmar et al., 

2001a; Persky et al., 2001). However, few studies also demonstrated positive correlation 

between PCB exposure and TSH (Osius et al., 1999; Schell et al., 2004). By contrast, other 

studies found no association between PCBs and thyroid secretion (Bloom et al., 2003; 

Hagmar et al., 2001b; Sala et al., 2001).  
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3.4 Bisphenols 

The 4,4’-isopropylidenediphenol or bisphenol A (BPA; Figure 6), produced at a rate of over 

800 million kg annually in the US alone, is extensively used in plastic manufactures 

including polycarbonate plastics, epoxy resins that coat food cans, and in dental sealants 

(Howe et al., 1998; Kang et al., 2006; Lewis et al., 1999; Zoeller, 2005).  

Howe et al. (Howe et al., 1998) estimated human PBA consumption from epoxy-lined food 

cans alone to be about 6.6 µg/person-day. BPA has been reported in concentrations of 1-10 

ng/ml in the serum of pregnant women, in the amniotic fluid of their fetus, and in the cord 

serum taken at birth (Ikezuki et al., 2002; Schonfelder et al., 2002). Moreover, BPA 

concentrations of up to 100 ng/g were reported in the placenta tissues (Schonfelder et al., 

2002). 

Considering human pattern of BPA exposure, it is of endocrine concern that BPA shows 

thyroid antagonist activities (Kang et al., 2006; Moriyama et al. 2002). Best characterized as 

weak estrogen, BPA binds to TR and antagonizes T3 activation of TR with Ki of 

approximately 10-4 M, but as little as 10-6 M BPA significantly inhibits TR-mediated gene 

activation (Ikezuki et al., 2002; Moriyama et al. 2002). Moreover, BPA reduces T3-mediated 

gene expression by enhancing the interaction with the co-repressor N-CoR (Moriyama et al. 

2002). Limited human data exist regarding BPA as TD. 

 
(a) 

 
(b) 

Fig. 6. 4,4’-isopropylidenediphenol (a) and tetrabromo-bisphenol A (b). 

Tetrabromobisphenol A (TBBPA; Figure 6), an halogenated BPA derivative, is widely used 

as flame retardant in electrical equipment such as televisions, computers, copying machines, 

video displays and laser printers (Kitamura et al., 2002) with over 60,000 tons of TBBPA 

annually produced (WHO EHC 1995; WHO EHC 1997). Thomsen et al. (Thomsen et al., 

2002) reported that brominated flame retardants, including TBBPA, have increased in 

human serum from 1977 to 1999 with concentrations in adults ranging from 0.4 to 3.3 ng/g 

serum lipids. However, infants (0-4 years) exhibited serum concentrations that ranged from 

1.6 to 3.5 times higher (Thomsen et al., 2002). 
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TBBPA is generally regarded a safe flame retardant because it is not readily accumulated in 

the environment, nor it is highly toxic (Birnbaum & Staskal, 2004). However, TBBPA and 

tetrachlorobisphenol A show even closer structural relationship to T4 than PCBs: both these 

tetrahalogenated bisphenols induce thyroid-dependent growth in pituitary GH3 cell line at 

concentrations 4-to-6 orders of magnitude higher than T3 (Kitamura et al., 2002). 

Unfortunately, no data are actually available on thyroid function in human exposed to these 

bisphenols.  

3.5 Perfluoroalkyl acids 

The perfluoroalkyl acids (PFAAs; Figure 7) are a family of synthetic, highly stable 

perfluorinated compounds with wide range of uses in industrial and consumer products, 

from stain- and water-resistant coatings for carpets and fabrics to fast-food contact 

materials, fire-resistant foams, paints, and hydraulic fluids (OECD, 2005).  

 

Fig. 7. Perfluoroalkyl Acids. 

The carbon–fluoride bonds that characterize PFAAs and make them useful as surfactants are 

highly stable, and recent reports indicate the widespread persistence of certain PFAAs in the 

environment and in wildlife and human populations globally (Fromme et al., 2009; Giesy & 

Kannan, 2001; Lau et al., 2007; Saito et al., 2004). Two of the PFAAs of most concern are the 

eight-carbon–chain perfluorooctane sulfonate (PFOS) and perfluo-rooctanoic acid (PFOA, 

also known as C8). 

Most persistent organic pollutants are lipophilic and accumulate in fatty tissues, but PFOS 

and PFOA are both lipo- and hydro-phobic, and after absorption bind to proteins in serum 

rather than accumulating in lipids (Hundley et al., 2006; Jones et al., 2003). The renal 

clearance of PFOA and PFOS is negligible in humans, leading to reported half-lives in blood 

serum of 3.8 and 5.4 years for PFOA and PFOS, respectively (Olsen et al., 2007). 

