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1. Introduction  

Since 1997 the World Health Organization has published an annual report on global control 

of tuberculosis (TB) with the purpose of providing a comprehensive and up-to-date 

assessment of the TB epidemic.  According to the Global TB control report of 2010 (World 

Health Organization [WHO], 2010), the global burden of disease caused by TB in 2009 is as 

follows: 9.4 million incident cases, 14 million prevalent cases, 1.3 million deaths among non 

HIV-positive people and 0.38 million deaths among HIV positive people.  

The absolute number of cases continues to increase from year to year. The slow reduction in 

incident rates per capita is outweighed by increases in population. The greatest number of 

cases are in Asia (55%) and Africa (30%). Other regions have lower numbers of cases: 

Eastern Mediterranean Region (7%), European Region (4%) and American Region (3%). The 

main effort of WHO today concerning TB is to attain the targets included in the Millennium 

Development Goals (MDGs).  

Adopted by world leaders in 2000, the MDGs are a blueprint that guides the efforts of the 

United Nations Development Program and various and various aid agencies, providing 

concrete, numerical benchmarks for tackling extreme poverty in its many dimensions to 

be achieved by 2015. The MDGs define 8 goals (United Nations [UN], 2010) with 21 

targets that are measured by 60 indicators. TB falls under the 6th goal related to fighting 

disease epidemics, aiming to: “Combat HIV/AIDS, Malaria and other diseases”. Within 

this goal the following target refers to TB: “Halt and begin to reverse the incidence of 

malaria and other major diseases”. Related to this target, the following indicator refers to 

TB: Halt and begin to reverse TB incidence by 2015; Reduce prevalence and deaths due to 

TB by 50% compared with a baseline of 1990.   

To achieve these indicators the WHO adopted a Partnership Global Plan to Stop TB (WHO, 
2011). Launched in January 2006, it includes sputum smear microscopy as the main 
diagnostic tool. Indeed, one of the targets of this plan is stated as follows: “A treatment 
success rate among sputum smear positive case of 90%”. The main reason for sputum smear 
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microscopy to be included is that it is the main non-invasive technique employed for TB 
diagnosis. Other non-invasive techniques include culture and chest radiography.  

Sputum smear microscopy has several operational advantages over culture as a diagnostic 
tool (Luelmo, 2004): “The results are available soon, correlate with infectiousness, and 
identify both patients at high risk of death from tuberculosis if untreated and patients 
who require more drugs in the initial treatment regimen because of greater bacterial 
load”. In addition sputum smear microscopy has an important role in follow up of TB 
treatment. Only when the smears are negative can the intensive phase of the treatment be 
suspended.  

Despite the historical importance of chest radiography in TB diagnosis, it is not used today 
as a diagnostic tool alone. The following reasons justify this practice: 1) Some other diseases 
of the lung show a similar appearance in radiographic picture. Consequently radiographic 
exam is not specific to TB; 2) Lesions of pulmonary tuberculosis can take almost any form in 
a radiographic image (American Thoracic Society [ATS], 2000) .   

Two main facts enable the use of sputum smear microscopy for TB diagnosis. The first one is 
that special dyes allow to differentiating the bacillus from the background. The second one 
is that there is a positive correlation between the number of bacillus in the smear and the 
probability of their being identified by microscopy.  

To support the last statement, Table 1 (David, 1976, as cited in Toman, 2004a) shows the 

positive correlation that exists between the number of bacillus present in a sputum 

specimen, the number of bacillus in a smear and the probability of finding theses bacillus by 

microscopy. For this study 0.01 ml of sputum was placed on a slide and spread over an area 

of 200mm2. The magnification of the microscope used allowed for observing 10.000 fields on 

this slide.  

