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1. Introduction 

Approximately 15% of all cancers worldwide appear to be associated with viral infections, 
and several human DNA viruses are now accepted as causative factors of specific 
malignancies. Human papillomaviruses (HPVs) cause cervical and anogenital cancers (zur 
Hausen 1999) and is now associated with oral cancers (Gillison & Shah 2001), but, the 
natural history of oncogenic HPV infections in the oral cavity is poorly understood. Epstein-
Barr virus (EBV) causes infectious mononucleosis and is closely associated with Burkitt’s 
lymphoma, nasopharyngeal carcinoma (NPC), and Hodgkin’s disease (Raab-Traub 1996). 

NPC is a malignant tumour that originates within the post nasal space (Pathmanathan et 
al. 1995). The etiologic factors of endemic NPC include environmental risk factors, genetic 
susceptibility and viral infection (Yu 1991). Evidence of EBV DNA in almost all NPC cells 
that were studied supports the association of NPC with EBV, while, HPV has been 
detected in a variety of head and neck tumours including NPC. Current data suggest that 
approximately 15–20% of head and neck squamous cell carcinomas (HNSCC) are linked to 
HPV infection. To date, different degrees of associations between HPV and NPC have 
been described, yet no conclusive data have been obtained. Given the particular 
characteristics of NPC in the Moroccan population in terms of incidence, age distribution 
and the predominance of specific EBV strains, and HPV genotype we describe in this 
chapter the role of the Epstein-Barr virus ZEBRA protein and HPV in the carcinogenesis 
of NPC. 

1.1 Nasopharyngeal carcinoma 

NPC is a malignancy of the head and neck region that arises in the epithelium surface of the 
posterior nasopharynx, and shows a peculiar geographic and ethnic distribution. The 
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highest incidence rates of NPC are found among the southern Chinese population and in 
isolated northern populations such as Eskimos and Greenlanders (30 to 80 cases per 100,000 
per year) (Parkin & Muir 1992). Intermediate incidence (8 to 12 cases per 100,000 per year) 
was reported in the Mediterranean basin, especially among the Arabic populations of North 
Africa (7-10% of all cancers among men), where NPC is also the commonest tumour of the 
ear, nose and throat region (Benider et al. 1995). The aetiology of NPC seems to be 
multifactorial with evidence that genetic susceptibility, environmental factors and viral 
infection with EBV reactivation and HPV infection are involved together or separately, 
simultaneously or consecutively (Hildesheim & Levine 1993). 

The increased risk of NPC in North African population was associated with the 
consumption of rancid butter and rancid sheep fat. In fact, higher level of N-nitrosamines 
in rancid fat has not been demonstrated, which suggests some other disease causing 
chemicals in this population. A possible compound is butyric acid, which is also named n-
Butanoic Acid. The glyceride form of butyric acid makes up 3 to 4% of butter, and is 
released into free butyric acid by hydrolysis when it becomes rancid (Feng et al. 2007). 
Butyric acid is known to be able to activate EBV in the B-lymphoid cells into lyric cycle 
(Takimoto et al. 1984), and therefore, could be related to NPC. In addition, Marijuana 
smoking was associated significantly to high NPC risk independently of cigarette 
smoking which suggests dissimilar carcinogenic mechanisms between cannabis and 
tobacco. 

Genetic traits play a significant role in the development of NPC. Specific human leukocyte 
antigen (HLA) haplotypes have been reported to be associated with high risk for NPC, 
namely HLA-B13 in Tunisians, HLA-A3, B5 and B15 in Algerians and HLA-B18 allele in 
Moroccans population. In contrast, HLA-Aw33, -B14 and A9 were associated to low risk of 
NPC in Tunisians, Algerians and Moroccans, respectively. 

Retrospectives and prospectives epidemiologic studies have indicated that assocaition 

between EBV, an ubiquitous human herpesvirus, and the development of different 

malignancies, such as Burkitt’s lymphoma, 40%–50% of Hodgkin’s disease, B-cell lymphoma 

in immunocompromised individuals, and NPC (Rickinson 2002). Undifferentiated NPC is 

one of the most striking examples of human malignancies that have been found strongly 

associated with the EBV, and interest in HPV as a cofactor in NPC occurrences has emerged 

over the last few years (Punwaney et al. 1999). 

