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1. Introduction 

The development of non-imaging reflectors for circular-cylindrical solar energy receivers 

has consisted primarily of investigations on symmetrical V-trough and compound parabolic 

concentrator (CPC) designs, with the latter being favoured recently because of its superior 

optical collection. However, it has since been realised that asymmetrical versions of such 

reflectors may be developed and that they have their own limits of concentration and 

ideality. It was shown that ideal asymmetrical reflectors could achieve substantially greater 

peak concentration than symmetrical reflectors of the same acceptance angle (Mills and 

Giutronich, 1979). An important difference, however, is that the performance of the 

asymmetrical reflector is much higher at one solstice than another because the aperture is 

adjusted with respect to the acceptance angle envelope. With an asymmetrical collector, the 

possibility is presented of at least partial bias of the seasonal collector output toward the 

maximum load period. Such a bias would reduce dumped solar energy in low load periods, 

allowing a larger usable solar fraction of energy supplied. Phitthayarachasak 

(Phitthayaratchasak et al., 2005) upgraded the solarization system process to increase its 

efficiency by applying the asymmetrical compound parabolic concentrator (ACPC) to enable 

the concentration of more solar radiation by an average of up to 2.5 times. It is convenient to 

operate because there is no need to adjust the angle of the ACPC unit according to the 

movement of the sun. The result showed that the soil temperatures at various depths were 

high enough to inhibit the growth of microbes within a 5 day period. The solarization 

operating time was distinctly decreased. The solarization system is then a suitable process 

for destroying or inhibiting the growth of soil microbes which cause plant diseases 

(Burrafato, 1998; Le Bihan et al., 1997; Bell; 1998). Even though this system is easy to 

conduct, with less cost, and no pollution, it still needs 4–6 weeks to operate. Therefore, in 

this study, the CPC combined with an ACPC unit was developed in order to decrease the 

time for soil microbe inhibition to be closer to the time of traditional steaming methods.  
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2. Aim 

The aim of this work is to study solar system treatments: solarization with ACPC, and CPC 
combined with ACPC and hot water. In addition, the effects on Erwinia cartoverora 
population in the soil and tomato seedling growth are also studied.  

3. Methods  

3.1 Design of the asymmetry compound parabolic concentrator (ACPC) 

In general, a symmetrical compound parabolic concentrator (CPC), as shown in Fig. 1, 
comprises two identical parabolic reflectors which are usually oriented along an east-west 
axis while an axis of the CPC points toward the sun. For such a system to achieve maximum 
annual sunbeam on a focal plane, it requires an accurate sun tracking system and hence, 
additional cost. Moreover, a north-south tracking angle adjustment is also needed 
seasonally. With a modification of the traditional CPC, asymmetrical compound parabolic 
concentrator (ACPC), on the other hand, has different height of a parabola reflector on each 
side which allows for a longer time for incident solar irradiance beam on the reflectors 
without tracking, and hence, more heat would be absorbed on the focal area. 

C


C


 

cos/L

 

Fig. 1. Typical symmetrical compound concentrator and incident irradiance with its 
reflection beam on focal plane. 

In this study, the ACPC is designed based on Bangkok location (latitude,  = 14o N). Due to 
the rotational axis of the earth with 23.45° inclination respect to the orbital plane around the 
sun the angle of the sun above equatorial plane, declination angle, varies along with the day 
of the year and can be determined by  
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Where 

 = Declination (degree); 23.45 23.45     

n = Julian day (January 1, n = 1) 

According to the setting position of ACPC and the declination axis, the sun position will be 

at an angle of ( )  . Therefore, for Bangkok, the angle of incidence is in between -9.45° and 

37.45°. In this research, the acceptance angle of APAC, θc = 21° is selected to obtain a solar 

incidence angle from -7° to 35° in the 2 periods: 13 Jan – 24 May and 22 June – 20 Dec 

without the axis adjustment.  

Theoretically, there are 3 possible cases for the reflections of radiation beams on the CPC 

1. c  Radiation reflection in between the two focal points of CPC 

2. c  Radiation reflection at the focus of CPC 

3. c  Radiation reflection off the focus outside CPC  

In this design, the angle of radiation incident beam and the axis of the CPC, θc, are 

considered. As the angle of the radiation incident on one side of the CPC decreases (θ < θc) it 

will increase in the radiation on another side of the CPC. To gain more radiation reflection 

on the soil the axis of the CPC is pointed to the sun and the focal point of CPC is moved into 

the soil. The ACPC then has a large parabola on one side and a small one on the other side. 

The design and calculation of the ACPC is shown as below. 

