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Application of Solar Energy in the  
Processes of Gas, Water and Soil Treatment 

Joanna Pawłat and Henryka D. Stryczewska 
Lublin University of Technology 

Poland  

1. Introduction 

Shortening of natural resources will impose greater limitations on electric energy 
consumption in various fields including treatment technologies. Moreover, with increasing 
of environmental awareness in the society there comes the need of shifting industry and 
farmers towards  clean and eco-friendly techniques, which allow to avoid formation of 
secondary pollutants during the treatment process.  

 

Fig. 1. Global irradiation in Europe (Energie-Atlas GmbH, 2005). 

Small water, wastewater, gas and soil treatment  installations supplied with electric energy 
from renewable energy sources are perfect example of zero-emission technology achieved 
with reasonable cost (Pawłat et al., 2011). Possibility of solar energy application, as one of 
the alternative energy resources for decontamination processes is strongly dependent on 
geographical location. Near-equatorial places called “sunny belt” are much more favorable 
and cost-effective for solar installations. However, constant growth of fuel prices in the last 
decade caused rapid development of solar technology across Europe, including its northern 
parts. The average insolation of Europe territory is presented in Fig. 1. (Energie-Atlas 
GmbH, 2005). 
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Poland is situated in the moderate climatic zone between 49o and 54.5o of the northern 
latitude. Daily interval (time from the sunrise to the sunset) covers over 51% of 8767 hours 
in the average year, and this period is 24 hours longer in the northern parts compared with 
the southern ones. In winter, day is almost 1 hour longer in southern regions of Poland 
comparing with the northern regions whereas it is opposite in summer (Nalewaj et al., 2003). 

 

Fig. 2. Total radiation (KWh/m2). 

 

Fig. 3. Insolation in Lublin between 1-3 June 2002, (Nalewaj et al., 2003). 

The average annual insolation on Poland’s territory amounts to about 1100 kWh/m2 
(3500MJ/m2) per year on a horizontal area, which corresponds to the calorific value of 120 
kG of theoretical standard fuel (29300 kJ/kg of hard coal, 41860 kJ/kg of petroleum). Fig. 2 
depicts insolation map of Polish territory. The insolation of this area is characterized by a 
big annual diversification. For example, the annual amount for the Lublin  city is about 1107 
kWh, and while over 15% of annual energy reaches Lublin in August, in December it is only 
1,6%. The typical daily insolation in Lublin area in Summer is depicted in Fig. 3.  

In Europe solar thermal collectors are primarily used for hot water production and space 
heating (use of solar energy for cooling is rather limited). According to (EUROBSERV’ER, 
2010), the solar thermal panel area installed in the EU during 2009 was 4166056 m2 giving 
22786,1MWth of the accumulated installed solar thermal capacity. Prevailing technology is 
flat glazed collectors integrated into an insulated casing (heat transport fluid circulates in an 
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absorber sheet placed behind a panel of glass- 3608711 m2 and 106494 m2 installed in 2009 in 
Europe and Poland, respectively) over the vacuum tube collector (fluid circulates inside a 
double vacuum tube and insulation is provided by the vacuum- 408998 m2 and 37814 m2 
installed in 2009 in Europe and Poland, respectively) and unglazed collectors (matrix of 
black plastic tubes, stacked against each other left out in the fresh air- 148347 m2 installed in 
2009 in Europe).  

The largest national collector bases were in Germany (12899800 m2 and 9029,9 MWth) and in 
Austria (4330000 m2 and 3031 MWth). The 10th place on the EU2009 list belonged to Poland 
with 509836 m2 of collectors installed, giving 356,9 MWth). Poland had 13,4 m2 of solar thermal 
collectors installed per 1000 inhabitants and produced 9,4 kWth per 1000 inhab. in 2009. 
Leaders per capita were Cyprus (873,9 m2/1000inhab.and 611,7 kWth/1000 inhab) and Austria 
(517,1 m2/1000 inhab. and 362 kWth/1000 inhab.). In UE on average 64,9 m2 and 45,5kWth were 
installed and produced per 1000 inhabitants, respectively (EUROBSERV’ER, 2010). 

In 2010 Europe also continued photovoltaic plants’ installation reaching over 80% of global 
installed photovoltaic’s capacity and generating 22,5 TWh of photovoltaic power. The 
additional installed capacity in the EU over twelve months to the end of 2010 ranged  
13023,2MWp (growth of 120,1%).The cumulated predicted photovoltaic capacity of EU in 
2010 is presented in Fig.4 (EUROBSERV’ER, 2011). 

 

Fig. 4. Cumulated photovoltaic capacity in the European Union countries in 2010 (in MWp) 
(EUROBSERV’ER, 2011). 
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Average photovoltaic power per inhabitant in European Union in 2010 was 58,5 Wp/inhab, 

with leading Germany and Czech Republic with 212,3 and 185,9 Wp/inhab., recpectively. 