No. of bacilli 

observed

Estimated concentration of 

bacilli per ml of especimen

Probability of a 

positive result

0 in 100 or more field <1000 <10%

1-2 in 300 fields 5000-10000 50%

1-9 in 100 fields about 30 000 80%

1-9 in 10 fields about 50 000 90%

1-9 per field about 100 000 96.2%

10 or more per field about 500 000 99.95%
 

Table 1. Number of observed bacilli, concentration of bacilli in sputum specimen  
(culture results) and probability of a positive result 

Two techniques are used for TB diagnostic with sputum smear microscopy: Fluorescence 

microscopy and conventional microscopy. Fluorescence microscopy uses an acid-fast 

fluorochrome dye (eg, auramine O or auramine-rhodamine), while conventional microscopy 

uses the carbolfuchsin Ziehl-Neelsen - ZN or Kinyoun acid-fast stains. While the first one 

uses an intense light source, such as a halogen or high-pressure mercury vapor lamp, the 

second one uses a conventional artificial light source.  

www.intechopen.com



Sputum Smear Microscopy for Tuberculosis: Evaluation of Autofocus  
Functions and Automatic Identification of Tuberculosis Mycobacterium 279 

1. Fluorescence microscopy has the following main advantages over conventional 
microscopy: 1) Fluorescence microscopy uses a lower power objective lens (typically 
25x), while conventional microscopy uses a higher power objective lens (typically 100x). 
As a consequence fluorescence microscopy allows the same area of a smear to be 
scanned in a much shorter time than with conventional microscopy (Bennedesen & 
Larsen, 1966);  

2. Fluorescence microscopy is on average 10% more sensitive than conventional 
microscopy (Steingart et. al., 2006).  

The main shortcomings of fluorescence microscopy are: 1) The relatively high costs of the 
microscopy unit and its maintenance when compared with the conventional microscopy 
unit; 2) The handling and maintenance of the optical equipment require advanced technical 
skill (Toman, 2004b).  

The sensitivity of tuberculosis diagnostic through sputum smear analysis reported in the 
literature varies greatly. While reported sensitivities of conventional microscopy range from 
0.32 to 0.94, reported sensitivities of fluorescence microscopy range from 0.52 to 0.97. On 
average the specificity of fluorescence microscopy is similar to conventional microscopy and 
range from 0.94 to 1 (Steingart et. al., 2006).  

In addition to the huge variability in sensitivity, the manual screening for bacillus 
identification is a labor-intensive task that consumes between 40 minutes and 3 hours, 
depending on patient’s level of infection and it is needed to analyse 40-100 images 
(Sotaquirá, 2009).   

Automatic methods for bacilli screening were first developed for fluorescence microscopy 
images (Veropoulos et. al., 1998; Forero et. al., 2003). The first methods for automatic bacilli 
screening in conventional microscopy were published only in 2008 (Costa et. al., 2008; 
Sadaphal et. al., 2008; Raof et. al., 2008). Some other methods for automatic bacilli screening 
were published in recent years (Forero, 2004, 2006; Lenseigne et. al., 2007; Sotaquira et. al., 
2009; Makkapati, et. al., 2009; Khutlang et. al., 2010). 

Some authors (Forero et. al., 2006; Sotaquira, 2009; Khutlang, 2010) claimed that the main 
advantages of an automatic bacilli screening over a manual one are better reproducible 
values for sensitivity and specificity and a faster screening process. Table 2 shows reported 
values for sensitivity, specificity and time waste for one image analysis using automatic 
methods.  

The sensitivity and specificity values previously cited for manual screening methods refer to 
tuberculosis diagnosis. The sensitivity and specificity values for automatic methods shown 
in Table 2 refer to object classification as bacillus or not bacillus. Therefore, a rigorous 
comparison of sensitivities and specificities between manual and automatic screening 
methods could not be done. 

Only one paper of Table 2 cited time wasted for one image analysis, 1.87s. To compute the 
time consumed with a TB automatic diagnosis it is necessary to take into account the 
number of images needed to achieve a correct diagnosis. As previously cited, in order to 
achieve a correct diagnosis, it is necessary to analyze between 20 and 100 fields of one slide. 
With an automatic procedure, it is also necessary to take into account the time spent with 
focusing computations, image acquisition and microscopy displacement. According to 
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Santos (Santos et. al., 1997) focusing computations takes 1.8s per field, while acquisition 
takes 0.7s, including 0.5s for slide movement. Assuming that no parallel process occurs and 
considering the worst case scenario of 100 images we have the time spent with an automatic 
diagnosis (Tad) given by: 

 ௔ܶௗ = ͳͲͲݔሺͳ.ͺ͹ + ͳ.ͺ + Ͳ.͹ሻ = 437s ≅ ͹	݉݅݊(1)  ݏ݁ݐݑ 

This value is a few times smaller than the value of 40 minutes previously cited for a TB 
manual diagnostic with sputum smear microscopy.  

