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1. Introduction

In the last decade, femtosecond pulse technology has evolved extremely rapidly and
allowed achieving a few-optical-cycle pulse generation directly from a solid-state oscillator
(Brabec & Krausz (2000); Steinmeyer et al. (1999)). Applications of such pulses range
from medicine and micro-machining to fundamental physics of light-matter interaction at
unprecedented intensity level and time scale (Agostini & DiMauro (2004); Gattass & Mazur
(2008); Hannaford (2005); Krausz & Ivanov (2009); Martin & Hynes (2003); Mourou et al.
(2006); Pfeifer et al. (2006)). In particular, high-energy solid-state oscillators nowadays allow
high-intensity experiments such as direct gas ionization (Liu et al. (2008)), where the level of
intensity must be of the order of 1014 W/cm2. Such an intensity level enables pump-probe
diffraction experiments with electrons, direct high-harmonic generation in gases, production
of nm-scale structures at a surface of transparent materials, etc. The required pulse energies
have to exceed one and even tens of micro-joules at the fundamental MHz repetition rate of
an oscillator (Südmeyer et al. (2008)).

Such energy frontiers have become achievable due to the chirped pulse amplification outside
an oscillator (Diels & Rudolph (2006); Koechner (2006); Mourou et al. (2006)). However, the
amplifier technology is i) complex, ii) expensive, iii) noise amplification is unavoidable,
and iv) accessible pulse repetition rates lie within the kHz range. The last is especially
important because the signal rates in, for example, electron experiments are usually low and
an improvement factor of 103–104 due to the higher repetition rate of the pulses significantly
enhances the signal-to-noise ratio. Therefore, it is desirable to find a road to the direct
over-microjoule femtosecond pulse generation at the MHz pulse repetition rates without an
external amplification.

In principle, a cavity dumping allows increasing the pulse energy from a solid-state oscillator
(Huber et al. (2003); Zhavoronkov et al. (2005)) but it makes the system more complex. There
are the few alternative ways of increasing the oscillator pulse energy E, which is a product
of the average power Pav and the repetition period Trep: by increasing the cavity length
and/or increasing the power (Apolonski et al. (2000); Cho et al. (1999); der Au et al. (2000);
Südmeyer et al. (2008)). The impediment is that a high-energy pulse with E = PavTrep suffers
from instabilities owing to nonlinear effects caused by the high pulse peak power P0 ∝ E/T (T
is the pulse width). The leverage is to stretch a pulse, i.e. to increase its width T and thereby
to decrease its peak power below the instability threshold.
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One may grasp an implementation of this strategy on basis of the so-called solitonic
conception of ultrashort pulse. If the pulse parameters change slowly during one cavity
round-trip (that is a reasonable approximation for a typical solid-state oscillator), the
ultrashort pulse can be treated as a dissipative soliton governed by both linear and nonlinear
factors of an oscillator (Akhmediev & Ankiewicz (2005); Haus (1975a); Kärtner et al. (2004)).
From a solitonic standpoint, the solid-state oscillators can be subdivided into i) those
operating in the anomalous dispersion regime and ii) those operating in the normal dispersion
regime.

In the anomalous dispersion regime, there are the simple relations between the
pulse parameters E, T, and P0 as well as the oscillator parameters β (that is the
net-group-delay-dispersion coefficient) and γ (that is the self-phase modulation coefficient
of a nonlinear medium, e.g. active crystal, air, optical plate, etc.) (Agrawal (2006))

T =
√

|β|
/

γP0, E = 2 |β|
/

γT. (1)

Since the peak power P0 has to be kept lower than some threshold value Pth in order to avoid
the pulse destabilization, the energy scaling requires a pulse stretching which can be provided
by only the substantial dispersion growth (see Eq. (1)):

E = 2
√

Pth |β|
/

γ. (2)

In the normal dispersion regime, a pulse is stretched and its peak power is reduced due
to appearance of the so-called chirp ψ (Haus et al. (1991)). The chirp means that the
instantaneous frequency varies with time and, as a result, the pulse becomes stretched by ψ
times in the time domain in comparison with a chirp-free pulse (Kharenko et al. (2011)). Since
a pulse is chirped, an oscillator operating in such a regime is called as “chirped-pulse oscillator”
(Fernández González (2008)). As a result of chirping, an oscillator becomes extremely stable
at a comparatively low level of dispersion. The spectrally broad pulse from such an oscillator
can be substantially compressed (the compression factor is ≈ ψ) with the proportional growth
of its peak power P0. An implementation of this regime promises a substantial enhancement
of energy scalability in comparison with the law (2) and this strategy is the objective of the
recent review.

The chapter is structured in the following way. In the first part, the physical principles of
operation of a chirped-pulse oscillator are considered. The decisive contribution of dissipative
effects such as the spectral filtering and the self-amplitude modulation into formation of
a chirped-pulse is emphasized. Then, the concept of the chirped pulse as the chirped
dissipative soliton is formulated. The underlying model is based on the so-called complex
nonlinear Ginzburg-Landau equation (Akhmediev & Ankiewicz (1997); Aranson & Kramer
(2002)). The main theoretical results concerning the chirped dissipative solitons of this
equation are reviewed. They are based on both analytical and numerical integration
techniques. The former can be divided into exact and approximated approaches. The
last is most powerful and allows reducing the analysis of a chirped-pulse oscillator to the
construction of two-dimensional “master diagram” comprising main properties of the chirped
dissipative soliton (Kalashnikov et al. (2006)). The concept of the soliton energy scalability is
analyzed and the different approaches to this concept are compared. In the course of analysis,
a parallel between the chirped-pulse solid-state oscillators and the all-normal-dispersion fiber
lasers (Rühl (2008); Wise et al. (2008)) is drawn.
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Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses 3

In the last part of review some experimental achievements in the field of solid-state
chirped-pulse oscillators are surveyed. Both broadband bulk and Yb:doped thin-disk
oscillators are considered and the prospects for a further energy-scaling are estimated.

2. Operational principles and theory of chirped-pulse oscillators

In this section, the theory of a chirped-pulse oscillator will be outlined. As will be shown, the
dissipative factors of a laser play a decisive role in the formation of an ultrashort pulse which
can be treated as a chirped dissipative soliton. The underlying model is based on the complex
nonlinear Ginzburg-Landau equation. Formulation and integration of this equation as well as
interpretation of the obtained results are the important steps required for comprehension of
the operational principles of chirped-pulse oscillators.

Firstly, we shall characterize the principal factors governing the oscillator dynamics and
formulate the muster equation (i.e. the complex nonlinear Ginzburg-Landau equation)
modeling this dynamics. Then, the physical principles of the chirped pulse formation will be
considered. It will be shown, that the chirped pulse exists due to a phase balance supported
by a self-amplitude modulation. As a result, a chirped dissipative soliton emerges. Only
two exact shapes for such a soliton are known. They are the partial solutions of the complex
nonlinear Ginzburg-Landau equation and have a limited range of applications. Therefore, the
approximated approaches to the muster equation are of interest and they will be surveyed in
a nutshell.

