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Using the Smith Chart in an  
E-Learning Approach 

José R. Pereira and Pedro Pinho 
Universidade de Aveiro, Instituto de Telecomunicações 

Instituto Superior de Engenharia de Lisboa, Instituto de Telecomunicações 
Portugal 

1. Introduction 

Prior to the advent of digital computers and calculators, engineers developed all sorts of 

aids (tables, charts, graphs) to facilitate their calculations for design and analysis in different 

areas in particular for line transmission problems. To reduce the tedious manipulations 

involved in calculating the characteristics of transmission lines, graphical tools have been 

developed. The Smith chart is the most commonly used of these graphical techniques. It is 

basically a graphical indication of the impedance change along a transmission line as one 

moves along it. It becomes easy to use after a small amount of experience. We will first 

explain how the Smith chart is constructed and then how to use it to calculate transmission 

line characteristics such as: the reflection coefficient (), the Voltage Standing Wave Ratio 

(VSWR), the impedance along the line (Z(d)), the maximum and minimum voltage 

localization and impedance matching. For the majority of these Smith chart applications 

lossless lines will be assumed, although this is not absolutely required. 

Since the main topic of this book is concerned with e-learning, the aim of this chapter is to 

help the reader understand and learn how to use the Smith chart, following step by step 

procedure based on MATLAB scripts that will be available for download and should be 

used when reading this chapter. This approach should teach the students how to solve 

several kinds of transmission line problems by themselves, in a paper chart using a pencil, a 

ruler and a compass. 

MATLAB scripts are a good tool to help students better understand the Smith chart and 

explain, step by step, several procedures related to transmission line problems, (Mak & 

Sundaram, 2008), (Pereira & Pinho, 2010). 

The goals of the chapter are to explain the reasons why using and understanding the Smith 

chart is still important nowadays, despite the present generalization of personal computers 

and powerful calculators. It is easy to plug a few numbers into a program and have it spit 

out solutions. When the solutions are complex and multifaceted, having a computer to do 

the grunt work is especially handy. However, knowing the underlying theory and 

principles that have been ported to computer platforms, and where they came from, makes 

the engineer or designer a more well-rounded and confident professional, and makes the 

results more reliable. Moreover it is interesting to note that these kinds of graphical tools are 

still useful nowadays. For example some types of modern laboratory equipment, such as 
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network analyzers still have displays that imitate the Smith chart. Another example is the 

use of Smith charts in a lot of commercial software about antennas and microwave devices, 

to display the simulation results. The importance of the chart is enhanced by the global 

information that is possible to obtain simultaneously. 
The authors believe that the use of the Smith chart by undergraduate students and engineers 
is an important pedagogical tool, since many aspects of the voltage, current, impedance, 
Voltage Standing Wave Ratio (VSWR), referred commonly as SWR, reflection coefficient and 
matching design problems can be easily interpreted and well visualized using the Smith 
chart. 
The chapter will be organized as follows: 

 History and use of the Smith chart and its importance in the resolution of classical 
transmission line problems. Justification of its current use despite the present 
generalization of personal computers and powerful calculators. 

 Construction of this chart from basic equations and concepts. Explanation of the 
main parameters that can be obtained from the chart. All these aspects will be 
supported by MATLAB scripts that display, step by step, the graphical procedure 
involved in the process. 

 How to use the Smith chart. How to mark a normalized impedance and from then 
on to get several related parameters such as, the corresponding admittance, the 
VSWR, the reflection coefficient, the concept of travelling toward the generator or 
toward the load, the impedance at a given distance etc. Again, all these 
transmission line concepts will be explained through step by step procedures based 
on MATLAB scripts. 

 Presentation of some examples that integrates all these transmission line concepts. 
One example is the single stub matching. The authors developed a MATLAB script 
that display, step by step, the graphical procedure that must be used to solve this 
problem. Others examples will be presented, because we believe they are important 
so students can learn on their own. 

Throughout the chapter, when explaining the step by step procedure, several displays will 
be shown to illustrate the use of the Smith chart. 