2. EBV life cycle in brief 

During primary infection, EBV initially undergoes a brief replication in the epithelial cells of 
the oropharynx and salivary glands (Young & Rickinson 2004). The virus subsequently 
infects trafficking B-cells where the virus establishes a lifelong persistence and proceeds 
periodic spontaneous reactivation, resulting in lytic replication, infectious virus production 
and transmission (Cohen 2000). Upon reactivation, EBV can productively infect 
oropharyngeal epithelium, leading to infectious virus production and transmission (Jenkins, 
Binne & Farrell 2000). In latent infection, EBV genomic DNA exists as an episome, 
replicating only once during S phase and partitioning accurately into daughter cells during 
the mitotic phase. In lytic state, the EBV genomic DNA is linear. The initiation of lytic 
replication process greatly depends on the expression of two EBV immediate-early (IE) 
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genes, BZLF1 and BRLF1, whose protein products (Zta and Rta) function as transcriptional 
transactivators and induce the lytic cascade of viral gene expression (Flemington & Speck 
1990). Interestingly, a variety of important proteins encoded by EBV show the homology of 
sequences and functions to diverse human cellular proteins. Furthermore, the EBV proteins 
can modulate the expressions of a large number of cellular proteins. 

2.1 ZEBRA on the scene 

In cancer cells, EBV is also present in a latent state. During latency, EBV is effectively hidden 

from the immune system but if viral replication is initiated and lytic replication ensues, the 

cells express EBV genes that are more readily recognized by the immune system. The lytic 

DNA replication of EBV requires many viral proteins, including ZEBRA, polymerase, 

polymerase processivity factor, single-stranded DNA binding protein, primase, helicase and 

primase-associated factor. Among them ZEBRA (also called BZLF1, EB1 and Zta) is a lytic 

switch transactivator for expression of many early lytic genes and plays a critical role in 

both viral gene transcription and viral replication (Fixman, Hayward & Hayward 1995). Of 

all the viral transactivators, ZEBRA is unique in initiation of the ordered cascade of EBV 

gene expression, resulting in the expression of an estimated over 100 viral replication 

associated genes including those encoding early antigens, viral capsid antigens and 

membrane antigens (Baer et al. 1984). Many target genes of ZEBRA, such as BZLF1, BRLF1 

and BMLF1 encoding the transactivators, BHRF1 and BHLF1 encoding the viral homologues 

of Bcl-2 (Marshall et al. 1999), and BMRF1 encoding EBV DNA polymerase accessory 

protein (Zhang et al. 1997), have been identified in the EBV genome. Through binding to cis-

acting AP-1 or ZEBRA responsive elements (ZREs) in lytic cycle promoters ZEBRA activates 

the transcription of the target genes (Lieberman et al. 1990). Recently, some cellular genes 

modulated by ZEBRA have also been revealed. The products of these cellular genes are 

fundamentally linked to the viral life cycle, virus-host interactions, hosT-cell environment, 

cell cycle progression and immunomodulation. 

2.2 ZEBRA structure 

ZEBRA or Zta is a member of the family of bZIP transcription factors (Sinclair 2003); it 

contains adjacent DNA contact (approximately amino acids 175 to 195) and multimerization 

domains (approximately amino acids 196 to 245) (figure 1) (Sinclair 2006) and can interact 

directly with specific DNA sequence elements, i.e., ZREs as a multimer . By analogy with 

other members of the bZIP family, the multimerization interface of ZEBRA has been 

predicted to fold through a coiled-coil structure (Sinclair & Farrell 1992). Biophysical 

evidence that this prediction holds true was recently provided (Hicks et al. 2001). 

The DNA binding region and dimerization region partly conform to the well-characterized 

bZIP (basic/leucine zipper) domain that is found in a family of cellular transcription factors 

such as fos/jun, C/EBPa and GCN4. Interestingly, ZEBRA recognizes a wider range of 

DNA binding sites than other bZIP members. bZIP proteins are homo- or heterodimers that 

contain highly basic DNA binding regions adjacent to regions of a-helix that fold together as 

coiled coils (Sinclair 2006); the interaction with DNA is dependent on dimer formation 