The first approach is based on the regularized adiabatic approximation (Ablowitz & Horikis
(2009); Kalashnikov (2010); Podivilov & Kalashnikov (2005)) and the second class of
approaches exploits the so-called Galerkin truncation (Blanchard & Brüning (1992); Malomed
(2002)). The main advantage of the approximated methods is that they project the initial
problem with infinitely many degrees of freedom to the finite-dimensional one that, thereby,
makes the chirped dissipative soliton parameters to be easily traceable. We shall give
emphasis to two practically important outputs of the approximated models of a chirped
dissipative soliton viz. to the concepts of i) “master diagram“ (Kalashnikov & Apolonski
(2010); Kalashnikov et al. (2006)) and ii) “dissipative soliton resonance” (Chang et al. (2008b)).
These concepts allow truncating the soliton parametrical space and provide the thorough
grasp of the oscillator energy scalability. A possible application of the theory to the
all-normal-dispersion fiber lasers will be implied in the course of consideration. In the course
of this section, we shall touch upon some issues of a chirped-pulse oscillator stability.

2.1 Operational principles of a chirped-pulse oscillator

Let’s begin with the consideration of principal factors governing the ultrashort pulse
formation in an oscillator. Their schematic representation is shown in Fig. 1. In the slowly
varying envelope approximation (Oughstun (2009)), the laser field envelope A evolves under
influence of the operators corresponding to each of the factors represented in the diagram.
The slowly varying envelope approximation is valid until T ≫ 1/ω0 and ∆ ≪ ω0 (ω0 is
the carrier frequency, ∆ is the spectral half-width of ultrashort pulse and T is its width) and
has proved its usefulness for a theory of ultrashort pulse propagation even in the limit of
T → 1/ω0 (Brabec & Krausz (1997)).

We shall consider below a (1 + 1)-dimensional field envelope A(z, τ), where z ∈ [0, NLcav]
is the propagation distance (i.e. the distance taken along the arrows in Fig. 1) and τ ≡ [t −
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Fig. 1. Schematic representation of principal factors contributing to the ultrashort pulse
formation and dynamics.
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/
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)∣

∣

ω=ω0
] ∈ [0, Trep] is the local or “reduced” time (t ∈ [0, NTrep] is the time, ω is the

frequency deviation measured from ω0, k(ω) is the wave number). An oscillator is a naturally
periodic system with the repetition time Trep ≡ Lcav/c (c is the light speed, Lcav is the oscillator
cavity length for a circular scheme of Fig. 1 or the double cavity length for a linear oscillator)
and the repetition (“cavity round-trip”) number N.

2.1.1 Saturable gain and linear loss

The dissipative factors, which are generic for all types of oscillators, are the saturable gain
and the linear (i.e. power-independent) loss. The latter includes both intracavity and output
losses. In the simplest case, their common contribution into laser dynamics can be described
as

∂A (z, τ)

∂z
= −σA (z, τ) =

g0 A (z, τ)

1 + E/Es
− ℓA (z, τ) , (3)

where g0 is the unsaturated gain defined by a pump (i.e. the gain coefficient for a small signal),

E ≡
∫ Trep

0 |A|2dτ is the intracavity field energy (|A|2 has a dimension of power), Es ≡ h̄ω0S
/

σg

is the gain saturation energy (σg is the gain cross-section and S is the laser beam area). Multiple
propagation of the pulse through an active medium during one cavity round-trip, as it takes
a place in a thin-disk oscillator (see Sec. 3) has to be taken into account by a corresponding
multiplier before E in (3). The power-independent (“linear”) loss coefficient is ℓ.

Since an oscillator in a steady-state regime operates in the vicinity of lasing threshold (where
σ =0 by definition), one may expand σ (Kalashnikov et al. (2006)):

σ (E) ≈ δ

(

E

E∗ − 1

)

, (4)

where E∗ is the energy of continuous-wave operation corresponding to σ =0, and

δ ≡
(

dσ
/

dE
)∣

∣

E=E∗ .
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Fig. 2. Gain dynamics (red curve corresponds to g(τ)) affected by pumping, gain relaxation,
and gain saturation in the steady-state (i.e. z-independent) pulsing regime (black curve
corresponds to |A(τ)|2).

Eqs. (3,4) do not take into account the time-dependence of σ due to the so-called dynamic
gain saturation (see Fig. 2) (Kalashnikov (2008)). The dynamic gain saturation emerges when

E/Es →1 and the gain is saturated by rather “fluent” energy
∫ τ

0 |A|2dτ′. For instance, a

Ti:sapphire oscillator with S =130 µm2 and E =200 nJ has E/Es ≈0.2. That is the dynamic
gain saturation begins to play a role in the dynamics. In this case, Eq. (3) has to be
supplemented with the rate equation for a four-level active medium (Herrmann & Wilhelmi
(1987)) that results in

∂A (z, τ)

∂z
= (g (z, τ)− ℓ) A (z, τ) ,

∂g (z, τ)

∂τ
=

Pp

Sp

σa

h̄ωa
(gmax − g (z, τ))− |A (z, τ)|2

SEs
g (z, τ)− g (z, τ)

Tr

(5)

Here the maximum gain gmax, the absorption cross-section σa, the absorption frequency ωa,
the absorbed pump power Pa, the pump beam area Sa, and the relaxation time Tr. For a pulse
with T ≪ Trep (this requirement is trivial), one may use the expansion in E/Es-series (Haus
(1975b); Kalashnikov, Kalosha, Mikhailov, Poloyko, Demchuk, Koltchanov & Eichler (1995))

σ (z, τ) = ℓ− g(z, τ0) exp

⎛

⎝−
∫ Trep

τ0
|A|2dτ′

Es

⎞

⎠ ≈ ℓ− g(z, τ0) (z)

⎛

⎝1 −
∫ Trep

τ0
|A|2dτ′

Es
+ ...

⎞

⎠ .