2. History of the Smith chart 

Phillip H. Smith, inventor of the well known Smith chart, was born in Lexington, 
Massachusetts, on April 29, 1905 and died in Berkeley Heights, New Jersey on August 29, 
1987, at the age of 82. In 1928, after graduating from Tufts College (now Tufts University) at 
the top of his class with B.S. degree in electrical communications, he was offered a job at Bell 
Telephone Laboratories. After 42 years in this company, Phillip Smith retired in 1970 and 
started a small company –Analog Instruments Company in New Providence, New Jersey – 
which initially sold navigational instruments for light aircraft. In his lifetime Smith held 21 
U.S. patents and published over 35 technical papers on antennas and transmission lines. 
In 1931, by modifying J. A. Fleming’s 1911 telephone equations in an effort to simplify the 
solution of the transmission line problem, Smith developed his first graphical solution in the 
form of a rectangular chart. Even though the rectangular chart was very useful, Smith knew 
it had some limitations, namely the amount of data that could be accommodated. In 1936, 
Smith constructed a new type of transmission line chart that eliminated most of the 
limitations in his first diagram. The new chart was a special polar coordinate diagram which 
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could show all values of impedance and is essentially the Smith chart used today. Smith 
approached a number of technical magazines for publications of his transmission line 
diagram, however acceptance was slow. Finally, after two years Smith’s article describing 
his chart was published in January 1939 issue of Electronics magazine. In a second article, 
published in the January 1944 issue of Electronics, Smith incorporated further 
improvements into his chart, including its usage as an impedance chart or an admittance 
chart, (Inan, 2005). 
An interesting historical and theoretical background of the Smith chart can be found in the 
article written by Aleksandar Marinčić, (Marinčić, 1997). 

3. Construction of the Smith chart 

The Smith chart is constructed based on the voltage reflection coefficient and can be 

considered as parameterized plot, on polar coordinates, of the generalized voltage reflection 

coefficient  , je     , within a circle of unit radius  1  . 

It is well known from transmission line theory, that the voltage reflection coefficient at the 

load is given by: 

 0

0

L
L

L

Z Z

Z Z
 




 (1) 

where LZ  is the load impedance and 0Z  is the characteristics impedance of the line. 

According to the transmission line theory, 0Z  is a real value but in general LZ  is a complex 

value. Equation 1 can be written as: 

 
L L r ij         (2) 

where r and i  are respectively the real and imaginary parts of the reflection coefficient. 

Instead of having separate Smith chart for transmission lines with different characteristics 
impedances, it is preferable to have just one that can be used for any line. This is achieved 
using a normalized chart in which all impedances are normalized to the characteristic 

impedance 0Z  of the particular line under consideration. For example, for the load 

impedance LZ , the normalized impedance Lz  is given by, 
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where r and x are respectively the real and imaginary parts of the normalized impedance. 
Substituting equations 2 and 3 into equation 1 gives, 
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Equating real and imaginary parts, we obtain 
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rearranging the terms in equation 6 leads to: 
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rearranging the terms in equation 7 leads to: 
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Each of equations 8 and 9 is similar to the circle equation. Equation 8 is a r-circle (resistance 

circle) with center at 








0
1

,
r

r
 and radius equal to 

r1

1
. Several of these circles for various 

values of normalized resistance r, are plotted in Figure 1a). From the Figure 1a), we see that 
all circles pass the point (1,0). 
 

  
a)      b) 

Fig. 1. Basic Smith chart. a)- normalized resistance circles. b)- normalized reactance curves. 

Similarly, equation 9 is an x circle (reactance circle) with center at 







x

1
1,  and radius equal to 

x

1
. Several of these circles are plotted in Figure 1b), this time for positive and negative  
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values of the normalized reactance x. Notice that while r is always positive, x can be positive 

(inductive impedance) or negative (capacitive impedance). From this figure we see that 

there are symmetry about the horizontal central axis of the chart. Only the portion of the 

circles inside the central circle of radius one is shown, since the maximum value of   for 

any passive loaded line is one. The circles given by equations 8 and 9 are orthogonal circles 

that make a conform mapping chart. 
If the r circles and the x circles are superimposed, the result is the Smith chart shown in the 
Figure 2. 
 

 

Fig. 2. Basic Smith chart. 

