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1. Introduction 

Data mining is the knowledge discovery process which helps in extracting interesting 
patterns from large amount of data. With the amount of data doubling every three years, 
data mining is becoming an increasingly important tool to transform these data into 
information. It is commonly used in a wide range of profiling practices, such as marketing, 
surveillance, fraud detection, medical and scientific discovery (J.Han & M.Kamber,2006). 

Humans have been manually extracting patterns from data for centuries, but the increasing 
volume of data in modern times has called for more automated approaches. As data sets 
have grown in size and complexity, direct hands-on data analysis has increasingly been 
augmented with indirect, automatic data processing. This has been aided by other 
discoveries in computer science, such as neural networks, clustering, genetic algorithms 
(1950s), decision trees (1960s) and support vector machines (1980s). Data mining (DM) is the 
process of applying these methods to data with the intention of uncovering hidden patterns.  

1.1 Data mining process 

Generally KDD is an iterative and interactive process involving several steps. This KDD 

process was chosen (Figure 1) according to UNESCO definition because of its simplicity and 

comprehensiveness. 

1.1.1 Problem identification and definition 

The first step is to understand the application domain and to formulate the problem. This step 
is clearly a prerequisite for extracting useful knowledge and for choosing appropriate data 
mining methods in the third step according to the application target and the nature of data. 

1.1.2 Obtaining and preprocessing data 

The second step is to collect and pre-process the data. Today’s real-world databases are 
susceptible to noisy, missing, and inconsistent data due to their typically huge size (often 
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several gigabytes or more), and their likely origin from multiple, heterogeneous sources. 
Low quality data will lead to low quality mining results. Data pre-processing is an essential 
step for knowledge and data mining. Data pre-processing include the data integration, 
removal of noise or outliers, the treatment of missing data, data transformation and 
reduction of data etc. This step usually takes the most time needed for the whole KDD 
process. 

 

Fig. 1. Structure of Data Mining (KDD) Process 

1.1.3 Selection of data mining / knowledge discovery in database 

The third step is data mining that extracts patterns and models hidden in data. This is an 

essential process where intelligent methods are applied in order to extract data patterns. In 

this step we have to first select data mining tasks and then data mining method. The major 

classes of data mining methods are predictive modeling such as classification and 

regression; segmentation (clustering) and association rules which are explained in detail in 

the next section. 

1.1.4 Interpretation and evaluation of results 

The fourth step is to interpret (post-process) discovered knowledge, especially the 

interpretation in terms of description and prediction which is the two primary goals of 

discovery system in practice. Experiments show that discovered patterns or models from 

data are not always of interest or direct use, and the KDD process is necessarily iterative 

with judgement of discovered knowledge. One standard way to evaluate induced rules is to 

divide the data into two sets, training on the first set and testing on the second. One can 

repeat this process a number of times with different splits, and then average the results to 

estimate the rules performance. 

www.intechopen.com



 
Data Mining Techniques in the Diagnosis of Tuberculosis 

 

335 

1.1.5 Using discovered knowledge 

The final step is to put the discovered knowledge in practical use. Putting the results in 
practical use is certainly the ultimate goal of the knowledge discovery. The information 
achieved can be used later to explain current or historical phenomenon, predict the future, 
and help decision-makers make policy from the existed facts (ho, nd). 

1.2 Data mining tasks and functionalities 

Data Mining functionalities are specifically of two categories: descriptive data mining and 

predictive data mining. Descriptive methods find human-interpretable patterns that 

describe the data. Predictive methods perform inference on the current data in order to 

make predictions (J.Han & M.Kamber, 2006). 

The predictive tasks of data mining are: 

 Classification - Arranges the data into predefined groups. For example an email 
program might attempt to classify an email as legitimate or spam. Common algorithms 
include Decision Tree Learning, Nearest neighbor, Naive Bayesian classification and 
Neural Network.  

 Regression -Attempts to find a function which models the data with the least error. 

The descriptive tasks of data mining are: 

 Association rule learning - Searches for relationships between variables. For example a 
supermarket might gather data on customer purchasing habits. Using association rule 
learning, the supermarket can determine which products are frequently bought 
together and use this information for marketing purposes. This is sometimes referred to 
as "market basket analysis".  

 Clustering - Is like classification but the groups are not predefined, so the algorithm will 
try to group similar items together.  

Data mining finds its applications in various fields. Web mining - is the application of data 

mining techniques to discover patterns from the Web. According to analysis targets, web 

mining can be divided into three different types, which are Web Usage Mining (WUM), 

Web Content Mining (WCM) and Web Structure Mining (WSM). It is called Spatial Data 

mining if we apply data mining techniques to spatial data. Multimedia Data mining- is the 

application of data mining techniques to multimedia data such as audio, video, image, 

graphics etc. Text mining- applying data mining techniques on unstructured or semi-

structured text data such as news group, email, documents. Bioinformatics and Bio-data 

analysis on biological data. 