(6)

Here g(τ0) is the gain at the pulse peak, which appears at some repetitive instant τ ≡ τ0

(Fig. 2). g(τ0) can be expressed iteratively by integration of the second equation of (5)
(Jasapara et al. (2000)):

g (z, τ0) = g0

(

z − cTrep, τ0

)

exp
(

− E
2Es

− Trep

Tr
− Pp

Sp

σaTrep

h̄ωa

)

+

+
gmaxPpσaTrep/Sp h̄ωa

E/2Es+Trep/Tr+PpσaTrep/Sph̄ωa

[

1 − exp
(

− Trep

Tr
− Pp

Sp

σaTrep

h̄ωa

)]

.
(7)

On the one hand, the contribution of σ(z, τ) (Eqs. (3) or (5)) to the oscillator dynamics
is important because the dissipative soliton emerges spontaneously from a destabilized
continuous-wave regime of an oscillator (Soto-Crespo et al. (2002)). The continuous-wave
solution of Eq. (3) corresponds to the condition ∂A

/

∂z = −σA = 0, which results in

149Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses
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Fig. 3. Evolution of the normalized power for an oscillator studied in
(Kalashnikov, Kalosha, Mikhailov & Poloyko (1995)). Figure illustrates the stages of
ultrashort pulse formation with the initial noise amplification (vacuum instability), the
continuous-wave formation, its destabilization, and the further noise reduction to an initial
(“vacuum”) level at the stage, when a dissipative soliton becomes “mature”. The
propagation distance z is normalized to cTrep, i.e. it is the cavity round-trip number. Adapted
from (Kalashnikov, Kalosha, Mikhailov & Poloyko (1995))

Pav =0 (so-called “vacuum”), and Pav = Es (g0 − ℓ)
/

ℓTrep (actually, continuous-wave). The
continuous-wave develops from the vacuum instability (the stage from z =0 to z ≈100 in Fig.
3).

On the other hand, the stability condition for the mature soliton is the vacuum stability that
is σ >0. This condition will play a crucial role in the sequel. It means physically that there
exists no an amplification outside the dissipative soliton (see the stage after z ≈300 in Fig. 3,
where the vacuum becomes stable). If the gain dynamics contributes (Fig. 2), such a criterion
becomes even stronger (Kalashnikov et al. (2006)):

σ > ∆g ≈ g0Trep
/

2Tr . (8)

Another important aspect of gain dynamics results from the energy-dependence of σ which
causes a negative-feedback: the destabilizing growth (reduction) of soliton energy increases
(decreases) σ >0 and, thereby, leads to the soliton attenuation (amplification) that tends in
turn to the soliton stabilization.

2.1.2 Spectral filtering

As will be shown in Sec. 2.2, the spectral filtering is the key factor for a chirped-pulse
oscillator. Such a filtering results from spectrally-dependent gain and/or loss and begins to
contribute already at an initial stage of pulse formation. Fig. 3 demonstrates smoothing of
an initial noise structure since the generation starts. In the spectral domain, a spectral filter
provides a minimum loss at some frequency and, thereby, “selects” it (so-called “longitudinal
mode selection”). The initially broad noise spectrum, corresponding to the short time spikes
shrinks that corresponds to a smoothed time structure. The latter tends asymptotically to a
continuous-wave. But a continuum-wave can be unstable in the presence of nonlinear factors
(see next Sec. 2.1.3) so that an ultrashort pulse develops (Fig. 3).
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Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses 7

Let us assume that a spectral filter has a profile Φ (ω). Then, Eq. (3) has to be supplemented
with

∂A (z, ω)

∂z
= Φ (ω) A (z, ω) , (9)

where A(z, ω) is the Fourier-image of A(z, τ).

Usually, the Lorenzian shape for Φ(ω) is assumed (Haus (1975a)):

Φ (ω) =
g(ω0)

1 + iω/Ω
, (10)

where g(ω0) is the gain coefficient or the maximum transmission coefficient (e.g., for an
output mirror). It is assumed that spectral filtering is centered at ω0. Ω is the filter bandwidth.

If 2∆ ≪ Ω, one may expand (10) and proceed in the time-domain

∂A (z, τ)

∂z
≈ g (ω0)

[

1 − 1

Ω

∂

∂τ
+

1

Ω2

∂2

∂τ2
− h. o. t.

]

A (z, τ) , (11)

where h.o.t. means the higher in ∂/∂τ-order terms, which are negligible as a rule (for some
important exceptions see, e.g. (Akhmediev & Ankiewicz (2005); Kalashnikov et al. (2011))).

2.1.3 Self-amplitude modulation

A self-amplitude modulation provides a pulse-power discrimination so that the net-gain
increases with |A|2 (at least up to some power level). This factor forms and stabilizes a pulse
(Fig. 3). The mechanisms of self-amplitude modulation are various (Paschotta (2008); Weiner
(2009)) but there are two ones, which are widespread in the solid-state oscillators: i) Kerr-lens
mode-locking (KLM) (Spence et al. (1991)), and ii) mode-locking due to a semiconductor
saturable absorber mirror (SESAM) (Keller et al. (1996)).

The KLM uses a self-focusing of laser beam inside some nonlinear element (e.g.,
active medium) that changes diffractional loss (so-called hard aperture mode-locking) or
overlapping between the lasing and pumping beams (so-called soft aperture mode-locking)
(Paschotta (2008)). It is important, that i) response of this mechanism to a laser field is
practically instantaneous (i.e. it is power-dependent), and ii) the mechanism is strongly
interrelated with the self-phase modulation (see next Sec. 2.1.4) because both phenomena
are caused by the same nonlinear process.

A detailed modeling of spatial variations of laser beam is cumbersome and unpractical.
Therefore, some reduction of dimensionality is required. For instance, one may consider
an evolution of only zero-order Gaussian beams under action of factors presented in Fig. 1
(Kalashnikov, Kalosha, Mikhailov & Poloyko (1995); Kalosha et al. (1998)). However, such an
approach remains to be cumbersome because it needs considering the detailed geometrical
structure of an oscillator. Hence, it is usable to reduce the KLM to an action of some effective
fast saturable absorber with a response function U |A (z, τ)〉 ≡ F(|A(z, τ)|2)A(z, τ) so that
Eqs. (3,9) have to be supplemented with

∂A (z, τ)

∂z
= F(|A(z, τ)|2)A(z, τ). (12)

151Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses
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Fig. 4. Idealized self-amplitude modulation functions F
(

|A (z, τ)|2
)

.

From this point of view, one may consider the soft and hard aperture mode-locking as (see
Fig. 4) i) “alternating” self-amplitude modulation for the former with

F
(

|A (z, τ)|2
)

≈ −ℓ
′ + κ

(

1 − ζ|A (z, τ)|2
)

|A (z, τ)|2, (13)

where a loss saturation changes into a loss enhancement with the power growth; and ii)
perfectly saturable absorber for the latter with

F
(

|A (z, τ)|2
)

≈ − ℓ′

1 + κ|A (z, τ)|2
, (14)

where the loss ℓ′ vanishes asymptotically with the power growth.

Here ℓ′ is the low-power saturable loss (i.e. unsaturated saturable loss) and it has not to be
confused with ℓ (i.e. unsaturable loss). The ℓ′-coefficient can be absorbed by σ (Eq. 3) (for
such “absorption”, the right-hand side of Eq. 14 has to be rewritten as

−ℓ′ + ℓ′κ|A|2
/(

1 + κ|A|2
)

). The κ-parameter is the self-amplitude modulation coefficient

(i.e. the inverse power of loss saturation), ζ is the coefficient of self-amplitude alteration.