Author Microscopy
Sensitivity 

(%)

Specificity   

(%)

Time for one image 

analysis (seconds)
Computer

Veropoulos, 1998 Fluorescence 93.53 98.79 not cited --

Forero, 2006 Fluorescence 97.89 94.67 not cited --

Sotaquira, 2009 Conventional 90.90 100 1.87

Intel processor of 2 

GHz and 512 MB of 

RAM

Khutlang, 2010 Conventional 97.77 99.13 not cited --  

Table 2. Sensitivity, Specificity and time for one image analysis  

Steps involved in automated microscopy include those shown if Figure 2. In the following 

sections, we analyze some of these steps. In section 2 we address the problem of auto 

focusing, discussing the main functions used in auto focusing methods. In the third section 

we discuss the main differences between the methods used for bacilli segmentation and 

classification in fluorescence microscopy and conventional microscopy. 

 

Fig. 2. Steps involved in automated bacilli recognition 

2. Autofocus evaluation functions  

Automatic microscopy is accomplished through coupling an electronic camera to a 

microscope. Auto focusing of electronic cameras is accomplished by searching for the lens 

position that gives the best focused image (Subbaro &. Tyan, 1995). A focused image can be 

thought of as one that, for a set of images captured with different microscope stages, 

presents the best average focus over an entire field of view. In a frequency viewpoint, a 

focused image can be thought of as one that has more high frequency components. It is 

important that samples be well prepared, resulting in thin structures, because thick samples 

present structures with different foci. An auto focusing process employs a focus measure 

and a procedure to determine the best focused image. A focus measure can be defined as 

follow: “First, the image for which the focus measure needs to be computed is normalized 

for brightness by dividing the image by its mean brightness. Then, it is convolved with a 

focus measure filter (FMF). Then, the energy (sum of squared values) of the filtered image is 

computed. This energy is the focus measure” (Subbaro &. Tyan, 1998). An important 

conclusion concerning focus measures, established by the same authors, is that the best 

focus measure could be different for different objects depending on both image content and 
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noise characteristic. In other words, there is no best focus measure that can be used for auto 

focusing of different image types. Because of this, it is important to find the best focus 

measure that can be used in TB auto focusing. In this section we will revise the main focus 

measure functions used in automatic microscopy.  

The main focus measures functions used in auto focusing can be divided into four groups: 

Functions Based on Image Differentiation 

Different FMF have been used for image differentiation:   

Threshold Absolute Gradient: This function computes and accumulates the first difference 
between a pixel and its neighbor with a distance of one, when the difference is larger than a 
threshold. 

௧௛_௚௥௔ௗܨ  = ∑ ∑ |݃ሺ݅, ݆ + ͳሻ − ݃ሺ݅, ݆ሻ|	ேெ ,|݃ሺ݅	ℎ݈݅݁ݓ (2)    ݆ + ͳሻ − ݃ሺ݅, ݆ሻ| ≥  ߠ

Squared Gradient: Similar to the previous function but with squared difference. The larger 
differences influence the results more. 

௦௤_௚௥௔ௗܨ  = ∑ ∑ |݃ሺ݅, ݆ + ͳሻ − ݃ሺ݅, ݆ሻ|ଶ	ேெ ,|݃ሺ݅	ℎ݈݅݁ݓ (3)   ݆ + ͳሻ − ݃ሺ݅, ݆ሻ| ≥  ߠ

Tenenbaum Gradient (Krotkov, 1987): This function uses the Sobel operator. 

௧௘௡௘௡ܨ  = ∑ ∑ ܶሾ݃ሺ݅, ݆ሻሿ	ேெ   (4) ܶሾ݃ሺ݅, ݆ሻሿ = ,௫ଶሺ݅ܩ ݆ሻ + ,௬ଶሺ݅ܩ ݆ሻ	 								ܩ௫ሺ݅, ݆ሻ, ,௬ሺ݅ܩ ݆ሻ =  	ݏݎ݋ݐܽݎ݁݌݋	݈ܾ݁݋ܵ	ℎݐ݅ݓ	݊݋݅ݐݑ݈݋ݒ݊݋ܿ	݁݃ܽ݉ܫ
Brenner Gradient (Brenner et. al., 1971): This function computes the first difference between 
a pixel and its neighbor with a distance of two.   