Human biomonitoring of the general population in various countries (Calafat et al., 2006; 

Kannan et al., 2004; Metzer et al., 2010). has shown that, in addition to the near ubiquitous 

presence of PFOS and PFOA in blood, these may also be present in breast milk, liver, 

seminal fluid, and umbilical cord blood (Lau et al., 2007). Occupational exposure to PFOA 

reported in 2003 showed mean serum values of 1,780 ng/mL (range, 40–10,060 ng/mL) 

(Olsen et al., 2003a) and 899 ng/mL (range, 722–1,120 ng/mL) (Olsen et al., 2003b). Since 

then, voluntary industry reductions in production and use of other perfluorinated 

compounds, such as the US EPA–initiated PFOA Stewardship Program (US EPA, 2006), 

have contributed to a decreasing trend in human exposure for all perfluorinated compounds 
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(Calafat et al., 2007; Olsen et al., 2007). In May 2009, PFOS was listed under the Stockholm 

Convention on Persistent Organic Pollutants (Stockholm Convention on POPs, 2008). 

Numerous studies have now shown PFAAs to impair thyroid homeostasis in animal 

studies. Depression of serum T4 and T3 in PFOS-exposed rats has been reported (Lau et al., 

2003; Luebker et al., 2005; Seacat et al., 2003), without the concomitant increase in TSH that 

would be expected through feedback stimulation. Earlier mechanistic studies of structurally 

related perfluorodecanoic acid showed that it could reduce serum TH levels apparently by 

reducing the responsiveness of the hypothalamus-pituitary-thyroid axis and by displacing 

circulating THs from their plasma protein-binding sites (Gutshall et al., 1989). Although 

circulating hormone levels were depressed, the activities of TH–sensitive liver enzymes 

were elevated, suggesting that functional hypothyroidism was not occurring. A similar 

mechanism for PFOS has been hypothesized (Chang et al., 2008). A recent study of the 

mechanisms involved in PFOS-induced hypothyroxinemia in rats has indicated that 

increased conjugation of T4 in the liver, catalyzed by the hepatic enzyme UDP-GT 1A1, and 

increased thyroidal conversion of T4 to T3 by type 1 deiodinase may be partly responsible 

for the effects (Yu et al., 2009). Taken together, these findings suggest that the PFAA actions 

on the thyroid system are multiple and complex. 

Disruption to TH balance was not found in previous studies of community exposure to PFOA 

(Emmett et al., 2006; Olsen et al., 2003c) or PFOS (Inoue et al., 2004). Modest associations 

between PFOA and THs (negative for free T4 and positive for T3) were reported in 506 PFOA 

production workers across three production facilities (Olsen & Zobel, 2007); there were no 

associations between TSH or T4 and PFOA, and the free TH levels were within the normal 

reference range. On the other hand, Metzer et al. (Metzer et al., 2010) recently determined 

whether increased serum PFOA or PFOS concentrations are associated with thyroid disease in 

a general adult US population sample (n = 3,974 individuals ≥ 20 years of age from NHANES 

waves 1999–2000 (n = 1,040), 2003–2004 (n = 1,454), and 2005–2006 (n = 1,480)). They found 

that, across all the available data from NHANES, thyroid disease associations with serum 

PFOA concentrations are present in women and are strongest for those currently being treated 

for thyroid disease (P=0.002) (Metzer et al., 2010). In men, they also found a significant 

association between PFOS and treated thyroid disease (P=0.043). An interaction term analysis 

suggested that the PFAA trends in men and women are not significantly different, despite the 

relative rarity of thyroid disease in men (Metzer et al., 2010).  

3.6 Phthalates 

Phthalates are recently proposed to be emerging TDs (Boas et al., 2006) (Figure 8). Phthalates 

are widely used as plastic emollients, and their amount used globally is rising (Hauser & 

Calafat, 2005; Latini, 2005; Schettler, 2006).  

Environmental exposure to phthalates is inevitable, but for certain groups such as 

hospitalized subjects including neonates and infants, exposure may be massive (Shea, 2003). 

Phthalate exposure through necessary medical devices such as feeding tubes is correlated to 

the urinary content of mono(2-ethylexyl)phthalate (Green et al., 2005). Thus, an intensive 

phthalate exposure at potentially vulnerable point of development may cause permanent 

damage, despite the fast metabolism of phthalates.  
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Fig. 8. Phathalates. 