Physical sense of the curves presented in Fig. 4 can be explained in the following way.
Self-focusing inside a nonlinear element is provided by the cubic nonlinearity therefore the
leading term in (12) is proportional to |A|2A. If a hard aperture is used, the beam squeezing
due to self-focusing leads to the monotonic decrease of the diffraction loss (Eq. (14) and the
blue curve in Fig. 4). If a soft aperture is used, the overlapping between the lasing and
pumping beams and, thereby, the gain increases initially with power. Then the overlapping
becomes complete and the gain reaches its maximum. Further growth of power worsens the
overlapping and the gain decreases with power (Eq. (13) and the red curve in Fig. 4).

Now let’s consider a SESAM as the self-amplitude modulator. As a rule, the nonlinear
properties of a semiconductor structure are complex. Despite this complexity, one may model
the nonlinear response of a SESAM by Eq. (12) if T ≫ TE

r (TE
r is the decomposition time of

152 Waves in Fluids and Solids
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Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses 9

excitons which is lesser than 100 fs as a rule) and TE
r ≪ TF

r (TF
r is the recombination time of

free carriers which exceeds tens of picoseconds) (Haus & Silberberg (1985)). Then, ℓ′ is the
modulation depth, and κ ≡ 2σATE

r

/

h̄ω0SA is the inverse saturation power of absorber (SA is

the beam area on an absorber, σA is the absorption cross-section). Since T equals to a few of
picoseconds for an uncompressed chirped pulse, the approximation T ≫ TE

r is quite precise
for a chirped-pulse oscillator.

2.1.4 Self-phase modulation

Active crystal, air, optical plates, etc. have a third-order nonlinearity so that their refractivity

indexes n are power-dependent: n = n0 + γ|A|2 (n0 is the refractive index for a small signal, γ
is the self-phase modulation coefficient for a medium) (Agrawal (2006)). The coefficient γ can
be estimated as: γ = 8π2n0n2

/

λ2 for the case of strong beam focusing inside a nonlinear
element (e.g. inside an active crystal or optical plate) or γ = 4πn2L/λS for the case of
weak focusing (e.g. inside an active thin-disk or air) (Weiner (2009)). Here λ is the central
wavelength of an oscillator, L is the length of a nonlinear medium, n2 is its nonlinear refractive
index, and S is the beam area.

Since the γ-coefficient depends on beam area in the last formula, the self-focusing can affect
the self-phase modulation through the S-change. As a result, the refractive index acquires the
corrections with higher-order powers of |A|. Then, the contribution of self-phase modulation
can be modeled as

∂A (z, τ)

∂z
= −iP |A (z, τ)〉 = −i

[

γ + χ|A (z, τ)|2
]

|A (z, τ)|2 A (z, τ) , (15)

where χ describes the higher-order correction to the self-phase modulation coefficient.

Despite the factors considered above, the self-phase modulation is non-dissipative effect and
does not change the pulse energy.

2.1.5 Group-delay dispersion

The last effect required for the ultrashort pulse generation is the group-delay dispersion. This
effect causes frequency dependence of the wave propagation constant k: k (ω) = k (ω0) +
k1ω + k2ω2 + h. o. t. Since an ultrashort pulse has a broad spectrum, such a dependence
cannot be neglected. The coefficients k and k1 can be included in the definitions of the soliton
wave-number and the reduced time τ, respectively. Then, the contribution of the group-delay
dispersion is defined as

∂A (z, τ)

∂z
= iβ

∂2 A (z, τ)

∂τ2
+ h. o. t. (16)

Here β ≡ Lcav
(

dk
/

dω
)∣

∣

ω=ω0
is the group-delay dispersion coefficient and, in our notations,

it is positive for a normal dispersion and negative for an anomalous dispersion.

Both self-phase modulation and group-delay dispersion are non-dissipative effects and
contribute to the pulse phase profile. In the solitonic regime, these contributions have to be
balanced therefore both γ and β are the key control parameters of an oscillator.

Higher-order terms in (16) are called as the higher-order dispersions and become especially
important for broadband oscillators (such as Ti:sapphire, Cr:YAG, Cr:ZnSe, etc.). Some aspects
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of their contribution to the characteristics of a chirped-pulse oscillator will be considered in
Sec. 2.3.1, as well.

2.1.6 Haus master equation

The pulse changes during one cavity round-trip are, as a rule, small for a solid-state oscillator.
That allows joining Eqs. (3,11,12,15,16):

∂A (z, τ)

∂z
=

[

−σ (E) +
g (ω0)

Ω2

∂2

∂τ2
+ F
(

|A|2
)

]

A (z, τ)+ i

{

β
∂2

∂τ2
− γ|A|2 − χ|A|4

}

A (z, τ) .

(17)
Eq. (17) is the modified Haus master equation introduced in (Haus et al. (1991)). Formally,
it can be rated as a complex nonlinear Ginzburg-Landau equation (Akhmediev & Ankiewicz
(1997); Aranson & Kramer (2002)). The last has an extremely wide horizon of applications
covering quantum optics, modeling of Bose-Einstein condensation, condensate-matter
physics, study of non-equilibrium phenomena, and nonlinear dynamics, quantum mechanics
of self-organizing dissipative systems, and quantum field theory. In laser physics, this
equation provides an adequate description of ultrashort pulses in both solid-state (Haus et al.
(1991)) and fiber (Ding & Kutz (2009); Komarov et al. (2005)) lasers, as well as, pulse
propagation in nonlinear fibers. As will be shown in Sec. 2.3, the theory of chirped-pulse
oscillators is based mainly on study of soliton-like solutions of (17). Hereinafter, we
shall attend to two main modifications of (17): i) cubic-quintic nonlinear Ginzburg-Landau
equation (CQNGLE) with F

(

|A(z, τ)|2
)

defined by (13), and ii) generalized nonlinear

Ginzburg-Landau equation (GNGLE) with F
(

|A(z, τ)|2
)

defined by (14).

The exact analytical solutions of the complex nonlinear Ginzburg-Landau equation are known
only for a few of cases, when they represent the dissipative solitons and some algebraic
relations on the parameters of the equation are imposed (Akhmediev & Afanasjev (1996)).
More general solutions can be revealed on basis of the algebraic nonperturbative techniques
(Conte (1999)), which, nevertheless, are not developed sufficiently still. The perturbative
methods allow obtaining the dissipative soliton solutions (Malomed & Nepomnyashchy
(1990)) in the vicinity of the Schrödinger solitonic sector (Agrawal (2006)) of CQNGLE.
Another approximate methods utilize the reduction of infinite-dimensional space of CQNGLE
to the finite-dimensional one on basis of the method of moments (Tsoy & Akhmediev (2005))
or the variational method (Ankiewicz et al. (2007); Bale & Kutz (2008)). At last, there is the
direct approximate integration technique for the complex Ginzburg-Landau equation with an
arbitrary F

(

|A(z, τ)|2
)

(Podivilov & Kalashnikov (2005)). Applications of these methods to
the theory of chirped-pulse oscillator will be reviewed in Sec. 2.3.