3.1 Important features on a Smith chart 

On a Smith chart there are some important points, lines and contours that should be 

mentioned. In Figure 3 some of these important features are indicated. The outer circle is the 

locus of the pure reactive impedances, that is, those with zero resistance. The horizontal axis 

is the locus of the real impedances. The left radius is the locus of the resistances less than 0Z  

for which the reflection coefficient has a phase of 180º. The left extreme of this radius is the 

zero resistance and zero reactance point, that is, the short circuit point (SC). The right radius 

is the locus of the resistances greater than 0Z  for which the reflection coefficient has a phase 

of 0º. The right extreme of this radius is the infinite resistance and infinite reactance point, 

that is, the open circuit point (OC). 

For a lossless transmission line terminated in a load with a reflection coefficient L , the 

circle with radius L  (known as the  circle or S circle), is the locus of all impedances 

appearing along the line, normalized to the characteristic impedance 0Z  of the line. These 

impedances can be obtained moving along the line either toward the load (counter  
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clockwise) or toward the generator (clockwise). When moving along the  circle, every 

crossing of the left horizontal radius corresponds to a voltage minimum (therefore a current 

maximum) in the line and to a real impedance less than 0Z . Similarly, every crossing of the 

right horizontal radius corresponds to a voltage maximum (therefore a current minimum) in 

the line and to a real impedance greater than 0Z . 
In Figure 3a) some important features of when the Smith chart is used as an impedance 
chart are pointed out. 
In the resolution of some problems, it is more convenient to work with admittances than 
with impedances. In these cases the Smith chart can be effectively used as an admittance 
chart. In this case the r circles and the x curves should be seen as g circles and b curves 
respectively. Also the upper half of the chart now corresponds to capacitive susceptances 
given by positive values of b and, the lower half of the chart corresponds to inductive 
susceptances given by negative values of b. In Figure 3b) some important features are 
indicated when the Smith chart is used as an admittance chart. 
It is easy to transform a normalized impedance z in the corresponding admittance y. It will 

be located on the  circle in the opposite side of the diameter that passes through z. 
 

  
a)     b) 

Fig. 3. Some important features of a Smith chart. a)- When used as an impedance chart. b)- 
When used as an admittance chart. 

Nowadays, the Smith chart appears in several different types. One of them is shown in 
Figure 4. The main difference between this chart and the basic Smith chart shown in figure 2 
is the existence of three scales around the periphery. 
The outermost scale is used to determine distances in wavelengths toward the generator and  
the next scale is used to determine distances in wavelengths toward the load. The innermost 
scale is a protractor (in degrees) and is primarily used to determine the phase of the 
reflection coefficient and the phase of the transmission coefficient. It can also be used to 
determine distances, toward the load or toward the generator, expressed in degrees bearing 

in mind that a distance of /2 corresponds to 360°. 
The Smith chart illustrated in figure 4 has also other auxiliary scales useful for the 
determination of some parameters like for example, the VSWR, the amplitudes of the 
reflection and transmission coefficients, the return loss in dB etc. 
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Fig. 4. Typical Smith chart. With permission of Spread Spectrum Scene, http://www.sss-
mag.com/pdf/smithchart.pdf. 

The Smith chart simplifies transmission line analysis, and is still used today in most modern 

textbooks and courses in electrical engineering. It promotes a better understanding of the 

problem being solved. And such an understanding might be relevant for the interpretation 
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of the simulation results given by commercial software about antennas and microwave 

devices. Most modern computer based automatic network analyzers rely on the Smith chart 

for data display. 

This chart is a unique diagram which has been used nearly for ninety years and we believe 

that it will be in use for many years to come not only as a pedagogically perfect analogue 

display, but also as an aid to professionals in obtaining quick answers to many line 

problems which they meet. 

4. Getting started 

As pointed out above, the aim of this chapter is to help the reader understand and learn how 

to use the Smith chart describing step by step procedures based in MATLAB scripts that 

should teach the students to solve different kinds of transmission line problems by 

themselves in a paper chart using a pencil, a ruler and a compass. One of the first things 

they should know how to do, is how to mark a given reflection coefficient in a chart and 

read related data associated to this reflection coefficient, such the transmission coefficient, 

the normalized impedance, the normalized admittance and the voltage standing wave ratio. 