The most of 2009-2010 electricity production from this source took place in Germany (12000 

GWh) and Spain (6302 GWh). In Poland it was only 1,8 GWh (EUROBSERV’ER, 2011). 

2. Solar energy in water treatment  

Inadequate access to clean water and lack of its sanitation are persistent world-wide 

problems affecting humans on each continent (according to UN number of people who lack 

access to safe drinking water will increase from over 1 bilion  to over 1.8 billion in in 2025). 

Moreover,  industry and agriculture also require huge amounts of water causing further 

deterioration of water quality and its scarcity in the region.  

There are many conventional technologies of water decontamination but with growing 

environmental pollution they are sometimes insufficient besides being energy-consuming. 

These technologies often require addition of suplemental chemical compounds, which lead 

to secondary pollution. Ozone based technologies combined with advanced oxidation 

processes (AOP), already investigated and tested for three decades proved to be a good 

alternative to traditional methodes. However, AOP methodes are also considered expensive 

and power-consuming. Thus combining treatment technologies with alternative energy 

sources can be a perfect solution allowing optimum purification due to combination of 

variety of decontamination techniques. In this part applicationof solar power for water 

desalination, drinking water and wastewater treatment is described. 

2.1 Solar desalination 

Desalination aims to remove any salts and mineral from water to make it suitable for 

drinking or for industrial application. The most common process is thermal desalination, 

which uses boiling water and is based on evaporation and vacuum distillation. Energy 

required to evaporate water is 2.3 MJ per kilogram. The installations, which belong to this 

category are simple stills, MEH (Multi Effect Humidification), MED (Multi Effect 

Distillation), MES (Multi Effect Solar Desalination) and MSF (Multi Stage Flash). Novel 

desalination plants use reverse osmosis (RO), electrodesalinization (EDI) and membrane 

distillation (MD). Despite of used method, desalination of water requires tremendous 

amount of energy. The main criteria for desalination system in developing countries are 

affordability, reliability, simplicity and good quality of output medium. Areas, where 

shortage of drinking water limits the socioeconomic development are often highly insolated. 

Thus, using solar power for desalinization purposes seems to be economically justified.  

Moreover,  water can be obtained in environmentally-friendly process.  

Two examples of small thermal desalinization installations for use in remote arid areas are 

depicted in Fig. 5 (Chaibi, 2000; Al-Kharabsheh and Goswami, 2003).  

Solar powered humidification– dehumidification  principle is evaporation of seawater and 

condensation of water vapor from the humid air in the unit at ambient pressure and at 

temperatures between 40°C and 85°C (Al-Hallaj et al., 2006). Simplicity of the set up made it 

popular in different parts of the world. Typical MEH desalination unit is presented in Fig. 6a.  
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Multi-effect distillation unit was developed in Germany (Muller-Hoist et al., 1999) and then 

applied on the island of Fuerteventura, where it is working for several years without almost 

any maintenance or repair. The optimized module produced 40 L/h of fresh water, but it 

was shown that production of 1000 L/d is possible when the unit was operated 

continuously for 24 h. Based on a collector area of 38 m2, the daily productivity of the 

optimized module is about 26 L/m2 of collector area for a 24-h run and with thermal storage 

under optimized laboratory conditions (Parekh et al., 2004). 

  
   a             b 

Fig. 5. Simple solar still (Chaibi, 2000) (a), desalination system using low-grade solar heat 
(Al-Kharabsheh and Goswami,  2003) (b). 

Application of solar chimney to generation of energy and sea water desalination, which is 

shown in Fig. 6 is also an interesting approach. Through theoretical analysis, it has been 

demonstrated that the integrated system can significantly improve the solar energy 

utilization efficiency as well as the land resources utilization efficiency (Zuo, 2011). 

  
      a        b 

Fig. 6. Sketch of a natural draft air circulation MEH desalination unit (Parekh et al., 2004) (a), 
Schematic diagram of the integrated desalination system with solar chimney (Zuo, 2011) (b). 
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The Solarflow water treatment system for remote indigenous communities was invented at 
The Environmental Technology Centre, Murdoch University (the Murdoch ETC) in Perth, in 
the early 1990s and it is constantly modified since then (Dallas et al., 2009). The Solarflow is a 
self-contained solar-powered unit capable of producing 400 L/d of high quality drinking 
water from brackish water via reverse osmosis and requires only 120W of photovoltaic power. 

Other project combining solar thermal and seawater or brackish water  reverse osmosis is 
SOFRETES system, which was already in operation in the early 1980s (Delgado et al., 2007).  