Rodent studies found histopathological changes in the rat thyroid glands after exposure to 

di(2-ethylhexyl) phthalate (DEHP), di-noctyl phthalate (DnOP) and di-n-hexyl phthalate 

(DnHP), corresponding to thyroid hyperactivity (Hinton et al., 1986; Howarth et al., 2001; 

Mitchell et al., 1985; Poon et al., 1997; Price et al., 1988). Long-term treatment with high 

doses of DEHP resulted in basophilic deposits in the colloid and enlargement of the 

lysosomes (Mitchell et al., 1985). The levels of circulating THs were not affected after oral rat 

exposure to DEHP (Bernal et al., 2002), whereas i.v. exposure in doses corresponding to 

levels of DEHP solubilized in blood bags for human transfusions resulted in significant 

increase in the serum T3 and T4, which returned to normal after 7 days (Gayathri et al., 

2004). The thyroid glands examined in this study showed initial reactive hyperplasia. In 

contrast di-n-butyl phthalate (DBP) decreased T3 and T4 in rats in dose-dependent manner 

(O’Connor et al., 2002). 

Only few data exist on the thyroid function of phthalate-exposed humans. However, recent 

studies reported significant associations between urine phthalate levels and altered THs 

(Jurewicz & Hanke, 2011; Rais-Bahrami et al., 2004).  

4. Thyroid disruptors assays 

Until recent years, all known TDs have been identified solely by their ability to reduce 

circulating TH levels, and to affect thyroid size or histopathology (e.g. colloid size, quantitative 

appearance of hypertrophic or hyperplastic effects) (Brucker-Davis, 1998; DeVito et al., 1999). 

However, TH levels vary with time and age, and then, caution must be taken in the result 

interpretation. In this view, histological changes in the exposed thyroid gland (particularly, 

increased weight and follicular cell number) are better in vivo markers (Janosek et al., 2006). In 

addition, TDs present in small amounts in the environment may not cause overt changes of 

TH levels but may nonetheless alter hormonal homeostasis (Boas et al., 2006). A well-

established example is perchlorate, which in small amounts does not alter circulating TH 

levels but diminished T4 content in the thyroid gland (Isanhart et al., 2005; McNabb et al., 

2004a; McNabb et al., 2004b). These data agreed with in vitro studies which proposed an 

perchlorate-induced inhibition of sodium-iodide symporter (Tonacchera et al., 2004).  

Regarding in vivo toxicity assays for TDs, several tests have been proposed evaluating 

delayed eye-opening, abnormalities in the brain development, increased the sperm counts 

or the testes weight (DeVito et al., 1999). Perchlorate discharge test is also used as in vivo 

method for determining thyroid toxicity through TR (Atterwill et al., 1987). Finally, another 
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ex vivo parameter is hepatic UDP-GT activity (a marker of enhanced TH clearance form 

serum) (Barter & Kòaassen, 1994; Kohn et al., 1996; Okazaki & Katayama, 2003; Sewall et al., 

1995). On the other hand, many TDs that directly act on the TRs, may produce variable and 

perhaps unpredicted effects on the TH target tissues (Zoeller, 2005).  

Several in vitro assays have been developed to evaluate substances that may affect specific 

TH-related processes such as synthesis, metabolism, protein binding and downstream 

effects (transcription and translation). Expert panel reports reviewed the thyroid 

toxicological methods (Calamandrei et al., 2006; DeVito et al., 1999; Janosek et al., 2006;). 

Finally, intra-thyroidal T4 content, gene transcription activity and cellular growth appear to 

be more sensitive endpoints when assessing the significance of thyroid disruption for 

various chemicals (Boas et al., 2006). With respect to multiple recognized toxicity 

mechanisms, several screening methods should be used to characterize chemical potencies 

of potential thyroid disruptors. 

5. Conclusions 

Industrial compounds such thyroid disruptors are now ubiquitous, persistent 

environmental contaminants routinely found in samples of human and animal tissues (Boas 

et al., 2006; Massart et al., 2005; Zoeller et al., 2002). Their potency to disrupt TH pathways 

has been demonstrated in both in vitro and in vivo studies, in which they have been shown to 

typically evoke reductions in TH levels (Massart & Meucci, 2007; Zoeller, 2005). However, 

most important, as synthetic chemicals can interfere with nearly every step in the thyroid 

system (Massart et al., 2006b), more research should be targeted at understanding how TDs 

may impact normal brain development and functioning. Unfortunately, a toxicological 

profile of many chemicals is actually too incomplete and insufficient to perform an adequate 

human and ecological risk assessment. Furthermore, chemicals are not currently tested 

specifically for their ability to mimic, disrupt, or otherwise act as hormone agonists or 

antagonists, except on research basis. Finally, more studies are crucial to fill in the research 

gaps regarding permanent endocrine and neurological outcome in next generations exposed 

to background TDs. 
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