2.2 Physical principles of chirped dissipative soliton formation

A dissipative soliton is named as “chirped” one if its phase φ(τ) is time-dependent. The
chirp results from a joint action of normal dispersion (β >0) and self-phase modulation. Eq.
(17) suggests that a round-trip contribution of the time-dependent phase to the pulse phase

change is −β|A (τ) |
[

dφ (τ)
/

dτ
]2 − γ|A (τ)|3 (blue curve in left Fig. 5). Simultaneously, a

phase contribution of the pulse envelope is β∂2 |A (τ)|
/

∂τ2 (red curve in left Fig. 5). Hence,
the phase balance is possible for a chirped pulse propagating in the normal dispersion regime
(Kalashnikov et al. (2008); Renninger et al. (2011)). It should be noted, that the Schrödinger
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Fig. 5. One cavity round-trip contribution to the time-dependent phase φ(τ) (left) and the
amplitude |A(τ)| (right) for a chirped pulse. Left: the blue curve corresponds to contribution
from the time-dependent phase, the red curve corresponds to contribution from the pulse
envelope. The horizontal axes correspond to τ in arb. un.

soliton (Agrawal (2006)) developing in the anomalous dispersion regime (β <0) exists owing
to a phase balance, which is possible only in the absence of chirp.

The simple condition for a phase balance can be expressed as ψ2 = 2 + γP0T2
/

β if A (τ) =√
P0sech(τ/T)1+iψ (ψ is the chirp parameter, i.e. φ (τ) = ψ ln [sech (τ/T)]), g(ω0)/Ω2β ≪1,

and χ =0.

However unlike the Schrödinger soliton, the only phase balance is not sufficient for a chirped
dissipative soliton existence. There is the amplitude perturbation (right Fig. 5) causing
the soliton spreading. The source of this perturbation is the time-dependent phase, which
contributes through a dispersion: −β

[

2
(

dA(τ)
/

dτ
) (

dφ(τ)
/

dτ
)

+ A(τ)
(

d2φ(τ)
/

dτ2
)]

. In

addition, there exists a dissipation owing to spectral filtering
(

g(ω0)
/

Ω2
)

d2 |A(τ)|
/

dτ2 and
a net-loss with the coefficient σ >0 (see Eq. (17)). Hence, some self-amplitude modulation is
required for the soliton stabilization.

The obvious mechanism, which acts against the pulse spreading and dissipation is the
nonlinear gain provided by F

(

|A(z, τ)|2
)

. But for a chirped pulse, there exists an additional
squeezing mechanism resulted from the spectral filtering and defined by the term

−
(

g(ω0)
/

Ω2
)

|A(τ)|
(

dφ(τ)
/

dτ
)2

in Eq. (17).

Physically, the action of the last mechanism can be explained in the following way (see
(Haus et al. (1991); Proctor et al. (1993))). The chirp causes the substantial spectral broadening
so that T∆ ≫1 (see left Fig. 6, where the Wigner function (Diels & Rudolph (2006)) for
a chirped pulse is shown). As a result of such broadening, the spectral filtering becomes
conspicuous. It cuts off the spectral components located at the pulse wings (right Fig. 6)
that results in the pulse shortening. Thus, the balance of both dissipative and non-dissipative
factors can support the self-sustained ultrashort pulse in a chirped-pulse oscillator. The theory
of such self-sustained pulse, or “chirped dissipative soliton”, will be considered below.
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Fig. 6. Left: the Wigner function of a chirped pulse (arb. un.). Right: spectral cut-off resulting
in the pulse shortening.

2.3 Theory of chirped dissipative soliton

It is convenient to systemize the theory of chirped-pulse oscillators from the point of view
of approaches based on the concept of a chirped dissipative soliton. Such approaches can be
divided into i) numerical, ii) exact analytical, and iii) approximated analytical ones. Of course,
this division is conventional and a realistic analysis combines different approaches, as a rule.

2.3.1 Numerical modeling of chirped dissipative soliton

The master equation (17) is multiparametrical and the direct numerical simulations face
the challenge of coverage of a multidimensional parametrical space. That requires the
extensive calculations and the obtained results have to be carefully sorted. Moreover, the
real parametrical space of a chirped dissipative soliton can differ from a separate set of
the independent parameters of (17). In this case, the numerical identification of a relevant
parametrical space is intricate problem. Nevertheless, a numerical approach provides most
complete and adequate description of a real-world oscillator. In particular, such important
characteristics of a mode-locked oscillator as its stability and self-starting ability, allocation
of laser elements and noise properties can be analyzed mainly numerically. In addition, the
numerical simulations are the testbed for any analytical model.

Extensive numerical simulations of the CQNGLE in the normal dispersion regime, that is
relevant for the theory of chirped-pulse oscillator, have been carried out by N.N. Akhmediev
with coauthors (Akhmediev et al. (2008); Soto-Crespo et al. (1997)). The simulations have
allowed finding the pulse stability regions for some two-dimensional projections of the
CQNGLE parametrical space. Unfortunately, the problem is that these regions cannot
be compared directly with a parametrical space of concrete oscillator generally owing to
dropping of the energy-dependence of net-loss parameter σ (i.e. δ-parameter in the notations
of (Akhmediev et al. (2008); Soto-Crespo et al. (1997))). Additionally, the energy belongs
rather to a set of control parameters of an oscillator than it is some derivative parameter of
a solitonic solution.

Nevertheless, the numerical results of (Akhmediev et al. (2008); Soto-Crespo et al. (1997))
provide the qualitative grasp of the dissipative soliton properties. Fig. 7 demonstrates
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Fig. 7. Regions where the stable dissipative solitons exist in the normal dispersion regime
(filled). For comparison, the hatched region in the right figure corresponds to the soliton
developing in the anomalous dispersion regime. The parameters correspond to Eqs. (13,17).
Adapted from (Soto-Crespo et al. (1997)).
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Fig. 8. Soliton energy versus dispersion β. Adapted from (Akhmediev et al. (2008)).

the numerically calculated regions where the stable dissipative solitons of Eqs. (13,17)
exist (Soto-Crespo et al. (1997)). One may see (left figure) that the self-limited self-phase
modulation (χ <0) tends to destabilize the dissipative soliton (the stability region shrinks).
The right Fig. 7 demonstrates another interesting property: the isogain region (i.e. the region
of pulse existence where σ =const) is strongly confined in the κ-dimension. The dissipative
solitons with such properties will be called the positive-branch solitons (the sense of this term
will be clear in sequel).

The physically important property of the positive-branch dissipative soliton is the swift
growth of its energy along an isogain with the dispersion β. It means that such a soliton
is energy scalable (see Fig. 8). Simultaneously, the energy dependence on the self-amplitude
parameter κ is weaker. As will be shown in Secs. 2.3.2.2 and 2.3.2.3, such scaling properties of
chirped-pulse oscillator can be explained on the basis of analytical approaches.
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Fig. 9. Chirped dissipative soliton spectra. Left: spectrum vs. chirp parameter ψ for a chirped
soliton

√
P0sech(τ/T)1+iψ. Right: spectra of the CQNGLE solitons adapted from

(Akhmediev et al. (2008)).