As an output of the project SMADES, employing membrane distillation and aiming in design 
of large solar powered desalination system, the pilot plant was built in Aqaba, Jordan in 2006. 
Feed water was seawater directly from the Red Sea (55,000 μS/cm) (Banat et al., 2007).  

MEDSOL is an EU project on seawater desalination by innovative solar-powered membrane 
distillation system (Galvez et al., 2009). Commercial sea water purification system is offered 
by Blue Spring Company, (Fig. 7). Models EC-1MS, through EC-30MS with output capacity 
ranging from 1.2 m3/d to 30 m3/d can serve the fresh water needs of communities from 6 to 
160 households. 

 

Fig. 7. Blue Spring Solar desalination system.  

2.2 Solar energy for water conditioning 

Availability of drinking water is an ultimate condition for the inhabitation. Extraction of 
water from air (EWA) (Scrivani et al., 2007)  is the solution in the case of lack of primary 
source of water. The total quantity of water contained in 1 km2 of atmospheric air, that is, in 
most regions around the globe, ranges from 10,000 to 30,000 m3 of pure water. 

In proposed solution, the refrigerator was operated by an electricity driven compressor and 
the cold fluid going into the heat exchanger was produced by a reverse compression-
expansion thermodynamic cycle (Fig. 8). It was claimed by the manufacturers that 
approximately one liter of diesel fuel operating the electrical generator could provide four 
liters of water from air. In fact, system integration with PV panels could make it more 
reasonable from economy point of view.  

In the developing countries, where sophisticated water purification methods are not 
available, solar water disinfection (SODIS) revealed a great potential to reduce the global 
diarrhoeal diseases burden, which affects over 1.8 million people (Meierhofer and Landolt, 
2009; Acra et al., 1980). 
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Fig. 8. Typical EWA plant for potable water production (condensation occurs by passage of 
the air on the cold coils of a heat pump) (Scrivani et al., 2007). 

According to extensive microbiological investigation, 30oC water temperature, a threshold 

solar radiation intensity of at least 500 W/m2 (all spectral light) is required for 3-5h for 

SODIS to be efficient for destruction of diarrhoea-causing pathogens in contaminated 

drinking water. Water can be stored in any transparent container. Since the year 2000, 

SODIS is being promoted in developing countries through information and awareness 

campaigns and currently used in 33 countries (Fig. 9) by more than 2 million people and 

decreasing diarrhoea outbreaks by 16–57%. 

 

Fig. 9. More than 2 million users currently practise SODIS in 33 countries (Meierhofer and 
Landolt, 2009). 

Single-basin solar stills, presented in Fig. 10 for the removal of a selected group of inorganic, 

bacteriological, and organic contaminates were investigated (Hanson et al., 2004) and turned 

to be efficient in removing non-volatile contaminants from the water. Removal efficiencies 

of more than 99% were noted on salinity, total hardness, nitrate, and fluoride.  
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The group of Sixto Malato has been investigating the solar photocatalysis and proposing 

various innovations in the process for more than decade. Mechanism of solar driven 

photocatalysis is depicted in Fig. 11, (Robert and Malato, 2002).  

Malato group was often using compound parabolic collectors (CPC), however variety of 

shapes and solutions including trough reactor (PTR), thin-film-fixed-bed reactor (TFFBR), 

double skin sheet reactor (DSSR, pilot plant in Wolfsburg factory of the Volkswagen AG), 

etc. can be employed (Bahnemann, 2004). 

In areas where water is heavily contaminated standalone systems, which were used for 

desalination and simple light disinfection might be not sufficient. AOP methods and 

catalytic processes can bring rapid improvement of the effluent water quality. Many 

research groups were investigating the catalytic systems based on titanium compounds and 

Fenton process.  

 

Fig. 10. Isometric view of El Paso Solar Energy Association still (Hanson et al., 2004). 

 

Fig. 11. General mechanism of the photocatalysis, (Robert and Malato, 2002). 

Solar driven photocatalytic oxidation processes are presented in Tab. 1. (Blanco et al., 2009). 
Tab 2. (Malato et al., 2009) compares various factors, which must be taken into the 
consideration when TiO2 and photo-Fenton process are used.  
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Table 1. Photocatalytic oxidation processes that can be driven by solar energy  (Blanco et al., 
2009). 

 TiO2 Photo-Fenton 

Stress on 

reactor 

materials 

Corrosive liquids: oxidative process, 

pH and salt concentration depend on 

application. 

Corrosive liquids: oxidative process, H2O2, iron 

ions, usually acidic pH (2–3.5), salt 

concentration and temperature depend on 

application. 

Cleaning 

procedure

s 

TiO2 may adsorb on the reactor walls 

preventing illumination, effective 

chemical cleaning agents are HCl, and 

mostly, H2F2. 