௕௥௘௡௡௘௥ܨ  = ∑ ∑ |݃ሺ݅, ݆ + ʹሻ − ݃ሺ݅, ݆ሻ|ଶ	ேெ ,|݃ሺ݅	ℎ݈݅݁ݓ (5)  ݆ + ͳሻ − ݃ሺ݅, ݆ሻ| ≥  ߠ

Energy of Image Laplacian: This function implements the image convolution with a Laplace 
mask. 

௅௔௣௟௔௖௘ܨ  = ∑ ∑ 	ேெ ൫	݃ሺ݅, ݆ + ͳሻ + ݃ሺ݅, ݆ − ͳሻ + 	݃ሺ݅ + ͳ, ݆ሻ + 	݃ሺ݅ − ͳ, ݆ሻ − Ͷ݃ሺ݅, ݆ሻ൯ଶ
  (6)  

First order Gaussian Derivative (Geusebroeck et. al., 2000): This function involves image 
convolution  with the derivative of a Gaussian smooth filter. ீܨ ௔௨௦௦௜௔௡ = ଵேெ ∑ ∑ ൫݃ሺ݅, ݆ሻ ∗ ,ݔ௫ሺܩ ,ݕ ሻ൯ଶߪ +ெே ቀ݃ሺ݅, ݆ሻ ∗ ,ݔ௬ሺܩ ,ݕ ሻቁଶߪ

,ݔ௫ሺܩ  ,ݕ ,ݔ௬ሺܩ	݀݊ܽ	ሻߪ ,ݕ 	݊݋݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ	ℎ݁ݐ	ݏ݅	ߪ ݏ݊݋݅ݐܿ݁ݎ݅݀	ݕ	݀݊ܽ	ݔ	ℎ݁ݐ	݊݅	ݏ݁ݒ݅ݐܽݒ݅ݎ݁݀	݊݅ܽݑݏݏܽܩ	ݎ݁݀ݎ݋	ݐݏݎ݂݅	ℎ݁ݐ	݁ݎܽ	ሻߪ ≅ 	 ሺ݀/ʹሻ/√͵,  d= bacillus width 

www.intechopen.com



 
Understanding Tuberculosis – Global Experiences and Innovative Approaches to the Diagnosis 282 

Statistics-Based Functions  

These functions evaluate the contrast of an image: 

Variance: This function measures the variation in image gray level of pixels. 

௩௔௥ܨ  = ଵெே ∑ ∑ |݃ሺ݅, ݆ሻ − ݃̅|ேெ   (7) 

Normalized Variance: This function compensates for the differences in bright levels among 

different images 

௩௔௥ܨ  = ଵெே௚ത ∑ ∑ |݃ሺ݅, ݆ሻ − ݃̅|ேெ  (8) 

Functions Based on Histogram 

Entropy: The entropy function is a measure of information content 

௘௡௧௥ܨ  = − ∑ ௟௟݌݃݋௟݈݌  ݈	݈݁ݒ݈݁	ݕܽݎ݃	݂݋	ݕܿ݊݁ݑݍ݁ݎ݂	݁ݒ݅ݐ݈ܽ݁ݎ	ℎ݁ݐ	ݏ݅	௟݌ (9)  
Variance of Log Histogram: This function emphasizes the bright pixels in the image by 

multiplying the variance by the logarithm 

௩௔௥_௟௢௚ܨ  = ∑ ൫݈ − 	 ௟௟݌݃݋௟௢௚ሼ݈ሽ൯݈ܧ ௟௢௚ሼ݈ሽܧ (10)  = ෍ ௟௟݌݃݋݈݈ ݂݋	݁ݑ݈ܽݒ	݀݁ݐܿ݁݌ݔ݁	ℎ݁ݐ	ݏ݅	 log ℎ݅݉ܽݎ݃݋ݐݏ 

Functions Based on Correlation Measurement 

These functions were proposed by Vollath (Vollath, 1998) and, according to the author, had 
good performance in noise presence. 