Data mining draws ideas from many fields such as Machine learning/Artificial Intelligence, 

Pattern Recognition, Statistics, and Database Systems. In recent years, data mining has been 

widely used in the area of genetics, medicine, bioinformatics with its applications applied to 

biomedical data as facilitated by domain ontologies and mining clinical trial data which is 

also called medical data mining. 

Different types of medical data are now available on the web, where DM algorithms and 
applications can be applied, helping in easy diagnosis. Efficient and scalable algorithms can 
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be implemented both in sequential and parallel mode thus improving the performance. 
Such type of mining is called medical data mining. 

1.3 Medical data mining 

In recent years, data mining has been widely used in the area of genetics and medicine, 

called medical data mining. In the past two decades we have witnessed revolutionary 

changes in biomedical research and bio-technology. There is an explosive growth of bio-

medical data, ranging from those collected in pharmaceutical studies and cancer therapy 

investigations to those identified in genomics and proteomics research. The rapid progress 

of biotechnology and bio-data analysis methods has led to the emergence and fast growth of 

a promising new field: Bioinformatics. On the other hand, recent progress in data mining 

research has led to the developments of numerous efficient and scalable methods for mining 

interesting patterns and knowledge in large databases, ranging from efficient classification 

methods to clustering, outlier analysis, frequent, sequential and structured pattern analysis 

methods, and visualization and spatial/temporal data analysis tools. The question becomes 

how to bridge the two fields, Data Mining and Bioinformatics, for successful data mining in 

biomedical data. Especially, we should analyze how data mining may help efficient and 

effective bio-medical data analysis and outline some research problems that may motivate 

the further developments of powerful data mining tools for bio data or medical data 

analysis. 

Data mining is a process that involves aggregating raw data stored in a database and 

analyzing them to identify trends, patterns and anomalies. Medical data mining is an active 

research area under data mining since medical databases have accumulated large quantities 

of information about patients and their clinical conditions. Relationships and patterns 

hidden in this data can provide new medical knowledge as has been proved in a number of 

medical data mining applications. A Doctor quickly swung into action after a renowned 

pharmaceutical company in the USA announced in 2001 that it was withdrawing a 

cholesterol-lowering drug following the deaths of more than 30 people. Using his medical 

records database, his staff was able to identify all patients taking the cholesterol-lowering 

drug and notify them within 24 hours of the announcement. What the doctor did is 

technically known as Data Mining. Very few doctors, however, were able to act on the 

situation, because they did not have accessible raw data in the electronic format.  

Not only does disciplined storage of medical data helps the physicians and healthcare 
institutions, but it also helps pharmaceutical companies to mine the data to see the trends in 
diseases. It also helps prioritize product development and clinical trials based on the 
accurate demands visible from the data that is mined. 

Various data mining tasks can be applied on different diseases data set. This helps even the 
doctor to identify hidden associations between various symptoms. Research has been 
carried out on gene data, proteonomic data and attributes related to diseases covering even 
risk factors. Prediction of diseases has also been done on scanned images leading to medical 
imaging, which is the fastest growing area. Lot of Research has been carried out leading to 
breast cancer, liver diseases and other types of cancer and also diseases related to heart. 
There are very few articles related to Tuberculosis. 
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2. Tuberculosis 

Tuberculosis (TB) is a common and often deadly infectious disease caused by 
mycobacterium; in humans it is mainly Mycobacterium tuberculosis. It usually spreads 
through the air and attacks low immune bodies such as patients with Human 
Immunodeficiency Virus (HIV). It is a disease which can affect virtually all organs, not 
sparing even the relatively inaccessible sites. The microorganisms usually enter the body by 
inhalation through the lungs. They spread from the initial location in the lungs to other 
parts of the body via the blood stream. They present a diagnostic dilemma even for 
physicians with a great deal of experience in this disease. Hence Tuberculosis (TB) is a 
contagious bacterial disease caused by mycobacterium which affects usually lungs and is 
often co-infected with HIV/AIDS. 

It is a great problem for most developing countries because of the low diagnosis and 
treatment opportunities. Tuberculosis has the highest mortality level among the diseases 
caused by a single type of microorganism. Thus, tuberculosis is a great health concern all 
over the world, and in India as well (wikipedia.org).  

Symptoms of TB depend on where in the body the TB bacteria are growing. TB bacteria 
usually grow in the lungs. TB in the lungs may cause symptoms such as a bad cough that 
lasts 3 weeks or longer pain in the chest coughing up blood or sputum. Other symptoms of 
active TB disease are: weakness or fatigue, weight loss, no appetite, chills, fever and 
sweating at night.  

Although common and deadly in the third world, Tuberculosis was almost non-existent in 

the developed world, but has been making a recent resurgence. Certain drug-resistant 

strains are emerging and people with immune suppression such as AIDS or poor health are 

becoming carriers. 