Iron oxides may deposit on the reactor walls 

preventing illumination, effective chemical 

cleaning agents are chelating agents, such as 

oxalic acid and acidic pH. 

Residence 

time in 

collector 

Long residence time in the collector 

may cause dissolved O2 depletion. 

Long residence time in the collector may cause 

H2O2 depletion. 

Temperat

ure 

Not relevant to process performance 

between 20 and 80 °C. 

Strongly influential on process performance, 

beneficial if higher. 

Reactor 

diameter/

depth—

optical 

pathlength 

Light distribution in the collector is 

largely governed by absorbance and 

scattering by the catalyst particle. A 

direct correlation between ideal catalyst 

concentration and diameter exists. 

Light distribution is governed by absorbance of 

the solution, which is a function of catalyst 

concentration and wastewater. Absorbance 

varies strongly along the treatment  due to the 

appearance and destruction of compounds. 

Effective 

wavelengt

h range 

<390 nm for TiO2, being approx. 4% of 

sunlight's irradiance power (sunny 

days). 

Depends strongly on the presence of complexes, 

may be up to 550–600 nm being 28–35% of 

sunlight's irradiance power (sunny days). 

Light 

intensity 

Rate law changing from first through 

half order to zero-order dependency as 

the light intensity increases. 

Little research performed, first order rate law 

suggested over a broad range of light intensity, 

applicable as long as ferric iron predominates 

over ferrous iron. 

Dark 

zones 
No reactions taking place in dark zones. 

Fenton process takes place in dark zones, 

elevated temperature influences the reaction rate 

positively. Alternating dark and illumination 

intervals have shown to reduce the necessary 

illumination time. 

Process 

control 

Process control mainly includes the 

determination of treatment  end. 

Process control includes the determination of the 

treatment  end. pH must be controlled to avoid 

iron precipitation.   

Table 2. Comparison of TiO2 and photo-Fenton process aspects relevant to the 
photoreactor's design requirements, (Malato et al., 2009). 
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EU supported several different projects with the aim of developing a cost effective 
technology based on solar photocatalysis for water decontamination and disinfection in 
rural areas of developing countries,  for instance: SOLWATER and AQUACAT (Malato et 
al., 2009) (Fig. 12).  

 

Fig. 12. Schematic diagram and photograph of the photoreactor developed in AQUACAT 
and SOLWATER projects for photocatalytic disinfection in developing countries (Malato et 
al., 2009).  

 

Fig. 13. View of the solar detoxification demonstration plant erected by ALBAIDA at La 
Mojonera (Almerı´a, Spain), (Malato et al., 2007). 

Huge solar driven photocatalytic plant, presented in Fig. 14, was built in Almeria, Spain 
under the ‘‘SOLARDETOX’’ EU project on solar detoxification technology for the treatment 
of industrial non-biodegradable persistent chlorinated water contaminants, (Malato et al., 
2007). Nowadays, facility allows to investigate following technologies (Bahnemann, 2004): 

a. Solar Desalination, from two different approaches, combined solar power and 

desalination plants (MW range), and medium to small solar thermal desalination 

systems (kW range). 

b. Solar Detoxification, by making use of the near-ultraviolet and visible bands of the solar 

spectrum (wavelengths shorter than 390 nm for TiO2 and 580 nm for photo-Fenton) to 
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promote a strong oxidation reaction by generating oxidizers, either surface-bound 

hydroxyl radicals (OH-) or free holes, which attack oxidizable contaminants, producing 

a progressive break-up of molecules yielding CO2, H2O and dilute mineral acids. 

c. Solar Disinfection, which applies the detoxification techniques mentioned above, using 
a supported photocatalyst, to generate powerful oxidizers to control and destroy 
pathogenic water organisms. 

 

Fig. 14. Integrated PV water/gas/soil conditioning system based on ozone. 

Integrated PV system based on AOP and application of ozone (Fig. 14) for water and gas 

conditioning was developed by Stryczewska group (Stryczewska, 2011; Komarzyniec et al., 

2010; Pawłat et al, 2011a; Pawłat et al, 2011b). System was applied for conditioning of the 

pool waters, soil and gas. It will be further described in part 5. 

2.3 Solar wastewater treatment 

Wastewater treatment processes can be basically divided into 3 groups: mechanical, chemical 

and biological. They are used in various combinations depending on the type and 

concentration of pollutants. Some of discharged industrial impurities are not decomposable by 

conventional technologies, require tremendous amount of energy, thus, must be treated with  

alternative methods such as AOP. Those needs can be at least partly assured by using solar 

supported technologies. Examples of solar power employing in the processing of hardly-

treatable compounds from various industrial branches such as pharmaceutics, chemical, 

semiconductor, dye, paper, food and for farms’ and landfills’ leachates are known.  