The authors developed a MATLAB script called SmithChart_InputRho_Eng_FV.m that 

display, step by step, how to do this exercise. 
The graphical solution given by this script, is shown in Figure 5, for a reflection coefficient 

0.6 120º   . 

Figure 5a) shows the first 2 steps: 

1. Marking L , from the amplitude and phase; 

2. Drawing the L  constant circle; 
Figure 5b) shows the last 3 steps: 

3. Getting the transmission  coefficient 1 j
t L t e      ; 

4. Getting the normalized impedance zL; 

5. Getting the normalized  admittance, by inverting zL to yL; 

6. Getting the associated SWR. 

Another basic thing students should know how to do, is to mark a given normalized 

impedance in a chart and read related data associated to it, such as the reflection coefficient, 

the normalized admittance and the voltage standing wave ratio. The authors developed a 

MATLAB script called SmithChart_InputZ_Eng_FV.m that displays step by step, how to do 

this exercise. 

The graphical solution given by this script, is shown in Figure 6, for a normalized 

impedance 0.3 0.5Lz j  . 

Figure 6a) shows the first 2 steps: 

1. Highlighting the curves rL and xL; 

2. Marking  the normalized impedance zL; 

Figure 6b) shows the last 3 steps: 

3. Getting the normalized admittance, by inverting zL to yL; 

4. Getting the corresponding reflection coefficient  j
L L e   ; 

5. Getting the corresponding transmission  coefficient 1 j
t L t e      ; 

6. Getting the associated SWR. 
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a) 

 
b) 
 

Fig. 5. Inputting a reflection coefficient. Display given by SmithChart_InputRho_Eng_FV.m. 
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a) 
 

 
b) 

Fig. 6. Inputting a normalized impedance. Display given by the script 
SmithChart_InputZ_Eng_FV.m. 

It is also important to know how to locate the voltage maxima and minima along the line, 
given a normalized impedance using the chart. The MATLAB script called 
SmithChart_InputZ_FindVmin_FindVmax_Eng_FV.m displays, step by step, how to locate the 
first voltage maximum and minimum. 
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By definition, the reflection coefficient is the ratio of the phasors of the reverse and forward 
voltage waves. A voltage maximum occurs when these waves are in phase adding together 
constructively. If these waves are in opposite phase, a voltage minimum results. Therefore, 
travelling along the line, from the load toward the generator, if the right horizontal axis is 
reached first this corresponds to a reflection coefficient with a 0º phase, which means a 
voltage maximum. If, however the left horizontal axis is reached first, this corresponds to a 
reflection coefficient with a 180º phase, which means a voltage minimum. 
The graphical solution given by this script, is shown in Figure 7, for the normalized 

impedance 1.4 1.6Lz j  . 

 

 

Fig. 7. Display given by SmithChart_InputZ_FindVmin_FindVmax_Eng_FV.m. 

From Figure 7, one can perceive that travelling along the line, from the load toward the 
generator, the first particular point is a voltage maximum that occurs at a distance 

d=0.0587. This happens because the load is inductive. Continuing to travel along the line, 

after  a voltage minimum is found. As it is well known, the maxima are separated by  
The same applies to the minima. This implies that a minimum is separated from the 

consecutive maxima by 
For a lossless line the absolute value of the reflection coefficient remains constant along the 
line, however its phase changes and therefore the impedance along the line also changes. 

Since a complete turn on the chart corresponds to travel /2, this means that after traveling 

/2, from the load to the generator, the load point is reached. This means that the 

impedance at a distance of /2 from the load is equal to the load. Therefore, for a lossless 

line, all the points separated by /2 have the same characteristics. 
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The authors developed a MATLAB script called LosslessLine_Eng_FV.m that graphically 
illustrates how the impedance along the line changes, as shown in figure 8. In this example a 

lossless line 0.35 long with a characteristic impedance Z0=50Ω, terminated with the load 
ZL=100+j60 Ω, has an input impedance Zin=21.88+j17.43 Ω. It is important to note the 
changes in nature of the impedance along the line when one moves from the load to the 
generator. At the load the impedance is inductive, then became real greater than Z0. After 

that, and for the next /4, became capacitive and then again inductive until it reached the 
generator plane. 
 