2.1 Data set description 

The medical dataset we are using includes 700 real records of patients suffering from TB 

obtained from a city hospital. The entire dataset is put in one file having many records. Each 

record corresponds to most relevant information of one patient. Initial queries by doctor as 

symptoms and some required test details of patients have been considered as main 

attributes. Totally there are 12 attributes (symptoms) and last attribute is considered as class 

in case of Associative Classification. The symptoms of each patient such as age, chronic 

cough(weeks), loss of weight, intermittent fever(days), night sweats, Sputum, Bloodcough, 

chestpain, HIV, radiographic findings, wheezing and TBtype are considered as attributes. 

Table 1 shows names of 12 attributes considered along with their Data Types (DT). Type N-
indicates numerical and C is categorical. 

3. Association Rule Mining 

Association Rule Mining (ARM) is an important problem in the rapidly growing field called 
data mining and knowledge discovery in databases (KDD). The task of association rule mining 
is to mine a set of highly correlated attributes/features shared among a large number of 
records in a given database. For example, consider the sales database of a bookstore, where the 
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records represent customers and the attributes represent books. The mined patterns are the set 
of books most frequently bought together by the customer. An example could be that, 60% of 
the people who buy Design and Analysis of Algorithms also buy Data Structure. The store can 
use this knowledge for promotions, self-placement etc. There are many application areas for 
association rule mining techniques, which include catalog design, store layout, customer 
segmentation, telecommunication alarm diagnosis and so on. 

 

No Name DT 

1 Age N 

2 chroniccough(weeks) N 

3 weightloss C 

4 intermittentfever(days) N 

5 nightsweats   C 

6 Bloodcough C 

7 chestpain C 

8 HIV C 

9 Radiographicfindings C 

10 Sputum C 

11 wheezing C 

12 TBType C 

Table 1. List of Attributes and their Datatypes 

3.1 Definition of association rule 

Here we give the classical definition of association rules. Let { t1, t2,…..tn} be a set of 
transactions and let I be a set of items, I={ I1,I2,….Im }. An association rule is an implication of 
the form XY, where X, Y are disjoint subsets of item I and X∩Y=ф. X is called the 
antecedent and Y is called the consequent of the rule. In general, a set of items such as the 
antecedent or consequent of a rule is called an Itemset. Each itemset has an associated 
measure of statistical significance called support. support(x)=s is the fraction of the 
transactions in the database containing X. The rule has a measure of strength called 
confidence defined as the ratio support(X Ụ Y) / support(X) (J.Han & M.Kamber, 2006). 

Given a set of transactions T, the goal of association rule mining is to find all rules having 
support ≥ minsup threshold and confidence ≥ minconf threshold. 

Mining Association rule is a Two-step approach:  

- Frequent Itemset Generation  

 Generate all itemsets whose support  minsup.  
- Rule Generation  

 Generate high confidence rules from each frequent itemset, where each rule is a 
binary partitioning of a frequent itemset. 

Frequent Itemset Generation 

The two important algorithms for frequent itemset generation are Apriori algorithm (first 
proposed by Agrawal, Imielinski and swami VLDB 1994) and Frequent pattern tree growth 
(FP-Tree) (FPgrowth—Han, Pei & Yin @SIGMOD’00). 
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Apriori algorithm employs two actions join step and prune step as explained in the 
following algorithm to find frequent itemsets. 

- Apriori principle: It states that if an itemset is frequent, then all of its subsets must also 
be frequent 

- Apriori principle holds due to the following property of the support measure: 

 Support of an itemset never exceeds the support of its subsets 

 , : ( ) ( ) ( )X Y X Y s X s Y        

- This is known as the anti-monotone property of support 

Apriori algorithm 

- Let k=1 
- Generate frequent itemsets of length 1 
- Repeat until no new frequent itemsets are identified 

 Generate length (k+1) candidate itemsets from length k frequent itemsets [join step] 

 Prune candidate itemsets containing subsets of length k that are infrequent [prune 
step] 

 Count the support of each candidate by scanning the DB 

 Eliminate candidates that are infrequent, leaving only those that are frequent 

Rule Generation 

Once the frequent itemsets from transactions in a database D have been found, it is 
straightforward to generate strong association rules from them where strong association 
rules satisfy both minimum support and minimum confidence. This is calculated from the 
following equation  

Confidence(A->B) =  support_count(AỤB) / support_count(A) 

Based on the above equation association rules can be generated as follows: 

 For each frequent itemset  l, generate all non empty subsets of  l. 

 For every nonempty subset  s of  l, output the rule  “ s -> (l-s)”  if support_count(l) / 
support_count(s) is greater than or equal to min_conf, where min_conf is the 
minimum confidence threshold. 