Autocorrelation (Vollath’s ܨସሻ:	 
௔௨௧௢௖௢௥௥ܨ  = ∑ ∑ ݃ሺ݅ + ͳ, ݆ሻ݃ሺ݅, ݆ሻ	ேெ − ∑ ∑ ݃ሺ݅ + ʹ, ݆ሻ݃ሺ݅, ݆ሻ	ேெ  (11) 

Standard Deviation-Based Correlation (Vollath’s ܨହሻ: 
௔௨௧௢௖௢௥௥ܨ  = ∑ ∑ ݃ሺ݅ + ͳ, ݆ሻ݃ሺ݅, ݆ሻ	ேெ −  ଶ  (12)̅݃ܰܯ

Some measures based on frequency content have been proposed, such as the wavelet 

transform (Kautsky et. al., 2002). Nevertheless it did not present good results in TB auto 

focusing.  

It should be observed that some of these functions depend on threshold, while some others 

do not depend on any parameter. Some of these functions were used for TB auto focusing. 

Table 3 shows published papers involving TB auto focusing, detailing the focus measure  

employed in each one. 

The papers of Russel (Russel & Douglas, 2007) and Kimura (Kimura Junior et. al., 2010) were 
careful to consider slides with different background contents. For example, Kimura divided 
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the TB conventional microscopy images into two groups: Images with high density 
background content and images with low density background content. Figure 3(a) shows an 
image with high density background content and Figure 3(b) an image with low density 
background content. In both groups the variance and normalized variance functions 
showed the best performance.  Osibote (Osibote et. al., 2010) also obtained a better 
performance with the normalized variance function.  

Authors Microscopy Type Evaluation Functions Results

Forero et. al.          

(2004)
Fluorescence

Variance, Energy of Image 

Laplacian, Wavelet Transform, 

Autocorrelation, Variance of 

Log Histogram

The best results were 

obtained with Variance of Log 

Histogram Function. Other 

measure produced 

meaningful results

Kimura Junior et. al.  

(2010)
Conventional

Brenner Gradient, Energy of 

Image Laplacian, Wavelet 

Transform, Variance, 

Normalized Variance, 

Autocorrelation, Standard 

Deviation-Based Correlation, 

Entropy, Variance of Log 

Histogram

The best results were 

obtained with Variance and 

Normalized Variance. Entropy 

was the quickest function. 

Wavelet function was the 

slower function.

Osibote et. al.         

(2010)
Conventional

Normalized Variance, Brenner 

Gradient, Energy of Image 

Laplacian, Autocorrelation, 

Tenembaum Gradient

The best results were 

obtained with Normalized 

Variance Function

Russel & Douglas     

(2007)
Conventional

The best results were 

obtained with Energy 

Laplacian Function. Compared 

with manual focus: average 

difference = 1.45μm. Standard 

deviation = 1.88μm.

Energy of Image Laplacian, 

First Order Gaussian 

Derivative, Variance of Log 

Histogram

 

Table 3. Published papers involving TB auto focusing  

    
(a)                                                                      (b) 

Fig. 3. Images with different density background content. (a) high density background 
content; (b) low density background content 
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The shape of a focus function typically resembles a Gaussian curve as shown if Figure 4.  

.   

Fig. 4. Typical shape of a focus function 

The horizontal coordinate of the graph of Figure 4 corresponds to the z position of the 
microscope vertical axis. To plot the focus function it is necessary to vary this z position and 
obtain a stack of points described in equation (13). The z position movement for obtaining 
the image stack is illustrated in Figure 5. 

 Stack =  {(FM1, z1), (FM2,z2),……..(FMn/2zn/2)….(FMn-1zn-1) (FMn,zn)} (13) 

Where: FMi = Focus measure at position zi 

 

Fig. 5. Z position movement for obtaining the image stack 

The in-focus image normally is the central image of the stack. Varying the z position 
changes the image sharpness and hence the degree of focus. Each image in a stack, therefore, 
is at a different focus level. For focus measure computation, images are converted from RGB 
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to gray scale. The performance of a focus measure is frequently evaluated using the focus 
curve and according to four features (Firestone at. al., 1991), defined as: 

1. Accuracy: expressed here as the number of steps by which the maximum of a particular 
focus function departs from the correct focal position; 

Range: the number of steps between the two neighboring local minima around the global 
maximum; 

Number of false maxima: number of spurious focus function maxima; 
Width: computed at 50% of the height focus curve. This criterion describes the sharpness or 

narrowness of the peak. 