1. Large Collector Design 

In this design, the CPC has a flat receiver as shown in Fig. 2 for which all parameters can be 

calculated using the following formula 

1 1

2 tan tan sinc c c

a
H

  
 

  
 

 

 1 sin
2

c

a
f    

sin
a

c

a
A


  

With the given design parameters, the projected area of the solar radiation on the receiver, a 

= L/cosØ with L = 1 m and a latitude, Ø of Bangkok = 14 degrees one can obtain H=5.09 m, 

Aa = 2.88 m and f = 0.699 m.  According to Fig. 2 (Duffie & Beckman, 1991), the relationship 

between a ratio of receiving height and aperture area, H/Aa, and a concentration ratio, CR 

with H/Aa = 1.77 results in CR = 2.80. Then, the edge of CPC was cut to fit the application 

by theoretically reducing H/Aa to 50%, which is 0.885, and this gives CR=2.4. Afterwards, 
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the CPC was tilted to Ø degree with a horizontal plane to obtain the focal point at Ltan = 

0.25 m as depicted in Fig 3 (The CPC height reduced from 1.45 m to be 1.20 m with the 

acceptance aperture is 1 m). 

 

 

Fig. 2. Design parameters of Flat-Plate receiver CPC.  

C
C



cos/L

 

 

Fig. 3. An inclined CPC at angle Ø with horizontal plane to maximize the incident radiation.  
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Fig. 4. A reflection of beams from CPC when the radiation beam is incident on a reflector. 

2. Small CPC Design 

The key point of the design is that the focal point of the small CPC must be the same as that 

of the large one while one of its curved sides is buried in soil angled at Ø with the ground 

level. The depth (L/cosØ) is 1 m. Consequently, the height of the small CPC reduces to 0.25 

m. Then, the focus is horizontally adjusted until the edge of the large CPC reflector is onto 

the edge of the receiver or at a distance of L from that of the large one on the soil surface. 

The finished assembly of the ACPC, shown in Figs. 5 and  6 depicts the reflection path in 

ACPC. 



 

tanL
 

a) A South-side receiver is inclined and buried in the soil at the depth of Ltan Ø. 

Slide the south side 
receiver into the soil 

Large CPC 

Radiation beams 

Large CPC 
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 

 
b) Move to the North for a distance L. 

 
c) Asymmetrical compound parabolic concentrator (ACPC). 

Fig. 5. Asymmetrical Compound Parabolic Concentrator (ACPC) assemble procedures. 

 

Fig. 6. Radiation beam and its reflections from asymmetrical CPC on soil surface. 

Moved small CPC

Large CPC 

Small CPC

Large CPC 
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Fig. 7. Installation of ACPC. 

3.2 Upgrading the ACPC unit with water boiler and CPC 

The ACPC unit was capable of boiling water simultaneously while operating the 

disinfection process by using the heat from the ACPC panel because the  surface has a high 

temperature. The process was operated by using copper tubes with the surface cut into a 

semicircle in order to increase larger spaces to absorb the heat, and fix them at the back side 

of the ACPC panel. A further step to increase the efficiency of the heating process, the hot 

water from ACPC panel in the copper tube was treated by CPC before the hot water outlet 

was fed into the soil plot. 

When sunlight hits the ground it is partly reflected and partially absorbed by soil. The 

absorbed heat increases the soil temperature and is then transferred down into a deeper 

level. As soil has low heat conductivity the heat transfer is considerably poor. Increasing 

temperature of water droplets can obtain higher soil temperatures at the deeper level from 

the surface as water can diffuse through small pores and heat up the soil grains via 

conduction and convection processes.  

The solarization process normally takes 4–6 weeks for the temperature to increase and 

induce lower levels of soil to be able to inhibit microbes which cause crop disease. In 

consequence, the ACPC unit is introduced to collect solar energy to provide higher 

temperature which can reduce the length of time of the solarization process down to 5 

days. However, this time period is still not appropriate for industrial crops. Hence, the 

need for further improvement of the ACPC unit’s capability to boil water simultaneously 

while operating the process. The hot water is then used to drip into the soil. It also gives 

moisture to the soil which absorbs the heat from the hot water to increase its own 

temperature. Furthermore, because the dripping water is hot, it is guaranteed not to have 

any microbes.  
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3.3 Experimental design and soil treatment  

All the experiments were carried out under sunlight. For soil solarized plots, transparent 

polyethylene sheets 0.05 mm thick were used. Soil treatment was performed for 1 day 

starting from 8:30 am to 4:45 pm in April. Soil temperatures at depths of 0 cm, 10 cm, 20 cm, 

30 cm and 50 cm were monitored by means of shielded copper-constantan thermocouples. 

The analog signals from the sensors were converted into digital signals. The output data 

were printed continuously (24 h) on an hourly basis using a computer connected on-line 

with the data acquisition system. 