Challenges of Apriori 

 Multiple scans of transaction database 

 Huge number of candidates 

 Tedious workload of support counting for candidates 

Improving Apriori: general ideas 

 Reduce passes of transaction database scans 

 Shrink number of candidates 

 Facilitate support counting of candidates 

Since the processing of the Apriori algorithm requires plenty of time, its computational 
efficiency is a very important issue. In order to improve the efficiency of Apriori, many 
researchers have proposed modified association rule-related algorithms. 
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Advantages of frequent itemset generation and rule generation 

 Finding inherent regularities in data 
 What products were often purchased together?— Beer and diapers?! 
 What are the subsequent purchases after buying a PC? 
 What kinds of DNA are sensitive to this new drug? 
 Can we automatically classify web documents? 

 Applications 
 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web 

log (click stream) analysis, and DNA sequence analysis. 

3.2 Tuberculosis association rules  

Tuberculosis association rules can be generated by applying data mining ARM technique 
with the following steps: 

 Pre-processing the dataset by discretizing and normalizing 
 Generating rules by applying apriori on preprocessed range data 

3.2.1 Pre-processing 

Incomplete, noisy, and inconsistent data are common among real world databases. Hence it 
is necessary to preprocess such data before using it. The most common topics under data 
preprocessing are Data cleaning, Data integration, Data Transformation, Data reduction, 
Data discretization and automatic generation of concept hierarchies. 

Discretization and Normalization are the two data transformation procedures that help in 
representing the data and their relationships precisely in a tabular format that makes the 
database easy to understand and operationally efficient. This also reduces data redundancy 
and enhances performance. 

The above TB attributes are normalized and discretized to a suitable binary format. A 
categorical data field has a value selected from an available list of values. Such data items 
can be normalized by allocating a unique column number to each possible value. Numerical 
data fields are discretized by taking values that are within some range defined by minimum 
and maximum limits. In such cases we can divide the given range into a number of sub-
ranges and allocate a unique column number to each sub-range respectively.  

Here we give a small example of five patients medical records with five attributes. Table 2 
shows original data. Table 3 contains schema of how the attributes are mapped to individual 
column numbers. Table 4 is the final translated or normalized data. 

 

Age 
Chronic 

cough(weeks) 
Weight 

loss 
HIV Sputum 

17 
13 
45 
32 
22 

3 
6 
6 

Null 
Null 

Yes 
Yes 
Null 
Yes 
Yes 

Negative 
Negative 
Negative 
Positive 
Positive 

Yes 
Yes 
Yes 
Null 
Yes 

Table 2. Original (raw) Data 
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Age 
< 25 

Age 
>= 25 

Chronic cough
(weeks)< 4

4 <= Chronic 
cough (weeks) < 8

Chronic cough 
(weeks) = Null

Weight loss 
= Yes 

1 2 3 4 5 6 
 

Weight loss = 
Null 

HIV = Positive HIV = Negative Sputum = Yes Sputum = Null 

7 8 9 10 11 

Table 3. Schema Table 

In the above tables, note that Age is a numerical attribute and its cut off point is <25 & >=25. 

Similarly HIV is a categorical attribute where positive value is assigned one number and 

negative another. The value Null for categorical attribute weightloss is equivalent to No and 

is assigned a unique number. By using the schema table above we map each tuple in the 

original data of table 2 to a resulting normalized table shown in table 4. Resulting table has 

the same number of columns as the original table but filled with unique integer values. 

Age Chronic cough(weeks) Weight loss HIV Sputum 

1 
1 
2 
2 
1 

3
4 
4 
5 
5

6
6 
7 
6 
6

9
9 
9 
8 
8

10 
10 
10 
11 
10 

Table 4. Normalized Table 

3.2.2 TB rules generation 

a. Frequent Itemsets from TB data: The following figure 2 and 3 shows some of the 
frequent itemsets generated with 70% support, 90% confidence and 60% support,  

 
Fig. 2. Frequent Itemsets with 70%support and 90% confidence 

[1] {chroniccough(weeks)<39.0} = 692
[2] {weightloss=null} = 550 
[3] {chroniccough(weeks)<39.0 weightloss=null} = 544 
[4] {intermittentfever(days)<91.25} = 669 
[5] {chroniccough(weeks)<39.0 intermittentfever(days)<91.25} = 664 
[6] {weightloss=null intermittentfever(days)<91.25} = 530 
[7] {chroniccough(weeks)<39.0 weightloss=null intermittentfever(days)<91.25} = 526 
[8] {nightsweats=null} = 496 
[9] {Bloodcough=null} = 671 
[10] {chroniccough(weeks)<39.0 Bloodcough=null} = 663 
[11] {weightloss=null Bloodcough=null} = 534 
[12] {chroniccough(weeks)<39.0 weightloss=null Bloodcough=null} = 528 
[13] {intermittentfever(days)<91.25 Bloodcough=null} = 645 
[14] {chestpain=null} = 570 
[15 {chroniccough(weeks)<39.0 chestpain=null} = 564 
[16] {intermittentfever(days)<91.25 chestpain=null} = 542 
[17] {chroniccough(weeks)<39.0 intermittentfever(days)<91.25 chestpain=null} = 539 
[18] {Bloodcough=null chestpain=null} = 546 
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80%confidence. The Format of the rule is: [N] {I} = S, where N is a sequential number, I is the 

item set converted from normalized numerical value to schema text (symptoms) and S the 

support. 