(Busch & Sassone-Corsi 1990). 
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Fig. 1. Schematic representation of the functional regions of ZEBRA and its structure. The 
transactivation (TA) domain is shown in grey and the DNA contact region and the 
dimerization region are shown in green and blue. The amino acid sequence of the DNA 
binding and dimerization domain is expanded below. The location of the region with 
homology to leucine zippers (ZIP) and the additional region required for dimerization 
function (CT) are indicated below the sequence  

2.3 Role of ZEBRA during viral replication 

During the lytic phase of the EBV life cycle, the activation of viral DNA synthesis is 

related to ZEBRA efficient recognition of a large (1 kb) complex intergenic region that 

serves as the origin of replication. This region, known as oriLyt, consists of essential and 

auxiliary segments (Hammerschmidt & Sugden 1988).The two essential components of 

oriLyt, the upstream and downstream elements, together constitute the minimal origin of 

DNA replication (Rennekamp, Wang & Lieberman 2010). The auxiliary component serves 

as an enhancer element that augments DNA replication (Cox, Leahy & Hardwick 1990). 

ZEBRA recognizes the origin of lytic DNA replication (oriLyt) by interacting with  

seven ZEBRA-binding sites (Schepers, Pich & Hammerschmidt 1993). Mutation of all 

seven binding motifs in the background of a recombinant virus drastically reduces 

production of infectious virus particles (Feederle & Delecluse 2004).These ZEBRA binding 

elements are located in two noncontiguous regions of oriLyt. Four elements are present in 

the upstream core region of oriLyt and overlap with the promoter of the BHLF1 open 

reading frame and three additional ZEBRA binding elements located mainly in the 

enhancer region are dispensable for viral replication (Schepers, Pich & Hammerschmidt 

1996). 

The current model for the role of ZEBRA in lytic DNA replication suggests that the protein 

serves as a physical link between oriLyt and core components of the replication machinery. 

The six core replication factors encoded by EBV are the DNA polymerase (BALF5); the 

polymerase processivity factor (BMRF1); the helicase (BBLF4); the primase (BSLF1); the 

primase associated factor (BBLF2/3), and the single-stranded DNA binding protein (BALF2) 

(El-Guindy, Heston & Miller 2010). The function of tethering replication proteins to oriLyt is 

not limited to ZEBRA; the transactivation domains of Sp1 and ZBP89 interact with BMRF1 

and BALF5 and target them to the downstream region of oriLyt (Baumann et al. 1999). 

Similarly, ZBRK1, a cellular DNA binding zinc finger protein, serves as a contact point for 

BBLF2/3 on oriLyt (Liao et al. 2005).  
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2.4 Cellular genes induction 

The EBV lytic transactivator ZEBRA not only initiates expression cascade of viral lytic genes 

but also induces some cellular genes involved in immune regulation (Cayrol & Flemington 

1995; Chen, C., Li & Guo 2009). ZEBRA can turn on gene expression through binding to and 

activation of the target promoters. Notably, a previous study shows that ZEBRA induces 

transcription of human interleukin 10 (IL-10) in B cells (Mahot et al. 2003).  

Table 2 lists a number of genes whose expression is perturbed by ZEBRA. In each case, the 

regulation occurs in the absence of other viral genes. Regulation at the RNA level implies 

that ZEBRA may act as transcription factors on the cellular promoters by direct binding or 

via their associations with other transcription factors. However, the mechanisms of 

regulation of the cellular genes have not been assessed further as yet. Several of these genes 

have also been shown to be regulated at the protein level, suggesting relevance. Of special 

note is the identification of a series of cell cycle regulatory genes such as p21CIP1, p53, 

CDC25A and E2F1.  

 

RNA changes Proteins changes 

TGF┚ inh3 (Cayrol & Flemington 1995) C/EBPα (Wu et al. 2003) 

TGF┚ (Cayrol & Flemington 1995) p21 (Cayrol & Flemington 1996) 

┙1 collagen (Cayrol & Flemington 1995) p53 (Wu et al. 2003) 

TKT tyrosine kinase (Lu, J. et al. 2000) p27 (Cayrol & Flemington 1996) 

MMP1 (Lu, J. et al. 2000) E2F1 (MauserHolley-Guthrie, et al. 2002) 

IFN-┛ receptor (Morrison et al. 2001) Stem–loop binding protein 
(MauserHolley-Guthrie, et al. 2002) 