 

Fig. 8. Impedance variation along a lossless line 0.35 long. Graphical solution given by the 
LosslessLine_Eng_FV.m script.

5. Applications examples 

In this section, some examples that integrate transmission line concepts are presented. The 
following examples are explained: (1) Single stub matching, (2) Bandwidth of a single-stub 
impedance matching system, (3) Quarter wavelength impedance matching, (4) Analysis of 
lossy lines. The authors developed MATLAB scripts that display, step by step, the graphical 
procedures used to solve these problems. 
An example illustrating the double-stub impedance matching problem was also developed 
by the authors, (Pereira & Pinho, 2010).  

5.1 Single-stub impedance matching 

In any Transmission Line course, the concept of impedance matching is a topic that must be 

addressed. In transmission line context, impedance matching occurs when the characteristic 

impedance 0Z  of the line is equal to the load impedance LZ .When this happens, the 
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characteristic impedance and load impedance are said to be matched. In this situation, the 

reflection coefficient is zero and no standing waves exist. In transmission line applications, it 

is desirable to achieve the matching condition. 

There are several methods to achieve impedance matching. One of the simplest methods to 

match a transmission line to a given load is to connected a reactive element in parallel with 

the line at a point where the real part of the line admittance is equal to the characteristic 

admittance. This  reactive element can be realized by a short piece of line, called stub. That is 

why this method is known by the single-stub impedance matching. 

Although the location of the stub and its length can be found analytically using a computer 

or even a calculator, the authors believe that the use of the Smith chart to solve graphically 

this problem will give to the undergraduate students a much better insight of the aspects 

involved in this problem. The authors developed a MATLAB script called 

SingleStubMatching_Eng_FV.m that displays step by step, this graphical procedure. This 

script is available for download and should be used when reading this section. 

The basic layout of the single-stub impedance matching is illustrated in Figure 9. The 

parameters to be evaluated are the distance d, measured from the load, at which the stub 

must be placed and, the stub length Ls. The stub is connected in parallel with the line. The 

stub can be short-circuited terminated or open-circuited terminated. Since the stub is 

connected in parallel with the line, the solution of this problem must be approached in terms 

of admittance. If the load is inputted as an impedance, then it is necessary to transform it in 

an admittance, using the graphical procedure explained before. 

 

 

Fig. 9. Basic layout of the single-stub impedance matching. 

The goal is to match the load LZ  to the line with characteristic impedance 0Z . Therefore the 

normalized admittance my , at the generator side of the stub, must be equal 1. On the other 

hand, this normalized admittance is equal to the sum of Ay  and sy . Since by definition, 

assuming lossless transmission lines, the input admittance of a stub has no real part, that is, 

s sy jb  , that implies that the admittance Ay  must be 1A Ay jb  . Furthermore, the value 

of sb  must be the symmetrical of Ab  in order to cancel each other out. 
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5.1.1 Graphical procedure 

As explained above, the admittance at the load side of the stub must be 1A Ay jb  . This 

means that the locus of Ay  in the Smith chart is the 1g   circle. Since lossless transmission 

lines are assumed, when travelling from the load toward the generator the absolute value of 

the reflection coefficient remains constant, that is, L  . 

Therefore, the possible values of Ay  must be given by the intersection of the two circles: the 

1g   circle, and the L  constant circle. Except for loads with real part equal to zero, there 

are two intersection points and therefore two solutions. 

The solutions are found starting at the value of Ly  in the Smith chart and moving toward 

the generator (clockwise), along the corresponding constant L  circle, until the intersection 

with the 1g   circle is obtained. 

After choosing a solution for Ay , since 1A Ay jb   it is possible to get the corresponding 

value of s s Ay jb jb   . 

To determine the length of a short-circuited terminated stub, with an input admittance sy , 

one should move, from the admittance SC point in the Smith chart, toward the generator 

(clockwise) to the point corresponding to the input admittance, along the 0g   circle and 

read the required distance in wavelengths. To determine the length of an open-circuited 

terminated stub, with an input admittance sy , one should move from the admittance OC 

point in the Smith chart, toward the generator (clockwise) to the point corresponding to the 
input admittance, along the 0g   circle and read the required distance in wavelengths. 