Fig. 15 presents solar photocatalytic treatment plant developed to treat wastewater from 

recycling pesticide bottles (Albaida plant, Almeria, Spain) (Blanco et al., 2009). Water from 

washing the pesticide bottles was treated in batches until 80% of the TOC has been 

mineralized. At this point, the water was transferred to the post-treatment (iron 

precipitation, sedimentation and recuperation), and either reused for bottle washing or 

discharged for irrigation through an activated carbon filter to ensure discharge quality. 

About 75% of the total volume of the treatment circuit was continuously exposed to sunlight 

in 150 m2 of CPC solar reactors.  
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Fig. 15. Conceptual design of the ALBAIDA solar photocatalytic plant for the treatment of 
wastewater from washing shredded plastic pesticide bottles for recycling, (Blanco et al., 
2009). 

Another coupled solar-biological system at field pilot scale based on CPC and fixed bed 
reactor (Fig. 16) for the treatment of biorecalcitrant pollutants was developed in EPFL 
(Sarria et al., 2003). The photo-Fenton system was the most appropriate AOP for the 
degradation of a model biorecalcitrant compound, 5-amino-6-methyl-2-benzimidazolone 
(AMBI). The coupled reactor, operating in semicontinuous mode achieved 80-90% 
mineralization performance depending on the range of initial dissolved organic carbon.  

 

Fig. 16. Schematic representation of the coupled solar-biological flow reactor (Sarria et al., 
2003). 

100% of the cyanides and up to 92% of TOC in wastewater effluent from an Integrated 

Gasification Combined-Cycle was degraded in the cycle utilizing concentrated solar UV 

energy (UV/Fe(II)/H2O2) in a Solar CPC pilot plant (Duran et al., 2010) under the optimum 

conditions ([H2O2] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and 

[(COOH)2] = 60 ppm).  

www.intechopen.com



 
Application of Solar Energy in the Processes of Gas, Water and Soil Treatment 

 

117 

Different solution was design of solar heated reactor for anaerobic wastewater or biological 
sludge treatment at temperatures higher than the ambient air temperature (Yiannopoulos et 
al., 2008). For the proposed reactor system, the solar energy absorbed by flat plate collectors 
was transferred to a heat storage tank, which continuously supplied an anaerobic-filter 
reactor with water at a maximum temperature of 35oC. At this temperature the COD 
removal efficiency was approximately 80%.  

3. Solar energy in conditioning of air and drying the crops 

3.1 Cooling and air conditioning 

There are two main ways to convert solar radiation into cooling or conditioning of air, based 
on PV panels and solar collectors combined with variety of thermodynamic processes (Fig. 17), 
(Henning, 2007). Solar buildings and using of gravitational ventilation is gaining more and 
more popularity in Europe but this topic will not be a subject of the present chapter.  

Techniques allowing use of solar thermal collectors, which are currently prevailing over PV 
panels for air-conditioning of buildings can be basically divided into thermally driven 
chillers (to produce chilled water which can be used for any type of air-conditioning) and 
open cycles, also referred to as desiccant cooling systems, (for direct treatment of air in a 
ventilation system). Typical system based on thermal process is presented in Fig. 18.  

 

Fig. 17. Solar radiation for air-conditioning. Processes marked in dark grey: market available 
technologies which are used for solar assisted air-conditioning. Processes marked in light 
grey: technologies in status of pilot projects or system testing (Henning, 2007).  
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Following processes, depicted in Fig. 18 are taking place: 1- intake, 2-sorptive 
dehumidification of supply air; 3-pre-cooling of the supply air in counter-flow to the return 
air from the building; 4-evaporative cooling of the supply air to the desired supply air 
humidity by means of a humidifier; 5-the heating coil is used only in the heating season for 
pre-heating of air; 6-a small temperature increase is caused by the fan; 7-supply air 
temperature and humidity are increased by means of internal loads; 8-return air from the 
building is cooled using evaporative cooling close to the saturation line; 9-the return air is 
pre-heated in counter-flow to the supply air by means of a high efficient air-to-air heat 
exchanger, e.g., a heat recovery wheel; 10-regeneration heat is provided for instance by 
means of a solar thermal collector system; 11-the water bound in the pores of the desiccant 
material of the dehumidifer wheel is desorbed by means of the hot air; ) 12-exhaust air is 
blown to the environment by means of the return air fan. 

 

Fig. 18. Standard desiccant cooling cycle using a dehumidifier wheel with solar thermal 
energy as driving heat input, (Henning, 2007).   

In Europe thermal systems are mostly installed in Germany and Spain. Large ones are 
installed at the Sarantis cosmetics factory in Greece and the federal office for environmental 
issues of Bavaria in Augsburg. In Freiburg/Germany a solar cooling system is operated by 
the University hospital for air-conditioning of a laboratory.  