Santos et al. (1997) introduced a 5th feature, Execution Time, as follows: 

Execution Time: the time taken for an algorithm to compute the focus plot and locate the 
position of maximum focus. 

According to Santos (Santos et. al., 1997) a quantitative evaluation may compare a focus 

curve to an ideal function with respect to each of these features. The authors define an ideal 

focus function as having a value of 0 for execution time, accuracy, width and number of 

false maxima and a range determined by multiplying the number of images in the stack 

used to plot the focus function and the step size between each position in the stack 

(adjustment step of the microscopy). To obtain a measure of how a focus measure departs 

from an ideal behavior the following algorithm is used:  

1. A series of focus measure curves is obtained (these series should contain images with 
different background content). The mean and the standard deviation of each feature in 
the series are obtained. 

2. The five feature values of each image series are normalized by subtracting the 
corresponding mean and dividing by the standard deviation. This produces values for 
the different features that can be compared as they all now have mean zero and 
standard deviation equal to unity. 

3. For each feature the distance from the ideal function is computed. First the differences 

between the feature value in the function and in the ideal function are obtained. Then 

the square root of the addition of the squares of these results is computed. 

4. Finally, to produce a final figure of this function, the mean value of the five distances is 
obtained.   

When doing a TB diagnosis with sputum smear microscopy, a bacilli count on a number of 

fields of one slide is necessary. A time-consuming autofocus procedure determines the 

optimal focus through the acquisition of the focus function for each field. To reduce lens 

motion and achieve faster autofocus times the following procedure proposed by Osibote 

(Osibote et. al., 2010) can be used: 

1. Obtaining the focus position for the first field of the slide through the acquisition of a 

full image stack of the focus measure, ensuring a perfect evaluation of this field to avoid 

locating the optimal focus in a false minimum position; 

2. Adopt a simplified procedure to determine the optimal focus position in subsequent 

fields, using the optimal focus position of the previous field as a reference. For this 

purpose the procedure proposed by Yanzdafar (Yanzdafar et. al., 2008) can be used.  
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3. Automated sputum smear microscopy 

According to Forero (Forero et. al., 2006) bacilli are structures that have a length between 1 

and 10μm and a width between 0.2 and 0.6μm presenting a straight, curve or bent shape, 

as shown if Figure 6.  

 

Fig. 6. Different shapes of bacilli 

Depending on the staining procedures used, the bacilli assume different appearances. When 

the sputum smear is stained with an acid-fast fluorochrome dye, as is the case when 

fluorescence microscopy is used, the bacilli fluoresce in the range between green and yellow 

up to white, while the background is dark. Otherwise, when the sputum smear is stained 

with carbolfuchsin Ziehl-Neelsen - ZN or Kinyoun acid-fast stains, as is the case when 

conventional microscopy is used, the bacilli may have different colours, varying from light 

fuchsia to dark purple. In Figure 7 we show images of both microscopy types.  

      

Fig. 7. Fluorescence microscopy (after Forero et al., 2004) and conventional microscopy 
sputum smear image 

The block diagram of Figure 2 shows the main steps involved in automated bacilli 

recognition. Table 4 shows the main methods used in the literature for each step of this 

block diagram.    

As shown in Figure 2, after image capture, bacilli segmentation is performed. The 

segmentation procedures adopted in both types of images shown in Figure 7 are completely 

different from each other.  

In fluorescence microscopy images, the bacilli are easily separated from the background 
with a threshold operation. Afterwards, the segmentation is performed using edge detection 
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operators, such as canny operators (Veropoulos et. al., 1998; Forero et. al., 2004). 
Intermediate steps for edge linking and boundary tracing are also employed. Figure 8 shows 
the results of the segmentation procedure used by Forero (Forero et. al., 2004) when   
applied to the image on the left side of Figure 7. 