In this study, four vessels with diameters of 32 and 69 cm high were filled up with  soil, 

which was then watered and left for 2 days to prepare the soil ready for planting. The 

thermocouples were set at the depth levels of 0, 5, 15, 30, and 50 cm in the centre of the 

vessels. The 100 watts of electric light to replace solar radiation (due to the lamp’s heat is 

almost the same heat level of the solar radiation effected to the soil surface) was set at the 

height of 10 cm above the soil surface at the centre point of the vessels. The 60C hot water 

from the boiler (its temperature is almost the same as its effect from ACPC) was then 

dropped at speeds of 12, 16 and 20 cc/min into the vessels number 2, 3, and 4, respectively 

for 5 h as shown in Fig. 8.  

 

Fig. 8. Schematic diagram of hot water system for soil solarization (Phitthayaratchasak et al., 
2009). 

A further step to increase the efficiency of the heating process is to use copper tubes, with 

the surface cut into a semicircle in order to increase larger spaces to absorb the heat, and fix 

them at the back side of the ACPC panel as shown in Fig. 9. The temperature at various 

spots as shown in Figs. 10-11 was recorded every 5 min continuously for 5 h. There was no 

water dropping during the first 30 min and the last 90 min. The same water dropping 

process was repeated using the 70°C hot water (boiler). 
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Fig. 9. Installation of combined CPC and ACPC soil solarization system. 

 

Fig. 10. Positioning of hot water nozzles and thermocouple 
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Fig. 11. Side-view of test apparatus setup showing positions of hot water nozzles and 
thermocouples 

3.4 Effect of the treatments on soil microorganisms 

Bacterial suspension containing 4x107 cfu/ml prepared from culture of E. cartoverora strains 

were mixed thoroughly with sterile soil. After heat treatment by non-solarization, 

solarization, solarization with ACPC, solarization and CPC combined with ACPC and hot 

water during 12.30 to 16.30 hour for 0, 1, 2 and 4 h incubation at soil surface and the soil at 5-

20 cm depth, the soils were counted for Erwinia spp. growing on culture medium compared 

to the control (non-solarization). 

3.5 Bacterial treatment 

Bacterial suspension of E. cartoverora strains were mixed thoroughly with soil.  The first set 

where the sterile soil mixed with E. cartoverora  suspension in sterile bags were placed at soil 

surface soil, soil 5 cm, 10 cm, and 20 cm depth in non-solarization plot. The second set where 

the soil was mixed with bacterial suspension of E. cartoverora  strain and placed  at soil 

surface, soil 5 cm, 10 cm, and 20 cm depth in solarization plot. The third set where the soil 

was mixed with bacterial suspension of E. cartoverora strain and placed at soil surface, soil 5 

cm, 10 cm and 20 cm depth in solarization with ACPC plot. The fourth set where the soil 
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was mixed with bacterial suspension of E. cartoverora   strain and placed  at soil surface, soil 

5 cm, 10 cm and 20 cm depth in solarization with ACPC and hot water plot.  

3.6 Plant materials and growth conditions 

Tomato seeds (L. esculentum Mill) were sterilized with 0.5% HgCl2 for 5 min, soaked for 6 h 

in distilled water after being washed five times, then germinated at 25°C for 14 d in the soil 

containing E. cartoverora with the solarization with ACPC treatment and control in 

Erlenmeyer flask. Seeds of tomato were sown in sterile flasks, each containing sterile soil 

used for growth of seedlings, twenty seeds were sown in each flask at equal distances and 

watered as required to keep soil moist but not wet, all flasks were placed on a bench at room 

temperature. 

3.7 Soil treatment 

One millilitre bacterial suspension containing 4x107 cfu prepared from an overnight culture 

of E. cartoverora strains were mixed thoroughly with each gram of soil. Four sets of flasks, 

each containing 4 bags, were used in this experiment. The first set where the sterile distilled 

water was mixed with sterile soil. The second and third sets where the soil was mixed with 

bacterial suspension of E. cartoverora strain and treated with solarization with ACPC and 

solarization with CPC combined with ACPC and hot water, respectively, before sowing. The 

forth set where the soil was mixed with bacterial suspension of E. cartoverora before sowing. 

Twenty seeds were sown in each bag, then watered with sterile water and maintained at 

room temperature. Two weeks after sowing, seedlings of each set were determined for 

weight and germination.   

3.8 Determination of plant fresh weight and dry weight  

After 14 days of planting, plant fresh weight was directly measured using an electronic scale 

and expressed as means of at least 20 tomato seedlings. For the determination of dry weight, 

samples were harvested, then dried at 105°C for 10 min, and kept at 80°C until dry weight 

remained constant. After cooling at room temperature, dry weights were weighed using an 

electronic scale. 