E2F1 (MauserHolley-Guthrie, et al. 2002) CDC25 (MauserHolley-Guthrie, et al. 
2002) 

Stem–loop binding protein (MauserHolley-
Guthrie, et al. 2002) 

Cyclin E (MauserHolley-Guthrie, et al. 
2002) 

CDC25A (MauserHolley-Guthrie, et al. 2002) 

Cyclin E (MauserHolley-Guthrie, et al. 2002) 

C/EBP┙ (Wu et al. 2003) 

p21 (Wu et al. 2003) 

Table 1. Cell genes regulated by ZEBRA 

In NPC, ZEBRA was found to be a potent inducer of IL-8, increasing IL-8 at both protein 

and RNA levels and activating the IL-8 promoter suggesting that the EBV lytic infection 

may contribute to the inflammation-like microenvironment of NPC by the upregulation of 

chemokines (Hsu et al. 2008).  

During EBV reactivation in NPC cells, the lytic protein ZEBRA not only induces GM-CSF 

expression but also upregulates COX-2 that increases production of PGE2 (Dolcetti et al. 

2010; Kared et al. 2008). The secreted GM-CSF and PGE2 may cooperatively promote IL-10 

production from monocytes (Lee et al. 2011). Thus, through the Zta-induced 

immunomodulators, EBV lytic infection in NPC cells may drive nearby monocytes into  

IL-10 producing cells, facilitating local immunosuppression. 
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By initiating or enhancing leukocyte infiltration, the lytic-cycle-induced chemokines may 
contribute to an inflammation-like microenvironment, where the interaction between 
immune infiltrates and tumour cells is crucial for NPC development (Sbih-Lammali et al. 
1999). The contribution possibly occurs not only in the developed NPC tumours but also at 
the precancer stage where an inflammation like microenvironment predisposes 
precancerous cells to tumour formation (Lu, H., Ouyang & Huang 2006), which may 
account for how EBV reactivation serves as a risk factor before the onset of NPC (Chien et al. 
2001). 

2.5 Prognostic value of ZEBRA 

Antibodies against ZEBRA are produced during primary EBV infection, and thus, the 
detection of ZEBRA-specific antibodies may allow an early diagnosis of EBV infections. In 
1991, Joab and al were able to detect IgG anti-ZEBRA antibodies (IgG/ZEBRA) in 87% of 
NPC patients. These antibodies were absent in control sera (Joab et al. 1991). In a more 
recent study, IgG-ZEBRA antibodies have been shown to represent a sensitive marker for 
the diagnosis of NPC in children than IgA-VCA and IgA-EA antibodies, which have been 
recognized as specific markers for this tumour. This study also indicates that Zp125, 
identified as the most immunogenic epitope of the activation domain of ZEBRA protein, 
showed a high degree of immunoreactivity with sera from children, young adult and older 
adult patients with NPC (Dardari et al. 2008). The analysis of antibody patterns in patients 
with NPC indicates that IgG-ZEBRA had better prognostic value than IgA-EA and IgA-
VCA. Stable low IgG-ZEBRA antibody titer, or a striking decline in IgG-ZEBRA antibodies, 
was observed in children during treatment (Gutierrez et al. 2001; Schaade, Kleines & 
Hausler 2001). Of note, children showing low IgG-ZEBRA titers were also negative for 
IgAVCA and IgA-EA; the latter have been identified as being produced following frequent 
reactivation of latent EBV, repeated EBV infection, or both (Gutierrez et al. 2001; Yip et al. 
1994). 

Epigenetic dysregulation plays significant role in oncogenesis. Methylation changes in both 

global and targeted genes have been attributed to EBV+ lymphomas and carcinomas (Niller, 

Wolf & Minarovits 2009). These studies suggest the contribution of EBV genome in the 

epigenetic dysregulation of genes involved in tumorigenesis. Systemic analyses of 

epigenetic alterations under the expression of specific viral gene that may help to specify the 

contribution of EBV genome. Although results from the Ying-Fan Chen (Chen, Y. F. et al. 

2011) suggest that the expression of major viral lytic protein Zta has no effect on changing 

DNA methylation in the host genome, the comprehensive methods established by him 

provide a useful platform to investigate genomic methylation changes upon various 

conditions. These results from these studies will lead to a better understanding of the EBV 

pathogenesis and may facilitate the development of new therapies. 