In conventional microscopy images, the bacilli are not easily separated from the background 
with a threshold operation. In this case, for bacilli segmentation, colour space techniques are 
used. As shown in Table 4, the techniques  found in the literature vary: histogram based 
techniques, Bayesian pixel classifiers, KNN pixel classifiers, etc. The colour spaces used also 
vary: RGB, YCbCr and Lab  

Author Microscopy Bacilli segmentation Bacilli Classification Results

Veropoulos 

et. al, 1998
Fluorescence

Edge detection 

techniques: Canny 

operator

Shape Descriptors: 15 

Fourier descriptors; 

Classifier: Back-propagation 

(BP), RBF networks, KNN, 

Kernel Regression (KR)

Accuracy:                           

BP - 97.57%                     

RBF - 88.06%                      

KNN - 91.80                       

KR - 95.24%

Forero et. al, 

2004
Fluorescence

Edge detection 

techniques (Canny 

operator) + Adaptive 

color thresholding (RGB 

color space)

Shape Descriptors: 

compactness,

eccentricity and Hu’s 

moments descriptors; 

Classifier: Classification tree

Specificity, Sensitivity: 

99.74%, 73.33%                 

94.96%, 86.66%

Forero et. al, 

2006
Fluorescence

Edge detection 

techniques (Canny 

operator) + Adaptive 

color thresholding

Shape Descriptors: Hu’s 

moments descriptors; 

Classifier: Gaussian mixture 

models

Specificity, Sensitivity: 

97.89%, 94.67%                 

98.10%, 92.9%

Costa et. al., 

2008 
Conventional

Color space techniques: 

Adaptive global 

threshold;                   

Color space: RGB

Size filters
Sensitivity: 76.65%          

False Positive Rate: 

12%

Sadaphal et. 

al., 2008
Conventional

Color space techniques: 

Bayesian segmentation; 

Color space: RGB

Shape Descriptors: Axis 

ratio, eccentricity; 

Classifier: Classification tree

No information

Raof et. al., 

2008
Conventional

Color space techniques: 

Thresholding;                   

Color space: RGB

No information

Sotaquirá et. 

al. , 2009
Conventional

Color space techniques: 

First derivative of 

histogram;                   

Color space: YCbCr, Lab

Accuracy:                             

96.3%                                    

False detection: 9.78%

Khutlang et. 

al. (2010)
Coventional

Color space techniques: 

Pixel classifiers (Baye's, 

Linear regression, 

quadratic discriminant);  

Color space: RGB

Shape Descriptors: Fourier 

features, color moments, 

eccentricity, compactness; 

Classifier: Probabilistic 

neural network, kNN, SVM

Accuracy: 98.55%             

Sensitivity: 97.77%          

Specificity: 99.13%

 

Table 4. Published papers involving Automated Sputum Smear Microscopy   
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After the segmentation step is finished, not only bacilli are segmented. Some structures  

fluoresce the same way as bacilli in fluorescence microscopy images. Similarly some 

structures have the same colour properties as bacilli in conventional microscopy images. 

confused with bacilli. These structures, also called noise, could be debris or cells present in 

the background.  To illustrate this point, near the lower left corner of Figure 7, a circular 

structure can be seen that fluoresces the same way as a bacillus, but because of its circular 

shape could not be classified as one. Nevertheless, this structure is  segmented the same way 

as a bacillus, as shown in Figure 8.   

 
 
 
 
 

  
 
 
 
 

Fig. 8. Objects resulting from segmentation procedures applied in the left image of Figure 7. 

To separate noise from bacilli in the segmented images an additional step, called object 

classification in the block diagram of Figure 2 is normally employed. For this purpose 

classifiers using shape descriptors are used. As the bacilli may have different sizes, positions 

and orientations, the shape descriptors used must be rotation, translation and scale 

invariant. As shown in Table 4, the most used descriptors used are: compactness, 

eccentricity, Hu’s moments and Fourier Descriptors. Varied classifiers such as classification 

trees, Support Vector Machines and Neural Networks were employed by some authors in 

order to recognize the bacilli. 

The results presented in Table 4 show that, in bacilli detection, results for sensitivity and 

specificity as good as 97.77% and 99.13% are cited. It is noteworthy, however that the 

authors who cited these values, do not consider touching bacilli. In some cases, as the one 

shown in Figure 9, these bacilli are present in large quantities. Disregarding these bacilli 

implies a different count of what is done by manual means. Because of this, we believe 

that other ways of removing noise than those that use shape descriptors must be 

investigated.  
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Fig. 9. Conventional microscopy image showing some examples of touching bacilli 
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