 

Fig. 3. Frequent Itemsets with 60%support and 80% confidence 

b. Discovered TB Association rules 

Several medically important association rules are obtained after applying apriori algorithm 

to the normalized table. It takes the frequent itemsets in figure 2 and 3 and generates rules 

as shown in figure 4 and 5 respectively. Each association rule shows the relation between 

one symptom with the other. Data set was first tested by fixing support=70% and 

confidence=90%.We could get very few association rules, some are listed in figure 4. Rule 7 

in figure 4 describes that  if weightloss equals null and intermittent fever is less than 91 days 

implies Bloodcough is null with 97.5% confidence. Most of the rules show the relationship 

between only few attributes like weightloss, intermittent fever, Bloodcough and chest pain. 

All the attributes were not shown here. Next with 60% support and 80% confidence we 

could get large number of association rules, few listed in figure 5 that provides more 

relationship with many frequent attributes. Rule 1 in figure 5 says if HIV status is negative 

their TBtype is Pulmonary Tuberculosis (PTB) with 100% confidence. Rule 5 shows the 

relationship between intermittent fever, Bloodcough, HIV and PTB. Though all the rules 

[1] {chroniccough(weeks)<39.0} = 692 
[2] {weightloss=null} = 550 
[3] {chroniccough(weeks)<39.0 weightloss=null} = 544 
[4] {intermittentfever(days)<91.25} = 669 
[5] {Bloodcough=null} = 671 
[6] {chroniccough(weeks)<39.0 Bloodcough=null} = 663 
[7] {weightloss=null Bloodcough=null} = 534 
[8] {chestpain=null} = 570 
[9] {chroniccough(weeks)<39.0 chestpain=null} = 564 
[10] {weightloss=null chestpain=null} = 454 
[11] {HIV=Negative} = 465 
[12] {chroniccough(weeks)<39.0 HIV=Negative} = 459 
[13] {intermittentfever(days)<91.25 HIV=Negative} = 455 
[14] {chroniccough(weeks)<39.0 intermittentfever(days)<91.25 HIV=Negative} = 450 
[15] {Bloodcough=null HIV=Negative} = 452 
[16] {Sputum=yes} = 422 
[17] {TBtype=PTB} = 472 
[18] {chroniccough(weeks)<39.0 TBtype=PTB} = 466 
[19] {intermittentfever(days)<91.25 TBtype=PTB} = 462 
[20] {HIV=Negative TBtype=PTB} = 465 
[21] {chroniccough(weeks)<39.0 HIV=Negative TBtype=PTB} = 459 
[22] {intermittentfever(days)<91.25 HIV=Negative TBtype=PTB} = 455 
[23] {intermittentfever(days)<91.25 Bloodcough=null HIV=Negative TBtype=PTB} = 442 
[24] {chroniccough(weeks)<39.0 intermittentfever(days)<91.25 Bloodcough=null 
HIV=Negative TBtype=PTB} = 437 
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Fig. 4. Rule generation with 70%support and 90% confidence 

 

Fig. 5. Rule generation with 60% support and 80% confidence 

(1)  {intermittentfever(days)<91.25 chestpain=null}  ->  {chroniccough(weeks)<39.0}  
99.44 
(2)  {intermittentfever(days)<91.25 Bloodcough=null chestpain=null}  ->  
{chroniccough(weeks)<39.0}  99.42 
(3)  {nightsweats=null}  ->  {chroniccough(weeks)<39.0}  98.99 
(4)  {chestpain=null}  ->  {chroniccough(weeks)<39.0}  98.94 
(5)  {weightloss=null}  ->  {chroniccough(weeks)<39.0}  98.9 
(6)  {Bloodcough=null}  ->  {chroniccough(weeks)<39.0}  98.8 
(7)  {weightloss=null intermittentfever(days)<91.25}  ->  {Bloodcough=null}  97.54 
(8)  {chroniccough(weeks)<39.0 weightloss=null intermittentfever(days)<91.25}  ->  
{Bloodcough=null}  97.52 
(9)  {chroniccough(weeks)<39.0 weightloss=null Bloodcough=null}  ->  
{intermittentfever(days)<91.25}  97.15 
(10)  {weightloss=null}  ->  {Bloodcough=null}  97.09 
(11)  {Bloodcough=null chestpain=null}  ->  {chroniccough(weeks)<39.0 
intermittentfever(days)<91.25}  95.05 
(12)  {chestpain=null}  ->  {chroniccough(weeks)<39.0 Bloodcough=null}  94.73 
(13)  {chroniccough(weeks)<39.0 chestpain=null}  ->  {intermittentfever(days)<91.25 
Bloodcough=null}  92.02 
(14)  {chestpain=null}  ->  {intermittentfever(days)<91.25 Bloodcough=null}  91.57 
(15)  {chestpain=null}  ->  {chroniccough(weeks)<39.0 intermittentfever(days)<91.25 
Bloodcough=null}  91.05 