The authors developed a MATLAB script called SingleStubMatching_Eng_FV.m that displays 
step by step, the graphical procedure described above. Four cases are studied: 

 Intersection with the upper half of the 1g   circle and a short-circuited stub; 

 Intersection with the lower half of the 1g   circle, and a short-circuited stub; 

 Intersection with the upper half of the 1g   circle, and a open-circuited stub; 

 Intersection with the lower half of the 1g   circle, and a open-circuited stub; 

The graphical solution given by this script for the first case, is shown in Figure 10, for a line 

with a characteristic impedance Z0=50Ω and the load ZL=100+j60 Ω. 

Figure 10a) shows the first 7 steps: 

1. Marking the normalized impedance zL; 

2. Drawing the L  constant circle; 

3. Transforming the normalized impedance in admittance, by inverting zL to yL; 

4. Drawing the 1g  constant circle; 

5. Choosing one of the intersection points of the L  constant circle with the 1g  circle, 

(point A); 

6. Finding the admittance Ay  from the chosen intersection point; 

7. Finding the distance d, in wavelengths, moving from Ly , toward the generator 

(clockwise) along the L  constant circle, until Ay . 

Figure 10b) shows the last 2 steps: 

8. Getting the value of sy  from the value of Ay ; 
9. Determining the length Ls  of the stub, in wavelengths, moving, from the admittance SC 

point in the Smith chart, toward the generator (clockwise) along the 0g  circle to the 

point corresponding to the input admittance of the stub (point B). 
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a) 

 
b) 

Fig. 10. Graphical solution given by the SingleStubMatching_Eng_FV.m script. 
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Following the display produced by this script, students should be able to solve in a paper 
chart any single-stub impedance matching problem using a ruler and a compass. 
The other cases given by script SingleStubMatching_Eng_FV.m can be explored by the reader. 

5.2 Bandwidth of a single-stub impedance matching system 

Another important topic that should be explained to the undergraduate students is the 
concept of bandwidth of a system. The majority of the systems based in transmission lines 
are perfectly matched at just one frequency. However, since the system should be able to 
operate over a frequency band, it is important to find the frequency band for which the 
system is consider to be acceptable matched. This frequency band is called the bandwidth of 
the system. Usually the criterion used to consider a system matched is when the VSWR is 
less or equal to 2. 
The lower and the upper frequencies of the bandwidth can be found analytically. However, 
the authors believe that using the Smith chart to find graphically the bandwidth, will give to 
the students a much better understanding of the effects on the admittance of the line, and 
therefore on the matching conditions, when the frequency changes. The authors developed 
two MATLAB scripts called SingleStubMatching_Eng_BW_FV2a.m and 
SingleStubMatching_Eng_BW_FV2b.m that displays graphically, step by step, the effects on 
the matching conditions, when the frequency changes. Both are for systems using short-
circuited stubs. One of the scripts is for one of the two possible solutions and the other for 
the other solution. It is important for the students to verify that the bandwidth is not the 
same for the two solutions. These scripts is available for download and should be explored 
when reading this section. 
The single-stub impedance matching system explained in the previous section, gives a 
perfect matching at one frequency. Once constructed, if the frequency changes so does the 
electric length of the distance d and length Ls, and therefore a perfect matching is no longer 
achieved. 
It is important to study the evolution of the matching values for a single-stub matching 
system, when the frequency varies around the central value for which a perfect matching 
was achieved. To observe this evolution, the authors developed MATLAB scripts that 
graphically display this evolution and give the VSWR 2:1 bandwidth. After choosing short-
circuited or open-circuited stubs, there are still two solutions for the single-stub matching 
system, the perfect matching can be achieved with two pairs of values of d and Ls and 
therefore two different evolution of the matching values are also obtained. The script called 
SingleStubMatching_Eng_BW_FV2a.m is intended for one of the solutions and script called 
SingleStubMatching_Eng_BW_FV2b.m is intended for the other. Both use short-circuited 
stubs. It is important to compare the VSWR 2:1 bandwidth obtained for both solutions. 
Figure 11 shows the graphical evolution of the matching values given by the script 
SingleStubMatching_Eng_BW_FV2a.m for the example illustrated in Figure 10. In this script 
the chosen solution is the one that corresponds to the intersection with the upper half of the 
g = 1 circle. 