4. Results 

4.1 Thermal performances of CPC and ACPC 

To evaluate the thermal performance of the concentrating system, the collectors were 

aligned with east-west axis. The large reflector of ACPC was oriented towards the south and 

a small reflector faced north. The CPC was placed next to the small reflector of the ACPC. 

Solar radiation at the middle point between the large and small reflectors of the ACPC, and 

on a normal plane outside the ACPC was measured. Fig. 12 shows the measured solar 

radiation. 

As expected, the ACPC can increase the intensity of solar radiation within the range of 1.77 
to 3.30 times during 9:30 a.m. – 5:30 p.m. and the average value is  2.5 times at 1:00 p.m.  The 
maximum solar intensities at the measured points on a normal plane outside the ACPC and 
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between the ACPC reflectors were 938.50 W/m2 and 3097.41 W/m2 respectively. The inlet 
and outlet temperatures of the ACPC were measured after flowing water through the 
collectors from 1:00 – 5:00 p.m. The surface temperature of the ACPC reflector and the CPC 
fin were also measured. 

 

Fig. 12. Solar intensities measured at normal plane outside ACPC and between the 
reflectors. 

Fig. 13 shows the measured inlet and outlet temperatures of ACPC and CPC during the test 
period in which the solar radiation was in the range of 253.99 – 938.50 W/m2 with the 
average value of 643.8 W/m2. As a result, the water temperature difference between the 
inlet and outlet of ACPC ranges from 4.6°C to 13°C. After passing the CPC, the water 
temperature was increased in the range of 1.9 - 8.4°C, additionally. 

 

Fig. 13. Solar radiation and inlet/outlet temperature of ACPC and CPC. 

Thermal efficiency of a solar thermal energy system is normally defined as the ratio of the 
useful heat and the incident solar energy. As shown in Fig. 13 the thermal efficiency of 
ACPC, based on the solar radiation in Fig. 14, is in the range of 46.42% - 51.58% (48% on 
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average) while that of CPC ranges from 42.63% to 58.60% with 51.30% on average. It is 
noted that efficiency of a solar thermal system varies according to solar radiation level and 
environments at the time. Wind velocity is one of the key factors that influence hot water 
production as it increases thermal loss while flows pass a collector. 

 

 

 

Fig. 14. Comparison of the efficiencies of CPC and ACPC.   

 

 

 

Fig. 15. Comparison of average soil temperature for all cases. 
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Fig. 16. Comparison of average soil temperature at various depths for the proposed case. 

4.2 Application to reduce time to inhibit Erwinia in soil 

4.2.1 Soil treatment 

The maximum and average temperatures were always higher in solarized soil, solarized 

with ACPC treated soil and solarization with CPC combined with ACPC and hot water 

treated soil than bare soil during the experimental periods, regardless of the depth. The 

temperatures for non-solarized and solarized soil, solarized with ACPC treated soil and 

solarization with CPC combined with ACPC and hot water treated soil are shown in Fig. 17.   

The temperatures for solarized ACPC treated soil and solarization with CPC combined with 

ACPC and hot water treated soil are shown in Fig. 17.  The maximum and mean soil 

temperatures at 0 cm in the solarized ACPC treated soil were 60.3°C and 49.4°C, 

respectively. In the solarization with CPC combined with ACPC and hot water, the soil 

temperatures at 0 cm were 63.9°C and 52.3°C, respectively. 

Table 1 shows effects of combined solar collector system of CPC and ACPC on soil surface 

temperature. On average, maximum surface temperature of solarized with ACPC treated 

soil and solarization with CPC combined with ACPC and hot water treated soil were 

higher than non-solarized soil. In the experiment, maximum temperature of solarized 

with ACPC treated soil and solarization with CPC combined with ACPC and hot water 

treated soil were 21°C and 24.8°C higher than non-solarized soil, respectively. The 

average temperature of solarized with ACPC treated soil and solarization with CPC 

combined with ACPC and hot water treated soil were 15.7°C and 18.9°C higher than non-

solarized soil, respectively.  
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Fig. 17. The temperature profile for non-solarized, solarized, solarized with ACPC treated 
and solarization with CPC combined with ACPC and hot water treated soil of (A) surface 
soil, (B) soil at 5 cm, (C) soil at 10 cm, (D) soil at 20 cm, (E) soil at 30 cm, (F) soil at 50 cm. 

D 

F 

E 
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Treatment 
Maximum soil surface 

temperature (°C) 
Average soil surface 

temperature  (°C) 

Non-solarization 39.1 33.4 

Solarization 42.7 38.3 

Solarization and ACPC 60.3 49.4 

Solarization with CPC combined 
with ACPC and hot water 

63.9 52.3 

Air temperature 36.9 32.6 

Table 1. The effects of combined solar collector system of CPC and ACPC of the intensity of 
light of 2044.4 W/m2 on soil surface temperature (°C).  