(1)  {HIV=Negative}  ->  {TBtype=PTB}  100.0 
(2)  {chroniccough(weeks)<39.0 HIV=Negative}  ->  {TBtype=PTB}  100.0 
(3)  {chroniccough(weeks)<39.0 intermittentfever(days)<91.25 HIV=Negative}  ->  
{TBtype=PTB}  100.0 
(4)  {Bloodcough=null HIV=Negative}  ->  {TBtype=PTB}  100.0 
(5)  {intermittentfever(days)<91.25 Bloodcough=null HIV=Negative}  ->  {TBtype=PTB}  
100.0 
(6)  {HIV=Negative TBtype=PTB}  ->  {chroniccough(weeks)<39.0}  98.7 
(7)  {Bloodcough=null TBtype=PTB}  ->  {chroniccough(weeks)<39.0}  98.69 
(8)  {chroniccough(weeks)<39.0 nightsweats=null Bloodcough=null}  ->  
{intermittentfever(days)<91.25}  98.1 
(9)  {chroniccough(weeks)<39.0 TBtype=PTB}  ->  {intermittentfever(days)<91.25}  98.06 
(10)  {TBtype=PTB}  ->  {chroniccough(weeks)<39.0 intermittentfever(days)<91.25}  
96.82 
(11)  {weightloss=null Bloodcough=null}  ->  {intermittentfever(days)<91.25}  96.81 
(12)  {Bloodcough=null TBtype=PTB}  ->  {chroniccough(weeks)<39.0 
intermittentfever(days)<91.25 HIV=Negative}  95.2 
(13)  {chroniccough(weeks)<39.0 weightloss=null}  ->  {chestpain=null}  82.53 
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may not be interesting to users, only few rules like explained above gives very good 

description and some hidden relationship may also be found.  

We could see from the following output that left side (Antecedent) and right side 
(consequent) of the rule keep on interchanging repeatedly, which can be pruned by 
applying some conditions on both antecedent and consequent of a rule. 

The format is: (N) ANTECEDENT -> CONSEQUENT CONFIDENCE (%) 

4. Associative classification 

Association Rule Mining (ARM) as explained in section 3 is one of the most popular 

approaches in data mining and if used in the medical domain has a great potential to 

improve disease prediction. This results in large number of descriptive rules. Therefore 

ARM can be integrated within classification task to generate a single system called as 

Associative classification (AC) which is a better alternative for predictive analytics. 

Classification based on association rules has been proved as very competitive (Liu.B et al., 

1998). The general idea is to generate a set of association rules with a fixed consequent 

(involving the class attribute) and then use subsets of these rules to classify new 

examples. This approach has the advantage of searching a larger portion of the rule 

version space, since no search heuristics are employed, in contrast to Decision Tree and 

traditional classification rule induction. The extra search is done in a controlled manner 

enabled by the good computational behaviour of association rule discovery algorithms. 

Another advantage is that the produced rich rule set can be used in a variety of ways 

without relearning, which can be used to improve the classification accuracy ( Jorge and 

Azevedo, 2005). 

The procedure of associative classification rule mining as shown in figure 6 is not much 

different from that of general association rule mining. A typical associative classification 

system is constructed in two stages: 1) discovering all the event association rules (in which 

the frequency of occurrences is significant according to some tests); 2) generating 

classification rules from the association patterns to build a classifier. In the first stage, the 

learning target is to discover the association rules inherent in a database, but generating 

frequent itemsets may prove to be quite expensive. The number of rules generated from 

association rule discovery is quite large. Hence rule pruning is required. Moreover, to avoid 

the problem of overfitting, proper rule pruning method is to be employed. Ranking of the 

rules is also important. When a test instance has more than one potentially applicable rules, 

rule ranking is necessary to prefer one rule over the others. In the second stage, the task is to 

select a set of relevant association rules discovered to construct a classifier given the 

predicting attribute. 

For example given a rule X -> Y, AC will only consider rules having a target class as the 
consequent. This means the new integration focuses on a subset of association rules, whose 
right hand-sides are restricted to the classification class attribute. This type of rule is called 
Class Association Rules (CARs). While normal association rule allows more than one 
condition as its consequent and any item from X can be the consequent, CARs generated in 
AC limit the consequent to one fixed target class for each rule and item from X are forbid to 
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appear as the class label. In order to perform AC, a classifier will first mine CARs from a 
given transaction and later select the most predictive rule to perform a classifier (Chien and  
Chen, 2010). AC generates CARs depending on the frequent item generation technique in 
mining rules. Despite its benefit, AC does propose challenges in its classification 
performance. The most important thing is to the approach in mining appropriate CARs for 
the classification and its pruning technology since AC will generate large number of 
frequent item sets due to its pruning algorithm. Its prominent pitfalls are in its incapability 
of handling numerical data. 