Figure 11a) shows the graphical evolution of the matching values when the frequency 
decreases. When the frequency decreases, then the electrical sizes of d and Ls also decreases. 
Point A moves toward the load and point S toward SC. my  moves away from the center of 
chart (perfect matching). 
Figure 11b) shows the graphical evolution of the matching values when the frequency 
increases. When the frequency increases, then the electrical sizes of d and Ls also increases.  
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Point A moves away from the load and point S away  from SC. my  moves away from the 

center of chart (perfect matching). With this solution a VSWR 2:1 bandwidth of 38% is 

obtained. 
 

 
a) 
 

 
b) 

Fig. 11. Graphical solution given by the SingleStubMatching_Eng_BW_FV2a.m script. 

Figure 12 shows the graphical evolution of the matching values given by the script 
SingleStubMatching_Eng_BW_FV2b.m for the example illustrated in Figure 10. In this script  
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a) 

 

 

Fig. 12. Graphical solution given by the SingleStubMatching_Eng_BW_FV2b.m script. 

the chosen solution is the one that corresponds to the intersection with the lower half of the 
g = 1 circle. 

Figure 12a) shows the graphical evolution of the matching values when the frequency 

decreases. When the frequency decreases, the electrical sizes of d and Ls also decreases. 

Point A moves toward the load and point S toward SC. my  moves away from the center of 

chart (perfect matching). 

Figure 12b) shows the graphical evolution of the matching values when the frequency 

increases. When the frequency increases, the electrical sizes of d and Ls also increases. Point 
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A moves away from the load and point S away  from SC. my  moves away from the center of 

chart (perfect matching). With this solution a VSWR 2:1 bandwidth of 16% is obtained. So, as 

mentioned before, different bandwidth are obtained depending on the chosen for pair of 

values of d and Ls. 

5.3 Quarter wavelength impedance matching system 

As pointed out before, there are several methods to achieve impedance matching. One well 

known method consists in the insertion of a transmission line with a length of a quarter 

wavelength and an appropriate characteristic impedance, in a position where the impedance 

is real. This matching technique is known as a quarter wavelength impedance matching 

system or as the quarter wavelength transformer. 

The characteristic impedance of this quarter wavelength transformer is given by 

1 1 2R RZ Z Z , where 1RZ  is the impedance at the right side of the transformer and 2RZ is 

the impedance at the left side of the transformer.  Since a common transmission line has a 

real characteristic impedance, 1RZ  and 2RZ  must both be real. If a line is terminated in a 

complex load, the quarter wavelength transformer cannot be inserted at the load plane. It is 

then necessary to move along the line, a distance d, toward the generator till a real 

impedance 1RZ  is obtained. This is illustrated in Figure 13. Two values for 1RZ  are 

possible. One greater than 0Z  and another less than 0Z , separated by /4. Once 1RZ  is 

chosen, 1Z  can be calculated bearing in mind that 2RZ  must be equal 0Z  to achieve a 

perfect matching. 
 

 

Fig. 13. Basic layout of the quarter wavelength  impedance matching. 

In general the students learn this method in a analytical way, by the direct computation of 

the required characteristic impedance of the quarter wavelength line and the location for its 

insertion. However, the authors believe that the use of the Smith chart to solve graphically 

this problem will give to the students a much better insight of the several impedance 

transformations involved in this problem to achieve an impedance equal to the characteristic 

impedance of the main line. 

The authors developed a MATLAB script called QuarterWavelengthTransformer_Eng_FV.m 

that graphically explains, the quarter wavelength  matching mechanism. 