 

Treatment 
Soil depth (cm) 

5 10 20 30 50 

Non-solarization 36.1 34.5 32.7 27.8 24.9 

Solarization 41 38.1 34.5 29.1 25.8 

Solarization and ACPC 46.9 43.4 39.4 34.0 29.2 

solarization with CPC combined 
with ACPC and hot water 

55.4 48.8 44.4 37.3 30.5 

Table 2. The effects of solarization with the combined solar collector system of CPC and 
ACPC of the intensity of light of 2044.4 W/m2 on maximum soil temperature (°C) at 5, 10, 
20, 30 and 50 cm soil depths.  

The temperatures for non-solarized soil, solarized soil, and the temperatures for ACPC with  

solarized treated soil and solarization with CPC combined with ACPC and hot water treated 

soil are shown in Fig. 17.  The maximum and mean soil temperatures at different soil depth 

are shown in Table 2 and Table 3.  

Maximum soil temperatures at 5, 10, 20 and 30 cm were higher in the solarized with ACPC 

treated soil and solarization with CPC combined with ACPC and hot water treated soil than 

the non-solarized soil. The maximum soil temperatures at 50 cm for solarized with ACPC 

treated soil and solarization with CPC combined with ACPC and hot water treated soil were 

also significantly different. The maximum temperature of solarized soil was higher than 

non-solarized soil. In the experiment, maximum temperature of solarized soil was 4.9, 3.6, 

1.8, 1.3, 0.9°C higher than non-solarized soil at 5, 10, 20, 30 and 50 cm depth, respectively 

(Table 2). The maximum temperature at 5 with 10, 20, 30 and 50 cm in the solarized with 

ACPC treated plots differed by a maximum of 10.8, 8.9, 6.7, 6.2 and 4.3°C, respectively, on 

any one day.  The maximum temperature at 5 with 10, 20, 30 and 50 cm in the solarization 

with CPC combined with ACPC and hot water treated plots differed by a maximum of 19.3, 

14.3, 11.7, 9.5 and 5.6°C, respectively, on any one day. 

Average soil temperatures at 5, 10, 20 and 30 cm were higher in the solarized with ACPC 

treated soil and solarization with CPC combined with ACPC and hot water treated soil than 

the non-solarized soil. The average soil temperature at 50 cm for solarized with ACPC 

treated soil and solarization with CPC combined with ACPC and hot water treated soil was 
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also significantly different. In the experiment, average temperature of solarized soil was 6.2, 

7.2, 6.7, 2.3, 0.7°C higher than non-solarized soil at 5, 10, 20, 30 and 50 cm depth, respectively 

(Table 3). The average temperature at 5 with 10, 20, 30 and 50 cm in the solarized with 

ACPC treated plots differed by a average of 11.2, 12.2, 11.5, 7.2 and 4°C, respectively.  The 

average temperature at 5 with 10, 20, 30 and 50 cm in the solarization with CPC combined 

with ACPC and hot water treated plots differed by a average of 17.2, 16.2, 14.7, 9.8 and 

5.7°C, respectively. 

 

Treatment 
Soil depth (cm) 

5 10 20 30 50 

Non-solarization 30.9 26.8 24.5 23.0 21.0 

Solarization 37.1 34.0 31.2 25.3 21.7 

Solarization and ACPC 42.1 39.0 36.0 30.2 25.0 

solarization with CPC combined 
with ACPC and hot water 

48.1 43.0 39.2 32.8 26.7 

Table 3. The effects of solarization with ACPC of the intensity of light of 2044.4 W/m2 on 
average soil temperature (°C) at 5, 10, 20, 30 and 50 cm soil depths. 

Soil solarization is a climate-dependent method and therefore its effectiveness in a specific 

region has to be assessed relative to the local climatological data. These studies that were 

carried out during day time showed that a combined solar system significantly increased 

soil temperature (Table 1-3). 

Moreover, the highest increase was during when the highest temperatures were recorded, 

suggesting that climatological data can be used for predicting the effectiveness of combined 

solar collector system in a certain region. This might be related to soil temperature or the 

environmental factors such as the number of hours expose to sun light. Combining methods 

for improving pest control, especially when combining non-chemical methods, is the main 

objective of integrated pest management (Katan, 2000). In our studies, combining 

solarization with ACPC significantly improved the results in this experiment.  This study 

thus shows that in general, the combined solar collector system of CPC and ACPC can 

increase soil temperature to reduce soil microbial population. However, the combined 

treatments of solarization and the combined solar collector system of CPC and ACPC 

showed a further improvement relative to the control, during which the highest 

temperatures were recorded. Combined methods have the potential to improve pest control 

but need to be optimized (Eshel et al., 2000). According to the results, the combinations 

increased the maximum soil temperature over the untreated control.  Given the above 

considerations, the results illustrate the potential for combined application of ACPC with 

solarization, in enhancing soil surface temperature and at different soil depths for 

improving plant growth and in enhancing inhibition of soilborne pathogen yield. 