The system, presented in Fig. 19 consists of an adsorption chiller with a capacity of 70 kW 
and a field using evacuated tube collectors with an aperture area of 170 m2 (Henning, 2007). 

Integration of air conditioning especially for cooling purposes with PV panels is another 
eco-friendly approach as cooling is usually used in the period of high insolation. Thus, use 
of PV supplied energy could stabilize the grid. PV panels integrated with air conditioning 
system are already commercially offered on the market by LG (Fig. 20a). LG’s solar-assisted 
air conditioner requires only 727 watts per hour of energy for cooling.  

Another solution is a hybrid system (photovoltaic + solar thermal) proposed by SolarWall® 
PV/T , which provides up to 4 times the total energy from the same surface area. ICL Co 
Ltd, Mitsubishi Chemical Corp and Nippon Fruehauf Co Ltd co-developed the air 
conditioning system "i-Cool Solar” (Fig. 20b), which stores electricity via the photovoltaic 
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panels in special on-board batteries and uses the stored energy to power the cabin air 
conditioner when the truck is idle. 

 

Fig. 19. Solar collector field (evacuated tubes) installed in system at University hospital in 
Freiburg (Henning, 2007). 

 
a b 

Fig. 20. LG solar hybrid air conditioner (a), ICL Co Ltd, Mitsubishi Chemical Corp and 
Nippon Fruehauf Co Ltd solar cooled truck (b) 

3.2 Drying of crops 

Application of solar energy for drying crops, clothes, building materials is one of the oldest 
one. The first installation for drying by solar energy was found in South France and is dated 
at about 8000 BC. Two basic moisture transfer mechanisms are involved in drying: 
migration of moisture from the mass inside to the surface and transfer of the moisture from 
the surface to the surrounding air, in the form of water vapor. Drying by solar radiation can 
be divided into direct, or open-air sun drying, the direct exposure to the sun and indirect 
solar drying or convective solar drying, (Belessiotis  and Delyannis, 2011; Leon et al. 2002). 
Selecting the perfect conditions for drying is not easy as the food materials are very sensitive 
and their color, flavor, texture or nutritional value should not be seriously affected. 
According to (Belessiotis and Delyannis, 2011) outdoor sun-air heating suits to fruits 
because of high sugar and acid content but vegetables have low sugar and acid content 
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increasing the risk of spoilage during sun- and open-air drying. The basic classification of 
solar drying modes is summarized in Tab. 3. Basically, direct solar dryers, indirect solar 
dryers, mixed-mode dryers and hybrid solar dryers can be distinguished (Fudholi, 2010). 
Fig. 21 gives examples of basic design of solar dryiers. 

  
          a      b 

Fig. 21. Examples of  solar crops dryers: indirect-mode forced dryer, (Al-Juamily et al., 2007) 
(a), indirect type natural convection solar dryer with an integrated thermal mass and a 
biomass-backup heat, (Madhlopa and Ngwalo, 2007)  (b). 

 

Table 3. Classification of solar dryers and drying modes (Fudholi, 2010). 
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4. Solar energy for wastes and solids treatment  

Solar energy might be used in processing of solid and liquid wastes on several stages of 
their treatment. PV panels might be used for generating of electrical power for each devices 
but commonly rather thermal solar power is used to maintain or increase the temperature 
required for the treatment process.  

Solar power can be used in the process of gasification of carboniferous materials including 
wastes of high carbon content. Solar steam-gasification of biomass makes use of 
concentrated solar energy to convert solid biomass feedstocks into high-quality synthesis 
gas (syngas) – mainly H2 and CO – applicable for power generation in efficient combined 
cycles and fuel cells, or for Fischer-Tropsch processing of liquid biofuels (Lede, 1999; Perkins 
and Weimer, 2009; Melchior, 2009). Conventional auto-thermal gasification requires a 
significant portion of the introduced feedstock to be combusted with pure O2  to supply 
high temperature process heat for the highly endothermic gasification reaction. For 
example, the energy required to gasify bituminous coal of LHV 34 MJ/kg is supplied by 
burning 35% of the injected coal mass (Piatkowski and Steinfeld, 2008). In contrast, the solar-
driven gasification eliminates the need for a pure stream of oxygen (Melchior, 2009). 

Solar-driven steam-gasification is free of nearly all combustion by-products and produced 
syngas has a lower amount of CO2 (calorific value is over that of the original feedstock by an 
amount equal to the enthalpy change of the reaction).  

The solar hydrogen technology can be divided into water thermolysis (needs a high 
temperature heat source at above 2500 K), thermochemical cycles for water-splitting, and 
hybrid solar/fossil fuels processes. 