3. Human Papilloma Virus 

The papilloma viruses and its viral nature were first seen in human warts in 1907, and the 
first papilloma virus was isolated from a rabbit that was identified by Richard Shoppe in the 
year 1983. Even it was an early start for the detection of human papilloma viruses; this topic 
remained closed till 1970's. Studies related with papilloma viruses were allowed to move 
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forth only when cervical cancer's proximity with HPV was proved and with its increasing 
significance in the field of molecular virology (Levinson, 2008). 

HPVs are small non enveloped virus containing double stranded DNA as their genetic 
material and are about 55 nm in size. HPV are strictly epitheliotropic viruses infecting skin 
or mucosal surfaces, and displaying a very high selectivity for the specific epithelium 
infected [7,8], and are one of the most common viruses which are transmitted sexually and 
are found in both men and women. Its ratio is much higher in western countries as 
compared to other regions of the world. The genome is a circular molecule of double-
stranded DNA 8000 base pairs or so. Ten open reading frames (POL) are grouped in a 
region L (early) coding non-structural protein and an L (late) region encoding the capsid 
proteins. The non-coding region (NCR of 850 bp for HPV 16) is located between the POL L1 
and E6/E7. It contains the promoters of early genes, regulatory sequences (original site) and 
transcription (cis sequence). 

According to their ability to transform epithelial cells, HPV genotypes are divided into low-
risk and high-risk types. Low-risk types are associated with benign lesions such as warts, 
while infections with high-risk types progress to malignant lesions (Munoz et al. 2003). 
More than 100 different HPV genotypes have been described, but only 30 genotypes 
identified in the female genital tract are associated with epithelial neoplasms ranging from 
benign common warts to malignant carcinoma of the uterine cervix (McGlennen 2000). It is 
widely reported that in addition to HPV 16 and 18, which are frequently found in 
association with cervical cancer (CC), HPVs 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82, 
while other three as probable high-risk types (types 26, 53, and 66) are also considered as 
carcinogenic (Munoz et al. 2003). 

3.1 HPV and head and neck cancer 

Approximately 15% of malignant diseases are caused by infectious agents. HPV can be 
frequently found in oral carcinomas, especially tonsillar cancer. A group of HPV-infected 
tumours shows clear signs for a virally induced transformation process: high-risk HPVs can 
be detected in all tumour cells, the viral oncogenes E6 and E7 are constantly expressed and 
lead to upregulation of cellular p16(INK4a), a cyclin-dependent kinase inhibitor. The 
patients frequently lack typical risk factors associated with head and neck cancers such as 
drinking and smoking. An association of herpes viruses with head and neck cancer has been 
for long time suspected and there is good evidence there, but only for a relationship of EBV 
nasopharyngeal carcinoma. HPV aetiology is now accepted for up to 20% of head and neck 
cancer. However, the relationship between carcinogenesis and HPV infection is not as clear 
as with cervical cancer. HPV is not detectable in many head and neck cancers, and it is 
frequently detected in normal oral mucosa, which is why HPV infections were in head and 
neck cancer is often regarded only as an accompanying infection. Initial investigations into a 
causal role for HPV in the aetiology of head and neck lesions relied upon electron 
microscopy (EM) or immunohistochemical staining. Human papillomavirus virions could 
be identified by EM from specimens of papillomas (Frithiof & Wersall 1967), fibromas 
(Gross et al. 1982), verruca, condyloma acuminatav (Shaffer, Reimann & Gysland 1980; 
Syrjanen, K. J. & Surjanen 1981), focal epithelial hyperplasia, and oral nodular leukoplakias 
(Jenson et al. 1982). Immunohistochemical staining has revealed the presence of HPV capsid 
antigens in HPV-infected cells (Loning et al. 1984). Capsid antigen, however, has rarely been 
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detected in high-grade neoplasias or invasive cancer, probably because such tissue contains 
limited numbers of highly differentiated squamous cell epithelial cells. Consequently, the 
majority of head and neck lesions that contained HPV structural antigens were either benign 
or precancerous. Inconsistencies in antigen detection also resulted from sampling error, 
variable expression or lack of HPV capsid antigens, destruction of antigens during cellular 
processing or long term storage, or lack of sensitivity to a particular assay (Koutsky, 
Galloway & Holmes 1988; Syrjanen, S. M. 1990). From published studies, the overall antigen 
positivity in noncancerous head and neck lesions was about 34.4% (Adler-Storthz et al. 1986; 
Syrjanen, K., Syrjanen & Pyrhonen 1982). Whereas light microscopy, EM, and 
immunohistochemistry have resulted in inconsistent or irreproducible findings, the use of 
DNA hybridization has revolutionized the detection of HPV DNA types in benign and 
malignant lesions.  