The remarkable feature of a chirped-pulse oscillator is that its spectrum, which broadens with
a chirp, has truncated edges (left Fig. 9) and flat, concave, convex and concave-convex tops
(left and right Figs. 9, see also (Chong et al. (2008a); Kalashnikov et al. (2006; 2005))). The last
spectral type has a modification with sharp spikes at the spectrum edges (Chong et al. (2008a);
Kalashnikov & Chernykh (2007)).

The truncated spectral shape results from a rapid chirp growth at the spectrum edges
(Kalashnikov et al. (2005)). Simultaneously, a chirp growing with dispersion causes
the pulse stretching and, thereby, reduces its peak power that prevents the soliton
destabilization (Chong et al. (2008a); Kalashnikov et al. (2006; 2005); Soto-Crespo et al. (1997)).
Such a stretched pulse can be dechirped and compressed outside an oscillator cavity by
approximately factor of ψ, where ψ is the dimensionless chirp parameter: ψ ≈ T∆/4 ≈
(1/4)d2φ(ω)/dω2 (T is the soliton width before compression, ∆ is the soliton spectral
half-width, φ(ω) is the spectral phase) (Kalashnikov et al. (2005)). The ψ-value can be
estimated approximately as

ψ ≈ 3
(

g(ω0)
/

Ω2β
)

+
(

κ
/

γ
) , (18)

which explains the chirp growth with dispersion (β), self-phase modulation (γ), and
broadening of a spectral filter (Ω).

Since the spectral chirp increases abruptly at spectrum edges, the satellites appear at the
soliton wings after dechirping. Such satellites have uncompensated chirp, large frequency
deviation and contain a part (≈10%) of full energy (Kalashnikov et al. (2005)).

Numerical simulations demonstrate the spectral broadening with the dispersion decrease
(Chong et al. (2008a); Kalashnikov et al. (2006; 2005)) although some spectral width reduction
can appear for the small normal dispersions (Soto-Crespo et al. (1997)). Also, a spectrum
broadens with a growth of the nonlinear phase shift and the spectral filtering (Chong et al.
(2008a)). The pulse energy increases with the nonlinear phase shift (Chong et al. (2008a)) and
dispersion (Kalashnikov et al. (2006; 2005); Soto-Crespo et al. (1997)).
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Variety of the numerical results allows identifying the control parameters of a chirped-pulse
oscillator with β (dispersion), Ω (spectral width of filter or gainband), γ (self-phase
modulation coefficient), and κ (coefficient of self-amplitude modulation) (see Eqs. (13,17)) and
conjecturing that their dimensionless combination in the form of (Kalashnikov et al. (2006))

C ≡ g(ω0)

βΩ2

γ

κ
=

α

β

γ

κ
(19)

is relevant to the description of the dissipative soliton properties (the abbreviation α ≡
g(ω0)

/

Ω2 is introduced). Such a conjecture is suggested by the analytical theory as well
(see Secs. 2.3.2.2 and 2.3.2.3) and gives a deep insight into the properties of chirped-pulse
oscillators. The most important understanding is that the properties of chirped dissipative
soliton are defined primarily by not absolute values of parameters but their relations: spectral
dissipation to dispersion and self-phase modulation to self-amplitude one. This observation
allows a unified standpoint at the very different lasers operating in the normal dispersion
regime. For instance, the fiber lasers operate on comparatively high levels of dispersion
(≈ 0.01 ÷ 0.1 ps2) but the self-phase modulation is high, as well. As a result, the C-parameter
does not differ substantially from that for a solid-state oscillator. This allows including the
fiber lasers into consideration (e.g. see works of F. Wise with coauthors).

The detailed analysis of this topic will be presented in Secs. 2.3.2.2 and 2.3.2.3 but it should
be noted here that the relevance of combined parameters like C suggests the existence
of low-dimensional hyper-surfaces in a multidimensional parametrical space of dissipative
soliton which characterizes both solid-state and fiber lasers. The important examples of such
low-dimensional parametrical representations of a dissipative soliton are based on the closely
related concepts of the “master diagram” (Kalashnikov et al. (2006)) (Fig. 10) and the “dissipative
soliton resonance” (Chang et al. (2008b)) (Fig. 11). It has been demonstrated, that both master
diagram and dissipative soliton resonance are sufficiently robust structures and remain in the
oscillators with a parameter management (Chang et al. (2008a); Kalashnikov et al. (2006)).

Significance and structure of the master diagram will be described in detail in Secs. 2.3.2.2
and 2.3.2.3 but one has to note here that the isogains (i.e. curves with σ = const) play a special
role in the structure of representations of Figs. 10,11 (e.g., see (Bélanger (2007))). In particular,
the singular curve σ =0 denotes the soliton stability threshold. It was found numerically
that the net-loss parameter σ increases almost linearly with κ/γ (Kalashnikov et al. (2005)).
Also, this parameter increases initially with the dispersion lowering but then it decreases and
approaches zero (Fig. 12). Really, the soliton loses its stability at some σ = ∆g >0 (Eq. (8)) due
to dynamic gain saturation. The loss of stability means that the noise out of the pulse begins
to amplify.

This observation testifies that the saturable gain is the decisive factor in a pulse
stabilization. As has been found (Kalashnikov & Chernykh (2007); Kalashnikov et al. (2006)),
the energy-dependence of σ is required to stabilize a chirped dissipative soliton so that
some types of chirped dissipative solitons lose a stability in the absence of gain saturation
(Kharenko et al. (2011)). Simultaneously, the gain dynamics during one cavity round-trip
(so-called dynamic gain saturation, see Eq. (5)) can cause a soliton destabilization. Numerical
simulations of (Kalashnikov (2008)) suggest that the stability region becomes confined on the
(Pump–Dispersion)-plane in the presence of dynamic gain saturation. This means that there
are some minimum and maximum dispersions as well as minimum and maximum pump
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Fig. 10. The master diagram adapted from (Kalashnikov et al. (2006)). The circles obtained
from simulations of a Ti:sapphire oscillator correspond to the isogain σ =0. The numerical
spectra (inserts) are placed in vicinity of the corresponding parametrical points (blue stars).
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Fig. 11. Contour plot of the energy of stable soliton solution of the CQNGLE in the
two-dimensional parameter space of dispersion β and nonlinear gain κ. Color scales the
pulse energy from low (blue) to high (red) levels. The dashed line is an analytical
approximation to the resonance curve (Chang et al. (2008b)). Adapted from (Grelu et al.
(2010)).
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Fig. 12. Dependence of the net-loss parameter σ on dispersion. The stability threshold (σth) is
determined by the dynamic gain saturation. Adapted from (Kalashnikov et al. (2005)).