Thermochemical gasification of tires and plastic bottles into synthesis gas using ZnO as a 
donor of oxygen in the infra-red furnace and concentrated solar energy was studied 
(Matsunami et al., 1999). Another solution for concentrated-solar supported gasification was 
two phase biomass char (biochar) steam gasification in a bubbling fluidized bed (Fig. 22). 
Hydrogen was the principal expected product followed by carbon monoxide (Gordillo and 
Belghit, 2011). 

 

Fig. 22. A bubbling fluidized bed gasifier with concentrated thermal radiation as source of 
energy (Gordillo and Belghit, 2011).  
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3kW solar reactor prototype was invented for continuous steam-gasification of biochar 
(ultimately for the biomass feedstock) (Melchior et al., 2009). High-temperature 
thermochemical reactor, depicted in Fig. 23, used cavity-type configuration to capture 
effectively the incident concentrated solar radiation entering through a small opening 
(aperture) and multiple internal reflections.  

 
a 

 
b 

Fig. 23. Schemata of the solar chemical reactor configuration (cross-sectional view) at ETH’s 
High-Flux Solar Simulator (a), and of scaled-up reactor consisting of a cavity-receiver 
containing an array of 8 tubular absorbers (b), (Melchior et al., 2009). 

A novel system of hydrogen production by biomass gasification in supercritical water 
(SCWG) using concentrated solar energy has been constructed, installed and tested with 
biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) (Chen et al., 
2010). The system’s schema is shown in Fig. 24. 
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Fig. 24. Schematic diagram of SCWG using concentrated solar energy system [Chen et al., 

2010]. (1: nitrogen bottle; 2: feedstock tank; 3: feeder; 4: solar receiver/reactor; 5: heat 

exchanger; 6: cooler; 7: filter; 8: back-pressure regulator; 9: liquid-gas separator; 10: wet test 

meter; 11: relief valve; 12, 13: mass flow meter; 14, 15: high pressure metering pump; 16: 

water tank; 17: toroidal surface heliostat with the two axis spinning-elevation sun tracking; 

18: secondary cone surface concentrator). 

The maximal gasification efficiency (the mass of product gas/the mass of feedstock) in 

excess of 110% was reached, hydrogen fraction in the gas product approached 50%. 

Big Belly System (Fig. 25) is an interesting initiative for small scale application of PV power 

for compression of city wastes. It reduces collection frequency by up to 80%, freeing up 

resources, slashing fuel costs and increasing recycling opportunities. Innovative container 

allows accommodating 8 times more trashes than traditional one and will bring about 12 

mln USD savings in 10 years period in Philadelphia city. 

 

Fig. 25. Big Belly System. 
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5. Prototype installation of air, water and soil treatment suppliedd from PV 
panels 

Autonomous water treatment installation supplied from PV panels and installation for air, 

water and soil treatment were developed in Lublin University of Technology in cooperation 

with Japanese partners. Set-ups were extensively described (Pawlat et al., 2011; Stryczewska, 

2011; Komarzyniec et al., 2010; Pawłat et al, 2011a; Pawłat et al, 2011b; Ebihara et al., 2011; 

Takayama et al., 2006; Komarzyniec et al., 2010). 

Small water treatment installations with ozone generation using electric energy from 

renewable energy sources could be the good solutions to variety of environmental problems. 

Fig.26 depicts a small household water ozonation installation. Proposed system was made of 

three basic sub-systems: electric energy power system, ozone production system and water 

treatment system. It was totally autonomous, designed for a constant work in difficult 

climatic conditions. The devised technological solution is excellent to be utilized in remote 

terrains, which are distant from electroenergetic network or in the places where the 

electroenergetic main is unstable and fallible.  

 

Fig. 26. Water ozonation system 

Ozone based techniques in the case of soil contamination are good alternative to the 

traditional techniques like heating, flushing with chemical additives, landfilling, 

incineration, etc. Benefits of ozone applications in agriculture might be summarized as 

follows: 

- use of ozone in soil treatment will not result in the build-up of any environmentally 

persistent or toxic compounds as O3 is immediately consumed in the soil treatment 

process.  

- ozone is manufactured on site so it cannot be stored and its sudden release to the 

atmosphere is not possible like it could occur with compressed methyl bromide or other 

persistent  toxic gases or chemicals used for soil sterilization.  

- minimum human toxicity. 

Integrated system for ozonation of soil was presented in Fig. 27. 
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Fig. 27. Soil ozonation system 

Currently, the total cost of generating electrical energy from solar batteries is one order of 
magnitude higher than in case of nuclear energy. However, the application of solar batteries 
becomes profitable, as far as the demand for electrical energy is small. The correctly selected 
system should cover about 95÷100% of electrical energy demand during summer. Tab. 4 
collects  photovoltaic cell parameters, used to supply water ozonation system with electrical 
energy.  