Temperature was greater at soil surface and at 5 cm depth and it gradually decreased as the 

soil depth increased. The maximum soil temperature treated with the combined solar 

collector system at 5 cm was never below 40°C after 2 hour treatment and for 5 hours it was 

close to 50°C. 

www.intechopen.com



Effect of Solar Concentrator System on Disinfection  
of Soil-Borne Pathogens and Tomato Seedling Growth 361 

Lower temperatures between 34.5 and 48.8°C were recorded at the 10-cm depth. At the 20-
cm depth soil and 30-cm depth soil temperature fluctuated, between 29.3 and 36.4°C and 
between 28.5 and 37.3°C, respectively, for most of the period that soil was covered with the 
plastic sheets and ACPC. At the 50-cm depth soil temperature fluctuated, between 23 and 
30.5°C. The temperature records in the experiment correspond to those reported by 
Lamberti et al. (1999). They reported that soil temperature was never below 35°C and did 
not exceed 40°C at 15 cm of depth of soil solarization during the summer while the 
following year soil temperature at the 15-cm depth was between 35 and 37°C. Higher 
temperature of soil solarization could be achieved by increasing the period of time exposed 
to the sun light considering that the temperature approaches 40°C for the treatment 
duration. However, in this experiment, the maximum soil temperatures treated the 
combined solar collector system at 5- and 10-cm depths were 48.8-55.4°C during 9 hours of 
the experimentation period. This level of temperature can be lethal for microorganism 
populations in soil. So, high temperatures during soil treated with the combined solar 
collector system were recorded in 5-10 –cm soil profile and these depths and therefore could 
inhibit soil microorganisms. 

A significant observation arising from the field experiment was that the combined solar 

collector system for 9 hours provided satisfactory to increased high temperature.  Soil 

solarization and the combined solar collector system resulted in high temperature at soil 

surface and at soil depth 5 cm over the control. In these  results in combination of solarization 

with non-chemical control to enhance high temperature for control of microorganism wilts are 

in agreement with those reported for combination of solarization with non-chemical control by 

Giannakou (Giannakou et al., 2004), who reported that the combination of soil solarization 

with the bio-nematicide improved the parasite control. The parasite increased in plots 

compared to soil solarization and bio-nematicide plots by the end of the cropping season. 

This could be partly due to the fact that soil solarization transforms soil physicochemical 
characteristics and partly because the combined solar collector system also has an impact on 
the soil microbial community. The combined solar collector system acts faster while soil 
solarization acts slowly, but for a prolonged period of time. 

In general, it could be concluded that the novel use in the present study showed promising 

results by decreasing microorganism population. Soil solarization for longer time resulted in 

low microorganism numbers. However, more detailed field studies are required to establish 

the exact effects of soil solarization and on the microbial activity of soil and their impact on 

decreasing microorganism population efficacy. 

Solarization could play a role in integrated control of different soilborne diseases but alone 

could not control the main soilborne diseases. Its adoption with the upgraded combined 

solar collector system treatment may be used to reduce the period of solarization. 

Solarization is mainly inconvenient by preventing use of the soil during the hot season, but 

possesses great potential as an alternative to fumigation for soil disinfestation. Solarization 

alone could control soilborne pathogens; however, the combination of soil solarization and 

the combined solar collector system was effective against microorganism wilts even though 

the solarization did not improve control of the individual pathogens. Moreover, at least in 

one case, the combined solar collector system increased potential of inhibition of soilborne 

pathogens of plants in plot area. 
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4.2.2 Effect of the treatments on soil microorganisms 

The responses are that solarization with CPC combined with ACPC and hot water increased 
different temperature levels in the soil during the 4 hours  in which the recorded temperatures 
went over 61°C, 55°C and 50°C, at 0 cm, 5 cm and 10 cm soil depth, respectively, affecting the 
E. cartoverora  population (Table 4). The solarization with CPC combined with ACPC and hot 
water had significant effects on the microbiological population in the soil. Solarization slightly 
reduced the mean bacteria at 0 cm depth in 4 h about 15%. The populations of native Erwinia 
spp. in non-solarization plot at 0 cm soil treated for 4 h did not reduce significantly. After  half 
an hour  at 0-5 cm depth  in the solarized with ACPC plots and solarization with CPC 
combined with ACPC and hot water plot the bacterial cells were reduced and  after  one hour 
the bacterial cell was undetectable. At 10 cm soil depth, the bacterial cells were reduced 
constantly and significantly reduced after 1 h in solarization with CPC combined with ACPC 
and hot water plot whereas at the 20 cm soil depth the bacterial cells  were  reduced constantly 
and significantly reduced after 2 h of treatment. 