New data from case–control studies suggest that HPV is an independent risk factor for oral 
and oropharyngeal squamous-cell carcinomas (Rosenquist et al. 2005; Schwartz et al. 1998). 
Moreover, a systematic review showed an overall prevalence of HPV infection of 25.9% in 
specimens obtained from 5046 patients with head and neck squamous-cell carcinoma that 
had been analyzed in 60 separate studies (Kreimer et al. 2005). Using PCR detection from 26 
countries which included 5046 cases of squamous cell cancers; 2642 oral cancers, 969 
oropharyngeal cancers and 1435 laryngeal cancers. HPV prevalence was 35.6% in 
oropharyngeal cancers, 23.5% in oral cancers and 24.0% in laryngeal cancers. Overall 
prevalence of HPV in HNSCC was estimated at 26%. HPV 16 was by far the commonest 
subtype in all types of HPV+ cancers; 86.7% of oropharyngeal, 68.2% of oral and 69.2% of 
laryngeal cancers. HPV 18 was next most common but found in only 1% of oropharyngeal, 
8.0% of oral and 3.9% of laryngeal cancers. A more recent meta-analysis by Termine et al 
2008 (Termine et al. 2008), estimated that from studies utilising only FFPE samples, the 
pooled prevalence of HPV detected in these HNSCC (defined as SCCs originating in the 
oral, pharyngeal and laryngeal cavities only) was 34.5% (Goon et al. 2009). 

3.2 HPV and NPC 

NPC is one of the most striking examples of human malignancies that have been found 

strongly associated with the EBV, and interest in HPV as a cofactor in NPC occurrences has 

emerged over the last few years (Lin 2009). EBV has been detected in a large proportion of 

patients with WHO-II/III NPC, but a significant subset of patients with WHO-I NPC are 

EBV negative (Hording et al. 1994; Rassekh et al. 1998; Tsai et al. 1998). High-risk HPV may 

contribute to the development of NPC, given HPV’s acknowledged role in the pathogenesis 

of oropharyngeal carcinomas. 

Furthermore, it has been suggested that normal human oral epithelial cells, especially 

nasopharyngeal cells, could be very susceptible to persistent HPV and EBV co-infections 

and that EBV and high-risk HPV co-infections may play an important role in the initiation of 

a neoplastic transformation of human oral epithelial cells (Al Moustafa et al. 2009). To date, 

different degrees of associations between HPV and NPC have been described, yet no 

conclusive data have been obtained.  

Coinfection by HPV and EBV has not been well documented and the significance of the 
presence of both viruses in nasopharyngeal cells has not been determined. In a recent study, 
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coinfection with both viruses was observed in 34% of patients in Morocco. Tung et al. 
showed that among 88 fresh NPC specimens from Chinese population, coexistence of EBV 
and HPV DNA was observed in 42% of samples (Tung et al. 1999). 

These results are in agreement with other studies reporting the same prevalence of HPV 
DNA in NPC cases. In fact, using the same consensus primers, HPV DNA was detected in 
31 of 103 NPC samples (30%). Moreover, Krishna et al. have shown that HPV DNA was 
detected in 38.8% of 36 southern Indian NPC cases (Krishna et al. 2004). Tung et al. in 
Eighty-eight fresh tissue samples of NPC showed that HPV DNA was detected in 51% of the 
specimens (Tung et al. 1999). 