 

Maximum 
Power 

Maximum 
System 
Voltage 

Maximum 
Power 

Voltage 

Maximum 
Power 

Current 

Open Circuit 
Voltage 

Short 
Circuit 
Current 

210 W 600 V 26.6 V 7.9 A 33.2 V 8.58 A 

Table 4. Photovoltaic cell parameters 

5.1 Production of ozone  

The ozone generation took place with the usage of corona discharge. The ozonizer was 

powered with high frequency supplier with pulse control and amplitude modulation. It was 

possible to control ozone concentration. The basic parts of ozone generator were titanium 

electrodes (one covered with ceramic dielectric material). In order to lower the ozonier’s 

consumption of electric energy, the complex system of radiators was used, so electrodes 

were efficiently cooled with atmospheric air (Fig. 28).  

The utilized ozone generator operated with both: pure oxygen and atmospheric air as 
substrate gases, 1.5 g/h and 6 g/h of O3 were generated, respectively. Gas flow ranged 3,3-
4,7 l/min with 180 W of power consumption. 

Ozone production chart and voltage characteristics are depicted in Fig. 29 and 30, 
respectively.  

Through an increase of frequency not only the increase of efficiency, but also reduction of 
electric energy consumption was achieved.  
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Fig. 28. Ozone generator: 1, 4 – titanium electrode, 2 – ceramic layer, 3 – discharge gap, 4 – 
radiator 

 

Fig. 29. Ozone generation chart. 

    

Fig. 30. The voltage characteristics for various frequencies. 

5.2 Water ozonation system 

The appropriately made contact container has a fundamental influence on stability and final 

quality of water ozonation process. In the majority of ozonation systems ozone is added to 
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water in the form of bubbles through diffuser. The effectiveness of such a process is low 

because ozone is not evenly mixed with water, and when in large quantities, ozone 

evaporates from water into ozone destructors, from where the unused oxygen is blown out 

to the atmosphere. To reduce influence of factors mentioned above innovative WOFIL 

system was used. In this solution, raw water was initially aerated and oxidized with the 

oxygen mixed with ozone, which evaporated from the contact container. This solution 

enabled the increase of ozonation process’ efficiency by almost 30% (in comparison with the 

competitive ideas) without the increase of electrical energy consumption. It also resulted in 

reduction of amount of gas which was blown out to ozone destructors and in lower values 

of residual ozone after the contact container.  

In order to remove the excess of the produced and the residual ozone the catalytic 

destructors were used. System is presented in Fig. 31. 

 

Fig. 31. WOFIL water ozonation system  

5.3 Power supply 

The main element of the circuit was bi-directional inverter, administering loads, the flow of 

energy and the work of accumulators. Inverter provided 24 V grid of DC voltage and a 

typical grid of AC voltage 110 V/60 Hz or 230 V/50 Hz. Thus, it enabled integration ranging 

from electric generators to energy receivers.  

Photovoltaic systems, air turbine, generators with diesel motors, water-power plants are 

connected together with load on the side of alternating voltage. The batteries of 

accumulators, fuel cells and DC receivers, however, are integrated on the side of DC 

voltage. Fig. 32 depicts a flow chart of electric grid which cooperates with water ozonation 

system.  
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The connection of solar batteries on the side of alternating voltage required application 

additional DC/AC inverter, what allowed to avoid using an expansive DC wiring and 

additional adjustment.  

 

Fig. 32. Grid supplying water ozonation system with electric energy. 

5.4 Energy distribution 

Limited power value received from photovoltaic cells poses the main problem in designing 

an efficient treatment system. Power consumption of individual electric elements in 

integrated ozonation system is shown in Fig.33.  

 

Fig. 33. Electric energy consumption in the system. 

When the whole system is accurately aligned, usage of some of electronic elements, utilized 

in pilot installation, which are responsible for controlling functioning of the system might be 

omitted. Thus, power consumption could be lowered to several hundred Watts.  

6. Conclusions 

Usage of solar power via thermal collectors or photovoltaic panels to the water, air, waste 

and soil treatment is an environmental-friendly and cost-effective solution, especially on 

areas with yearly uniform and high insolation.  
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The presented water and air/water/soil ozonation set-ups are currently being prepared for 

implementation procedures. Since being fully autonomic systems of modular construction, 

they could be easily adjusted to individual needs. Power from PV panels could cover up to 

95-100% energy needs in summer period in optimized integrated system. 

Efficiency of ozone application and AOP methods for water is already well known. Ozone 

usage in the case of soil allowed to achieve 99.9% sterilization efficiency in the case of 

Fusarium oxysporum at the ozone dosage over 20 gO3/m3. 
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