 

Time 
(h) 

Population of E. cartoverora  (cfu g-1) 

Non-solarization plot (cm) Solarization plot (cm) 

0 5 10 20 0 5 10 20 

½ 2.3 x 107 1.1 x 107 3.4 x 107 2.6 x 107 1.4 x 107 2.3 x 107 2.2 x 107 2.6 x 107 

1 2.1 x 107 6.4 x 107 2.3 x 107 3.2 x 107 1.6 x 106 5.2 x 107 4.7 x 107 4.4 x 107 

2 3.5 x 107 1.7 x 107 4.2 x 107 5.1 x 107 1.2 x 105 2.3 x 106 5.3 x 107 2.7 x 107 

4 6.4 x 107 2.2 x 107 1.6 x 107 2.4 x 107 1.4 x 105 1.6 x 106 1.9 x 107 2.9 x 107 

Time 
(h) 

Population of E. cartoverora  (cfu g-1) 

Solarization with ACPC plot (cm) 
Solarization with CPC combined with 

ACPC and hot water plot (cm) 

 0 5 10 20 0 5 10 20 

½ 1.7 x 106 1.4 x 106 6.2 x 107 5.7 x 107 4.7 x 104 3.6 x 105 1.4 x 107 2.6 x 107 

1 2.4 x 105 4.6 x 105 2.4 x 107 5.1 x 107 2.1 x 102 7.4 x 103 4.5 x 106 3.4 x 107 

2 5.1 x 104 6.5 x 105 4.7 x 105 1.6 x 107 0 0 2.2 x 104 7.2 x 106 

4 2.7 x 102 5.2 x 103 2.1 x 105 4.3 x 107 0 0 1.5 x 103 2.1 x 105 

Table 4. Population of E. cartoverora at testing area, at varied time periods. 

4.2.3 Effect of the treatments on seedling growth 

There were significantly higher dry and fresh weights of tomato plants treated by 

solarization with CPC combined with ACPC and hot water compared with the untreated 

control. Treatment at soil surface with solarization with CPC combined with ACPC and hot 

water for 2 hours resulted in 97.74% and 85.89% increases in dry and fresh weights of 

tomato, respectively, compared to the untreated control. Treatment at soil 10 cm depth by 

solarization with CPC combined with ACPC and hot water for 2 hours resulted in 45.25% 

and 39.82% increases in dry and fresh weights of tomato, respectively, compared to the 

untreated control (Table 5).  
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As in the present study, the combined solar collector system was found to increase soil 

temperature, but not in toxic levels as reported in other disinfestation treatments, such as 

fumigation, steaming, autoclaving and irradiation (Chen et al., 1991).  The reductions in 

microbial biomass and in the number of bacteria were expected, since the soil temperatures 

that prevailed during the solarization and the combined solar collector system treatment 

were high enough to cause the death of microorganisms.  The data suggest that a 

significantly smaller microbial population in the solarized soil compared to the non-

solarized plots. Soil disinfestations usually reduce the population of several species of 

microorganism, although thermotolerant and antagonistic species may survive the 

solarization treatment (Chen et al., 1991). Reductions of microorganism populations, 

however, have been reported in the rhizosphere and roots of solarized plants (Gamliel and 

Katan. 1992). Some bacteria are highly sensitive to soil solarization, which causes a 

reduction in their population, but they rapidly recolonize the soil again (Katan and DeVay, 

1991).  The results obtained regarding the effect of soil solarization with ACPC on weeds 

(Table 3) corroborate those of Elmore (Elmore, 1991) and Stapleton and DeVay (1995) who 

have included the species Amaranthus spp. and E. indica among the ones that are susceptible 

to soil solarization. In addition, it was also observed a reduction in infestation by P. oleracea 

after soil solarization. The weed infestation reduction observed in the present work was 

expected, considering the high soil temperatures that prevailed during soil solarization 

treated with the combined solar system, especially in the surface layers. Our studies that 

were carried out during day time showed that solarization treated with the combined solar 

system, their effectiveness, significantly increased soil temperature and increased harvest 

plant fresh weight (Table 2).  