Fig. 13. Region of the chirped dissipative soliton stability (shaded area) in the presence of
dynamic gain saturation (Eqs. (5,13,17)) with ζ = 0.6γ, κ = 0.04γ, gmax =0.33, ℓ =0.22,
Sp =100 µm2, S =130 µm2, Tr =3.5 µs. Double transit through a Ti:sapphire crystal per one
round-trip (Trep =21 ns) was considered. Adapted from (Kalashnikov (2008)).

powers providing a stable pulse (Fig. 13). The destabilizing mechanism was identified with
an appearance of satellite in front of the pulse that results from the dynamic gain saturation
and causes the energy transfer from a pulse to a satellite.

A special problem, which can be explored chiefly numerically is the stability of a chirped-pulse
oscillator against the higher-order dispersions, i.e. in the presence of a frequency-dependence
of the dispersion coefficient β(ω). Such a dependence is substantial in broadband
chirped-pulse oscillators like Ti:sapphire (Kalashnikov et al. (2005)), Cr:YAG (Sorokin et al.
(2008)) and Cr:ZnSe (Kalashnikov et al. (2011)). As a result, the master equation (17) has to
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Fig. 14. Dependence of the stability threshold on the energy and a higher-order dispersion
(HOD). Adapted from (Kalashnikov et al. (2008)).

be modified so that (e.g., see (Kalashnikov et al. (2008)))

∂A (z, τ)

∂z
=

[

−σ (E) +
g (ω0)

Ω2

∂2

∂τ2
+ F
(

|A|2
)

]

A (z, τ) +

i

{

−
N

∑
n=2

inβn
∂n

∂tn − γ|A|2 − χ|A|4
}

A (z, τ) , (20)

where βn are the dispersion coefficients of nth−order.

The results of simulations for a Ti:sapphire oscillator with N ≤4 are shown in Fig. 14. In
fact, that is the representation of the master diagram presented in Fig. 10. The pulse is stable
above the corresponding curves. One may conclude that, in general case, odd higher-order
dispersions destabilize a pulse so that a large positive β2 is required for pulse stabilization
(β2 ≡ β(ω0)).

It was conjectured that a source of destabilization in this case is an excitation of dispersive
waves which is caused by resonance with a continuous-wave perturbation (Kalashnikov
(2011); Kalashnikov et al. (2008)). Such an excitation appears if the resonance condition is
satisfied: k(ω) ≡ β2ω2 + ∑n=3 βnωn = q, where k(ω) is the wavenumber of linear wave (i.e.
perturbation) and q is the wavenumber of soliton. If there is some frequency which satisfies
this condition, the generation of a dispersive wave begins at the expense of a soliton that
perturbs the latter.

The effect of even higher-order dispersions β2n (n >1) is more complicated. If the sign of β2n

is such that the net-dispersion decreases toward the edges of soliton spectrum, the pulse can
be stabilized by only larger dispersion β2. For the opposite sign of β2n , the pulse becomes
stable within a wider range of dispersions and the stability border can penetrate even into
anomalous dispersion region (Fig. 14).

The chirped dissipative soliton destabilized by higher-order dispersions behaves chaotically:
its parameters, in particular the peak power and the central frequency, shake
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Fig. 15. Calculated spectral profiles of a Ti:sapphire oscillator for β2 = 110 fs2, β4=0 fs4 (red),
2000 (blue), 10000 (black), β3=0 fs3 (black, red), 300 (blue). Adapted from (Kalashnikov et al.
(2005)).

(Kalashnikov et al. (2008); Sorokin et al. (2008)). This regime is called as “chaotic mode-locking”
(Deissler & Brand (1994)) and, as a rule, separates the regimes of chirped and chirp-free
pulse generation. As the extreme case, the noisy mode-locking (Horowitz et al. (1997)) can
develop: pulse envelope and spectrum become completely fragmentized on a small scale but
preserve their localization on a large scale so that the averaged envelope and spectrum are
comparatively smooth (Kalashnikov (2011); Kalashnikov et al. (2008)).

Besides an effect on the pulse stability, higher-order dispersions distort the pulse spectrum
(Fig. 15). As a rule, the maximum spectral amplitude is located within a range, where the
normal dispersion is larger (Kalashnikov et al. (2005)).

Also, numerical simulations have reviled that a chirped-pulse oscillator can suffer from the
long-periodic pulsations (both regular and chaotic) of the pulse peak power even in the
absence of higher-order dispersions (Kalashnikov & Chernykh (2007)). Such an instability
growing with the dispersion was attributed to an excitation of internal perturbation modes of
dissipative soliton. An important consequence of this instability is the modulation of pulse
spectrum, especially, the growth of spikes at the spectrum edges (Fig. 16).

One may conclude that the numerical modeling has provided with a rich information
concerning the properties of a chirped dissipative soliton: i) dependencies of main pulse
parameters on the parameters of master equations have been obtained, ii) spectral profiles
of chirped dissipative soliton have been classified, iii) it has been conjectured that a true
parametric space of chirped-pulse oscillator has a reduced dimension, iv) pulse energy
scalability has been demonstrated and concepts of “master-diagram” and “dissipative soliton
resonance” have been formulated, and, at last, v) pulse stability region have been explored
extensively and decisive contributions of the gain saturation and the higher-order dispersions
to the pulse instability have been shown.
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Fig. 16. Evolution of distorted spectrum profile of a Ti:sapphire oscillator, β =150 fs2.
Adapted from (Kalashnikov & Chernykh (2007)).

Nevertheless, a systematic understanding of the numerical results is hardly possible without
an exploration of adequate analytical models of chirped-pulse oscillators.

2.3.2 Analytical models of chirped dissipative soliton

Below, basic analytical models of chirped dissipative solitons will be surveyed. For
convenience, we divide these models into three groups which are based on i) exact soliton
solution of the master equation, ii) solutions obtained from the adiabatic approximation,
and iii) approximated solutions obtained from the variational method and the method of
moments.

2.3.2.1 Exact soliton solution of the CQNGLE

Eq. (17) is nonintegrable and its exact soliton solutions are known for only a few of
cases, when some algebraic relations on the parameters of the equation are imposed
(Akhmediev & Ankiewicz (1997)). More general solutions can be revealed on basis of the
algebraic nonperturbative techniques (Conte (1999)) which, nevertheless, are not developed
sufficiently still. However, a few of known exact solutions can provide with some insight into
properties of a chirped-pulse oscillator.

For the CQNGLE (Egs. (13,17)), the sole soliton solution is known (Soto-Crespo et al.
(1997); van Saarloosa & Hohenberg (1992)). It can be expressed in the following form
(Renninger et al. (2008))

A(z, τ) =

√

A

B + cosh (τ/T)
exp

[

− iψ

2
ln (B + cosh (τ/T)) + iqz

]

(21)

where A, B, T, ψ, and q are the real constants characterizing pulse amplitude, shape, width,
chirp, and wavenumber, respectively. It is important to emphasize, that it is a partial solution
and exists for only certain algebraic relations imposed on the parameters of Eqs. (13,17).
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Fig. 17. Spectral profiles of a dissipative soliton (21), β/α =250, ζ = −0.5γ for B <1 and 0.5γ
for B >1. The scales are arbitrary.