With regard to HPV genotypes, HPV31 was the most frequent genotype in Moroccan NPC 
patients (20.8 %). The same genotype was also frequently found in tonsils and 
nasopharyngeal cells in western Mexico NPC cases (Lopez-Lizarraga et al. 2000). The second 
prevalent HPV type detected in Moroccan NPC biopsies is HPV59 (16,7%). Of interest, HPV-
16 and -18, which are the most virulent genotypes associated with CC in Moroccan woman 
(35% to 45 %) (Khair et al. 2009), were detected in very few NPC cases (8.3 %), and similar 
data were reported in an Iranian study (Mirzamani et al. 2006). However, a recent study 
suggests that WHO-I NPC may be associated with oncogenic HPV. Oncogenic HPV was 
detected by in situ hybridization in half of the WHO-I NPCs but only 5% of the WHO-II/III 
NPCs. In addition in a HPV genotyping cohort study, oncogenic HPVs were detected 
equally in WHO-II/III NPCs (31%, 13/42) and nasopharyngeal controls (35%, 14/40). 
Tumour high-risk HPV status did not correlate with the prognosis of patients with NPC. In 
the high-risk HPV in situ hybridisation cohort, 14 (88%) of the 16 oncogenic HPV-positive 
WHO-II/III NPCs showed a unique cytoplasmic/perinuclear staining pattern, which is 
distinct from the typical dot/punctate nuclear staining pattern indicating HPV genome 
integration. In addition, oncogenic HPVs were not always retained in NPC cells during the 
process of metastasis (Lo et al. 2010). Therefore, considering the fact that oncogenic HPV has 
not been consistently detected in NPC specimens from different endemic regions, it is likely 
that HPV infection may not be essential in the carcinogenesis of EBV-associated WHO-II/III 
NPCs in areas endemic for NPC. 

3.3 Insights into the molecular mechanisms of HPV carcinogenesis 

These inconsistent results are likely to reflect a difference in life cycles of the different HPV 
subtypes in different mucosal locations, with an associated difference in mucosal immune 
responses. The high risk subtypes of HPV involved in cervical carcinogenesis have been 
defined (Munoz et al. 2003). We speculate the HPV subtypes associated with NPC are 
broadly similar (but not identical) (figure 2) with those seen in cervical carcinoma. Briefly, 
through wounds or abrasions, the papillomaviruses infect basal epithelial cells, which are 
the only actively dividing cells in the epithelial layer. The viral DNA is maintained in the 
nuclei of infected basal epithelial cells as a low-copy-number plasmid (Stubenrauch & 
Laimins 1999). Squamous epithelial cells normally undergo differentiation as they move 
from the basement membrane towards the surface epithelium, and HPV-DNA replicates to 
a high copy number only in terminally differentiated cells near the epithelial surface 
(Stubenrauch & Laimins 1999). Similarly, the late viral genes, which encode the L1 and L2 
proteins that constitute the virus particle, are expressed only in the highly differentiated 
cells, where infectious progeny virus is produced and released. Three critical steps can be 
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discriminated in this model (figure 2): the conversion of a single mutated stem cell in a patch 
into a group of stem cells without proper growth control (field); the eventual transforming 
event, which turns a field into an overt carcinoma showing invasive growth and metastasis; 
and the development of metastasis. Both aneuploidy and the accumulation of cancer-
associated genetic changes in fields are linked to the risk of malignant progression. 

It has been shown that these subtypes (particularly 16) are able to transform and 
immortalise cells in vitro. These effects are predominantly due to the E6 and E7 oncogenes, 
which bind and enhance degradation of p53 and Rb tumour suppressor genes respectively. 
There is evidence that immortalisation of oral keratinocytes and epithelial cells occur quite 
readily (Park et al. 1991).  