This is shown in Figure 14, for a line with a characteristic impedance Z0=50Ω and a load 
ZL=100+j60 Ω. 

www.intechopen.com



 
E-Learning – Organizational Infrastructure and Tools for Specific Areas 

 

118 

 
a) 

 
b) 

 

Fig. 14. Graphical solution given by the QuarterWavelengthTransformer_Eng_FV.m script. 
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Figure 14a) shows the first 5 steps: 

1. Marking the normalized impedance zL; 

2. Finding the distance d, in wavelengths, moving from Lz , toward the generator (clockwise) 

along the L constant circle, until the real normalized impedance Rz is obtained. In this 

example Rz greater than 1 was chosen; 

3. Renormalize Rz  impedance with reference to 0Z  in order to get RZ ; 

4. Calculate  1 0RZ Z Z ; 

5. Normalize  RZ  with reference to 1Z  obtaining 1Rz ; 

Figure 14b) shows the last 3 steps: 

6. Moving from 1Rz , toward the generator (clockwise) along the  constant circle, until the 

real normalized impedance 2Rz is obtained; 

7. Renormalizing 2Rz impedance with reference to 1Z an impedance 2 0RZ Z  is obtained, 

meaning that a perfect matching is achieved; 

8. Normalizing 2 0RZ Z  with reference to 0Z  a normalized impedance of 1 is  

obtained, which means that the center of the chart is reached, confirming a perfect  

matching; 

5.4 Analysis of lossy lines 

In all the above examples, lossless transmission lines have been used. However all lines 

have some losses and this changes the results. One of the main influences of the losses is in 

the amplitude of the reflection coefficient and therefore in the impedance along the line. For 

a lossy line the reflection coefficient is given by equation 10. 

   22 j dd
Ld e e     (10) 

being d the distance measured from the load toward the generator,  the attenuation 

constant in Np/m and  the propagation constant in rad/m. 

From equation 10, we notice that the phase changing of the reflection coefficient is equal to a 

lossless line, however the amplitude decreases from the load to the generator according with 

the equation 11. 

   2 d
Ld e     (11) 

Due to this amplitude decreasing, when travelling from the load to the generator the locus 

of  is a spiral approaching the center of the chart instead of a circle like in a lossless line. 

This means that at the input of a lossy line there is a better matching than at the load. Due to 

the loss of energy in the line, at the generator there is less returned energy to the generator 

and therefore a better matching. The authors developed a MATLAB script called 

LossyLine_Eng_FV.m that graphically explains these effects as illustrated in Figures 15 and 

16. As shown in Figure 16 a long line terminated in a load with the high VSWR of 10.4, has 

at the input a very acceptable VSWR of 1.7. 
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Fig. 15. Graphical solution given by the LossyLine_Eng_FV.m script for a short line. 

 

Fig. 16. Graphical solution given by the LossyLine_Eng_FV.m script for a long line. 
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If a long line is to be considered, it is important to know its attenuation constant and to 

evaluate its implications in the problem being considered. 

6. Conclusion 

It is well known that many transmission line problems can easily be solved using graphical 

procedures based on the Smith chart. The authors still believe that the use of the Smith chart 

by the students is an important pedagogical tool even knowing that personal computers and 

calculators are commonly available nowadays. 

Since the main topic of this book is concerned with e-learning, the aim of this chapter is to 

help the reader understand and learn how to use the Smith chart following a step by step 

procedure based on MATLAB scripts, that should be used when reading this chapter. This 

approach should teach the students to solve several kinds of transmission line problems by 

themselves in a paper chart using a pencil, a ruler and a compass. 

To exemplify this concept, the authors developed MATLAB scripts that display, step by step, 

the graphical procedure used in several applications. Using these scripts, many aspects of 

the transmission line theory such as: the voltage, current, impedance, Voltage Standing 

Wave Ratio (VSWR), reflection coefficient and matching design problems can be easily 

interpreted and well visualized using the Smith chart. 

The chapter was organized as follows: 

 History and use of the Smith chart and its importance in the resolution of classical 

transmission line problems. 

 Construction of this chart from the basic equations and concepts. 

 How to use the Smith chart.  

 Presentation of some examples that integrates the transmission line concepts. 

The authors developed a MATLAB scripts that display, step by step, the graphical procedure 

that must be used to solve these examples. 

All the MATLAB scripts can be download from the link: 

http://www.av.it.pt/rochap/MatlabScripts.zip 
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