This study has demonstrated disease control and yield promotion by integrating 

solarization with the combined solar system. The inoculum density of Erwinia spp. was 

reduced after treatment by the combined solar system. This may be important in 

circumstances when soil solarization alone is not effective. The significant interactions 

between soil solarization and the combined solar collector system occurred probably 

because ACPC reduced the disease in solarized areas. Solarization alone was not effective 

for Erwinia at soil surface and soil 5 cm-depth for 4 hours.  In the present work solarization 

with ACPC had a short-term effect in the control of Erwinia population.  The present work 

showed that soil solarization with the combined solar collector system was suitable option 

for the control of Erwinia population, in the short time during the day. Other beneficial 

effects include a great reduction in weed infestation, especially in the soil surface layers, 

probably due to decreases in the soil microbial population. Soil solarization and the 

combined solar collector system enhance their economical viability and is an 

environmentally safe technology. Some authors have been discouraged with respect to the 

potential benefits of irradiation disinfection systems since they found that the efficient 

removal of pathogens required high energy levels (Mavrogianopoulos et al., 2000). Increases 

in soil temperature in the plot caused a decrease in Erwinia viability.  Erwinia readily 

decayed and lost viability when exposed for short periods under solarization and the 

combined solar collector system at temperatures above 40°C. Among the solarization and 

the combined solar collector systems tested, treatment at soil surface with solarization and 

the combined solar collector system showed the most beneficial characteristics, as it 

consistently suppressed the Erwinia cartoverora and also promoted increased plant fresh and 
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dry weight compared to untreated control (Table 2). The use of treatment at solarization and 

the combined solar collector system for increasing yield and for crop protection is an 

attractive approach in the modern system in developing a sustainable agriculture.  

 

Treatment Dry 

weight (g) 

Percent 

increase 

Fresh 

weight (g) 

Percent 

increase Time (h) Depth (cm) 

0 0 0.442 0.00 5.017 0.00 

½ 0 0.587 32.81 5.975 19.09 

1 0 0.826 86.88 9.22 83.77 

2 0 0.874 97.74 9.326 85.89 

0 5 0.442 0.00 5.017 0.00 

½ 5 0.594 34.39 6.172 23.02 

1 5 0.796 80.09 8.428 67.99 

2 5 0.847 91.63 8.952 78.43 

0 10 0.442 0.000 5.017 0.000 

½ 10 0.494 11.77 5.297 5.58 

1 10 0.573 29.64 6.474 29.04 

2 10 0.642 45.25 7.015 39.82 

Table 5. Effect of solarization with CPC combined with ACPC and hot water treated soil on 
tomato growth response (as dry and fresh weight) as compared to untreated control.   

The effects of high sub-lethal temperatures are influential in reducing Erwinia.  During day 

time solarization and the combined solar collector system treatment were effective in 

reducing Erwinia viability as the Erwinia were subjected to sub-lethal temperatures. Soil 

solarization and the combined solar collector system reduced Erwinia viability by 49.74- 

89.22%. Reducing Erwinia viability in the top 5 cm of the soil would therefore ease disease 

pressure in tomato crops. This study thus shows that in general, solarization and the 

combined solar collector system can increase soil temperature to reduce Erwinia in the soil 

and increase dry and fresh weight of plant. While the effects would not be as great deeper in 

the soil, the Erwinia may still be weakened.  The use of soil solarization to control crops will 

be most suited to the plant growing regions. Trials are now required to determine the actual 

reduction in plant afforded by this technique in the field. The combination of soil 

solarization with combined solar collector system may provide more effective control of 

crops than the use of soil solarization alone. 

The present investigation confirmed the feasibility of controlling E. cartoverora in potato 

growth by heat treatment by combined solar collector system of propagation material. 

Critical time-temperature combinations were identified which resulted in a complete 

inactivation of the internal bacterial population. Therefore, the heat treatments by combined 

solar collector methods employed were chosen to provide a gentler form of heat to control 

growth of soilborne pathogen.  
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5. Conclusion 

In the experimental approach it was attempted to use CPC combined with ACPC to increase 
water temperature for soil disinfection and disinfestation. The system had great effects on 
the microbiological population in the soil with higher heat transfer at deeper soil level and 
resulting high yield of plant growth, with the advantage that it is compatible for a more 
sustainable agriculture practice. The population of E. cartoverora was negative correlation of 
time course of solarization with CPC combined with ACPC and hot water treatment while 
increasing of tomato seedlings weight was positive correlation with the time course of the 
treatment. The experiments carried out in real scale showed that the system presents 
numerous advantages and pollution-free environment. Relatively high initial soil 
temperatures can be achieved. In this way, the use of the solar system for a short time to 
complement the CPC with ACPC application could reduce the energy required for soil 
disinfestation. Increase in the soil temperature by using low cost and environment friendly 
renewable energies for a short time period decrease the energy demand and could make the 
system economically affordable for soil disinfestation.  
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