 

Fig. 6. Associative classification procedure 

4.1 Associative Classification Algorithms 

Different approaches have been proposed for associative classification that has been found 

to outperform traditional classification algorithms. Some of AC algorithms include 

Classification based on Association (CBA), Classification based on Multiple Association 

Rules (CMAR), and Classification based on Predictive Association Rules (CPAR-Chien and 

Chen, 2010). Generally, AC consists of three main phases, which are rule generation, rule 
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pruning, and classification (Do et al., 2009; Tang and Liao, 2007).The performance, however, 

might differ depending on the algorithm employed in any of these three phases.  

4.1.1 CBA 

The first AC algorithm was introduced by (Liu. B et al., 1998), namely CBA. The algorithm is 

based on the Apriori association rule algorithm in generating CARs. These rules are later 

pruned and only one most suitable rule will be used to classify the test set. Essentially, the 

CBA algorithm performs three tasks. First, it mines all CARs. Second, it produces a classifier 

from CARs, and finally, it mines normal association rules.  

1. Generation of CARs 

In CBA, the classification Association rules (CARs) are found iteratively in an apriori 

algorithm-like fashion. At first, frequent 1-rule itemsets are generated and are pruned. Using 

this iteratively, other frequent rule itemsets are also found. They are then pruned to get 

complete set of Classification association rules. 

2. Building classifier (Ranking and Pruning Rules) 

To prune the rules, CBA uses pessimistic error based pruning method in C4.5. The rule 
ranking is defined as below: 

Given two rules ri and rj, ri > rj  (i.e., ri  precedes rj  or ri  has higher precedence over rj ) if one 
of the following holds good: 

1. The confidence of ri is greater than that of rj  
2. Their confidences are the same but support of ri  is greater than that of rj  
3. Both the confidences and supports of ri and rj are the same, but ri is generated before rj  

After rule ranking, each training instance is covered by the rule having highest precedence 

among the rules that can cover the case. Every rule correctly classifies at least one training 

instance. The rules that do not cover any training instance are removed. The training 

instances that do not fall into any of the observed classes are added to a default class. 

The multiple capabilities in CBA solve a number of problems in traditional classification 

systems. Since traditional classifiers only generate a small subset of rules that exists in data 

to form a classifier, the discovered rules may not be interesting. Also, to generate more rules 

we would need the classification system to load the entire database into the main memory. 

But because CBA generate all rules, the algorithm is more successful in finding interesting 

rules and the system also allows the data to reside on disk. However, in CBA, the rule 

generation process might degrade the accuracy of the classifier due to its randomness in 

selecting the most suitable rule to form the classifier model. CBA inherits Apriori multiple 

scan features that generates large number of rules, which is costly in terms of large 

computational time. 

4.1.2 CMAR 

CMAR is later introduced as the extension to CBA (Li et al., 2001). The CMAR algorithm 
implements FP-Growth algorithm instead of Apriori in generating its frequent itemset. 
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Next, the subset of matching rules are used to classify a test instance instead of one rule, and 
this in turn produces better accuracy.  

The CMAR algorithm generates and evaluates rules in a similar way as CBA, but uses a 
more efficient FPtree structure. A major difference is that it uses multiple rules in prediction 
with associated weights. 

The CMAR algorithm (as described in Li et al., 2001) uses an FP-growth algorithm (Han & 
Kamber, 2000) to produce a set of CARs and uses CBA method for rule ranking. It prunes 
rules using high confidence, highly related rules and analyzes the correlation among them 
using Chi-Squared testing. To test the resulting classifier Li et al. propose the following 
process.  

Given a record r in the test set:  

1. Collect all rules that satisfy r, and if consequents of all rules are all identical, or only one 
rule, classify record according to the consequents. 

2. Else group rules according to classifier and determine the combined effect of the rules 
in each group, the classifier associated with the "strongest group" is then selected. The 
strength of a group is calculated using a Weighted Chi Squared (WCS) measure. 
Following algorithm shows steps for rule pruning.  

Selecting rules based on database: 

1. Sort rules in the rank descending order; 

2. For each data object in the training data set, set its cover-count to 0; 

3. While both the training data set and rule set are not empty, for each rule R in rank 

descending order, find all data objects matching rule R. If R can correctly classify at 

least one object then select R and increase the cover-count of those objects matching R 

by 1. A data object is removed if its cover-count passes coverage threshold δ; 

Nonetheless, when the datasets are large, both rule generation and rule selection in CBA 

and CMAR are time consuming. The CPAR and other predictive mining algorithms 

overcome this problem by generating a small set of predictive rules directly from the dataset 

based on the rule prediction and coverage analysis, as opposed to generating candidate 

rules.  

4.1.3 CPAR  

CPAR is an improvement to CBA and CMAR (Thabtah et al., 2005; Thabtah, 2007). It is 
proposed by Chen, Yin and Huang in 2005.The core of CPAR and other predictive mining 
algorithms is the predictive rule mining capability, whereby after an instance has been 
correctly covered by a rule, instead of removing it, its weight is decreased by multiplying a 
factor. This is essentially a greedy approach in rule generation, which is more efficient than 
generating all candidate rules. 