HPV integration usually leads to disruption and/or deletion of HPV E1 or E2 open reading 
frame (ORF), which are important for viral replication and transcription. E2 functions also 
as a repressor of E6 and E7 and disruption of E2 activity allows increased E6 and E7 
expression, thus maintaining the immortalised phenotype (zur Hausen 2009). Integration of 
HPV 16 DNA also correlates with a selective growth advantage and may allow the 
cancerous cell to outgrow its rivals; this may be an important step in the pathway of 
oncogenesis (Jeon, Allen-Hoffmann & Lambert 1995). However, despite the dominance of 
the integrated HPV genome in terms of cervical carcinogenesis, 15-30% of cervical cancer 
contains HPV only in the episomal form (Watts et al. 2002). In some of these cases, 
investigators have found deletions in the YY1-binding sites of the LCR (long control region) 
of HPV 16 episomal DNA which may allow elevated activity of the E6/ E7 promoter (Dong 
et al. 1994). It is clear that the actual molecular pathway to cervical carcinogenesis is far from 
homogeneous. The situation in head and neck cancers is less than clear but heterogeneity 
and the existence of multiple pathways to carcinogenesis is highly likely. Koskinen et al 
(2003) reported that in their series of head and neck cancers, 61% were HPV DNA positive. 
HPV 16 was the dominant subtype, and found in 84% of HPV+ cancers. Tonsillar 
carcinomas have been reported to have the highest prevalence rate of HPV DNA contained 
within cancerous cells (51%) of all the forms of head and neck cancers (Syrjanen, S. 2004). 
Mellin et al 2002 reported that all 11 cases of HPV+ tonsillar carcinomas in their series 
contained HPV DNA in episomal form (Mellin et al. 2002). Another study in 1992 reported 
two HPV 16+ tonsillar carcinomas which contained episomal HPV DNA, and two HPV 33+ 
tonsillar carcinomas in which one was integrated and the other had mixed forms (Snijders et 
al. 1992). It is unclear why tonsillar carcinomas appear to have a higher predominance of 
episomal HPV DNA than other types of head and neck cancer. It is likely though, that these 
various observations suggest a high heterogeneity and variation in the oncogenic pathways 
among these tumours. 

3.4 Similarities between HPV and ZEBRA 

HPV and EBV co-infections have not been well documented and the significance of the 
presence of both viruses in nasopharyngeal cells has not been determined. It has been 
shown that ZEBRA, an EBV immediate early protein expressed during lytic replication that 
activates early EBV genes, binds to p53 (Quinlivan et al. 1993). The physical interaction of 
the ZEBRA and p53 protein prevents p53 from activating p53-responsive promoters 
(MauserSaito, et al. 2002). Similarly, HPV has been found to interact with p53, suggesting 
that this interaction promotes cell growth and thereby enhance viral replication (Levine 
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1990). Targeting p53 may be a common requirement for the replication of many types of 
DNA viruses (Prayitno 2006). In addition, B cells transfected with EBV latent membrane 
protein lost the regulatory effects of the retinoblastoma (RB) protein, and the HPV E7 
transcript has been shown to immunoprecipitate the RB protein (Giovannelli et al. 2002). 
Thus, the functional loss of the RB protein might be one event common to both the HPV and 
EBV carcinogenic pathways. 

 

Fig. 2. A hypothetical model of HPV-associated NPC development. Most information has 
been deciphered from oral carcinogenesis; there are fewer data on the other subsites of NPC. 
Light cells: Normal epithelium. Cells with a white ring: Koilocytes, as a result of an active 
viral replication. Dark cells: Dysplastic epithelium with increased chromosomal instability 
reflected by increasing aneuploidy of the cells and leading to progression to high grade 
dysplasia and invasive carcinoma.  

4. Conclusion 

EBV is associated with the development of both B-cell and epithelial cell malignancies. The 

capacity of EBV to transform B lymphocytes has been well documented. EBV latent proteins 

are known to contribute to cellular transformation. Several lines of evidence demonstrated 

that reactivation of the latent viral genome in EBV associated cancers can cause cancer cell 

death. However, the underlying molecular mechanisms are unclear. Although ZEBRA plays 

an important role in immunomodulation, its capacity to reprogram the hosT-cell cycle 

control machinery is also notified in some tumour cell lines. Therefore, gene delivery 

techniques might be a novel therapeutic strategy for treating EBV positive malignancies 

especially NPC, via the induction of lytic viral transcription in certain tumour cells. 

HPV-associated nasopharyngeal carcinoma represents a distinct clinical and biological 
entity with many unresolved issues that will be studied in future translational, clinical 
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research. We need to further investigate. It is possible that HPV-associated nasopharyngeal 
carcinoma arises by a different mechanism from that involved in the pathogenesis of HPV-
associated cervical carcinoma. Still that the association between some NPC and HPV 
infection appears to be not firmly established, and the question that arises is whether there is 
any need for screening for NPC HPV infection in high-risk groups. Moreover, we need to 
examine how to treat HPV-positive intraepithelial neoplastic lesions, which are cancer 
precursor lesions, in the head and neck region. Should HPV-associated nasopharyngeal 
carcinoma be treated in the same way that their HPV-negative counterpart? And finally, it is 
worth considering the possibility that some NPC might be prevented by HPV vaccination. 
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