CPAR may choose a number of attributes if those attributes have similar best gain. This is 

done by first calculating the gain and applying a GAIN_SIMILARITY_RATIO to this. All 

attributes with gain better than Local Gain Threshold (LGT) are then selected for further 

processing. 
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The Local Gain Threshold (LGT) is given by the formula: 

LGT = bestGain * GAIN_SIMILARITY_RATIO 

Where, GAIN_SIMILARITY_RATIO is a constant whose value is 0.99. 

CPAR takes as input a (space separated) binary valued data set R and produces a set of 

CARs. The resulting classifier comprises a linked-list of rules ordered according to Laplace 

accuracy. CPAR also uses a dynamic programming approach to avoid repeated calculation 

in rule generation, which in turn is more economical. More importantly, CPAR selects best k 

rules in prediction. 

4.2 Predictive accuracy and rules of associative classifiers 

Difference between ARM and AC with reference to results is that the former generates only 

large number of descriptive rules whereas the latter generate fewer rules along with their 

performance measure thru accuracy.  

CBA generates around 81 rules once it is pruned we get only two rules with an accuracy of 
81.14%. 

1. { chroniccough(weeks)>23} ->{ TBtype=PTB} 
2. { HIV = {Negative}} -> {TBtype=PTB} 

CMAR generated about 1091 rules and the pruned output is only 38 rules with an accuracy 
of 99.1428%. Few are listed below: 

1. {HIV = {Negative}  }  -> {  TBtype=PTB} 
2. {Bloodcough = {null}    HIV = {Negative} }    ->  {TBtype=PTB} 
3. {chroniccough(weeks) <= 22  Bloodcough = {null} HIV = {Negative} }    ->TBtype=PTB 
4. {HIV = {positive}  Sputum = {null}} -> {TBtype=retroviralPTB} 
5. {Age>36   HIV = {positive}  Sputum = {null}}  -> {TBtype=retroviralPTB} 
6. {Age>36 chroniccough(weeks)<=22 chestpain={null} HIV={positive} } ->    

{TBtype=retroviralPTB} 

CPAR after pruning could produce only 4 rules with an accuracy of 99.14%. 

1. {wheezing = {yes}   HIV = {positive}} -> TBtype=retroviralPTB 
2. {HIV = {Negative} }   ->  {TBtype=PTB} 
3. {weightloss = {yes}  HIV = {positive}} ->   {TBtype=retroviralPTB} 
4. {HIV = {positive}} ->   {TBtype=retroviralPTB} 

When compared to both ARM and AC rules, it can be seen that AC rules are smaller and 
better in description and also CPAR provides better rules compared to all algorithms. 

5. Summary 

In this chapter two data mining techniques which help in the diagnosis of Tuberculosis have 

been discussed. Medical databases have accumulated large quantities of information about 

patients and their clinical conditions and digital era has provided the availability of these 

information in abundance. Data mining is a knowledge discovery process that helps in 
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extracting relationships and patterns hidden in this data and can provide a new medical 

knowledge to doctors in their treatment procedure. 

Association Rule Mining (ARM) is one of the most popular approaches in data mining and if 

used in the medical domain has a great potential to improve disease prediction. It shows 

doctor the hidden disease symptoms associated with one another. There are many 

algorithms associated with ARM and the most popular is Apiori. It works in two phases-

first is frequent itemset generation where all the items in a database above some minimum 

specified threshold called support will be generated. Second one is rule generation which 

generates from the frequent sets, an association rule of the form X->Y based on some 

minimum confidence. We can say that whenever X appears there is a chance that Y also 

appears along with it with minimum confidence threshold. These concepts are applied on 

TB dataset which reveals important association between the symptoms. But this method 

results in large number of repetitive rules.  

Associative classification (AC)  is another data mining approach that  integrates association 
rule mining and classification. It uses association rule mining algorithm, such as Apriori or 
Frequent pattern growth , to generate the complete set of association rules. Then it selects a 
small set of high quality rules and uses this rule set for prediction. This method results in 
smaller number rules compared to ARM.  

Three important algorithms of AC such as CBA, CMAR and CPAR have been discussed in 

the chapter. Almost every algorithm contains two major data mining steps, an association 

rule (AR) mining stage- rules generated here are called as classification association rules 

(CARs) and a classification stage which uses the mined rules from the first stage directly. 

The second stage chooses rules with high priority from the CARs to cover training set. The 

difference between them is based on the priority evaluation of rules which usually depends 

on the confidence, support, rule length or common quality standard of classification rules. 

CPAR is better in rule generation compared to others. TB rules and accuracy are compared 

for every associative classification algorithm 

Though the entire rules may not help doctors, few rules may describe the relationship 
between one symptom with the other and also sometimes it can reveal hidden 
relationship. 
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