In spite of the fact that Eq. (21) represents only partial solution existing on some
fixed hypersurface of parametrical space, it reproduces main tendencies of chirped-pulse
oscillators: the energy, the chirp and the pulse duration increase with the dispersion. Also,
the ratio of the self-amplitude modulation to the self-phase modulation (i.e. κ/γ) required for
(21) decreases with the growth of the ratio of the dispersion to the spectral filtering (i.e. β/α)
(Renninger et al. (2008); Soto-Crespo et al. (1997)). The most interesting property of (21) is that
it reproduces a variety of experimental and numerical spectra classified above (e.g., see Fig.
9). Examples of analytical spectra are shown in Fig. 17 in dependence on the shape parameter
B (the expressions for the parameters of (21) are taken from (Renninger et al. (2008))). A
steepness of spectrum edges depends on the chirp and increases with it so that the spectrum
becomes truncated for ψ ≫1.

The interesting property of solution (21) is that, even in the absence of fourth-order dispersion
(Fig. 15) and perturbations (Fig. 16) it reproduces the concave spectra (black dashed curve in
Fig. 17) which are often observable in an experiment. The corresponding condition is B <1
but the self-amplitude modulation is not saturable, i.e. ζ <0. The last condition means that the
corresponding solution is unstable against a pulse collapse. It was suggested that three factors
can stabilize the dissipative soliton in this case: i) gain saturation dynamics, ii) contribution of
higher order terms in the self-amplitude modulation law of (13), and iii) breather-like behavior
of a pulse in a real-world oscillator (Renninger et al. (2008)).

The soliton solution (21) provides with some important insights but there is some crucial
disadvantage in the approach considered: in both isogain (Soto-Crespo et al. (1997)) and
non-isogain (Renninger et al. (2008)) representations the exact solution imposes the strict
relations on the parameters of (17). As a result, the chirped dissipative soliton can not be
traced within a broad multidimensional parametrical range. Hence, the obtained picture is
rather sporadic and is of interest only in the close relation with the numerical results (see
above).

An additional information can be obtained on the basis of the perturbative method
(Malomed & Nepomnyashchy (1990)). The important property of the corresponding solution
is that it is continuously extendible to the “Schrödinger” one: A(z, t) ∝ cosh(t/T)−1+iψ
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when ζ →0 (i.e. in the absence of saturation of self-amplitude modulation). We shall call
this chirped dissipative soliton as the “negative branch” one. This perturbative technique
provides with a quite accurate approximation for a low-energy chirped dissipative soliton
when σζ/κ ≪1 (Kalashnikov (2009a)) and the corresponding parametrical range of pulse

existence is C ≤ 2 − 4
√

6σζ
/

5κ (σζ/κ ≤ 1/4).

As a further step in the development of analytical techniques required for the dissipative
soliton exploration, two approximate methods will be considered below.

2.3.2.2 Adiabatic theory of chirped dissipative soliton

The adiabatic method considered in this section is developed in three main steps: i) the
condition of T ≫

√

β allows the adiabatic approximation for Eq. (17), ii) regularization
procedure is applied to the expression for the soliton frequency deviation that excludes
nonphysical solutions, and iii) the method of stationary phase for the Fourier image of soliton
complex envelope is applied that gives the expression for soliton spectrum and energy. The
last step requires ψ ≫1, i.e. β ≫ α and γ ≫ κ (Eq. (18)).

Let’s begin with the traveling wave reduction of (17):

A(z, τ) =
√

P(τ) exp [iφ(τ)− iqz] , (22)

where P(τ) is the instant power, φ(τ) is the phase, and q is the soliton wave-number. In the
adiabatic limit T ≫

√

β, the substitution of (22) in the CQNGLE (13,17) results in

βΩ(τ)2 = q − γP(τ)− χP(τ)2,

β
(

Ω(τ)
P(τ)

dP(τ)
dτ + dΩ(τ)

dτ

)

= κP(τ) (1 − ζP(τ))− σ − αΩ(τ)2,
(23)

where Ω ≡ dφ (t)
/

dt is the instant frequency.

Since P(τ) ≥0 by definition, there is the maximum frequency deviation ∆ from the carrier
frequency: ∆2 = q

/

β. Thus, Eqs. (23) lead, after some algebra (Kalashnikov (2009a)), to

dΩ

dτ
=

σ + αΩ2 − κ(Υ−γ)
4χ2 (2χ + ζγ − ζΥ)

β [4χβΩ2 − (Υ − γ)Υ]
(Υ − γ)Υ,

Υ =
√

γ2 + 4βχ (∆2 − Ω2).

(24)

The singularity points of Eq. (24) (the regularity condition is
∣

∣dΩ
/

dτ
∣

∣ < ∞) impose the
restrictions on the ∆ value:

∆2 =
γ

16ζβ
(

C
b + 1

)×

×

⎡

⎢

⎢

⎣

2
(

3 + C
b + 4

b

)

(

2 + C
2 + 3b

2 ±
√

(C − 2)2 − 16a
(

1 + C
b

)

)

1 + C
b

− 12 − 3c − 9b − 32a

b

⎤

⎥

⎥

⎦

,

(25)

where three control parameters are a ≡ σζ
/

κ, b ≡ ζγ
/

χ, and C ≡ αγ
/

βκ. These three
parameters define the parametric dimensionality of a chirped dissipative soliton.
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In the limit of χ →0, one has (Kalashnikov et al. (2006))

γP0 = β∆2 =
3γ

4ζ

⎛

⎝1 − C

2
±
√

(

1 − C

2

)2

− 4a

⎞

⎠ ,

dΩ

dτ
=

βζκ

3γ2

(

∆2 − Ω2
) (

Ω2 + Ξ2
)

, βΞ2 =
γ

ζ
(1 + C)− 5

3
γP0,

(26)

where the equation for the peak power P0 (or, equally, for ∆) results from the regularity
condition.

Eqs. (25,26) demonstrate two branches of soliton solutions corresponding to opposite signs
before a square root. In correspondence with these two signs, the solutions will be called as
“positive-branch” and “negative-branch” chirped dissipative solitons.

In the cubic nonlinear limit of Eqs. (13,20) (χ →0, ζ →0), which admits an exact chirped
dissipative soliton solution (Haus et al. (1991)), one has

A (z, τ) =
√

P0sech
( τ

T

)1−iψ
e−iqz,

α∆2 =
3σC

2 − C
, γP0 = β∆2, ψ =

3γ

κ (1 + C)
, T =

3γ

κ∆ (1 + C)
.

(27)

Next assumption allows a further simplification. Since the phase φ(τ) is a rapidly varying
function due to a large chirp (the necessary requirements are β ≫ α and γ ≫ κ, see Eq.
(18)), one may apply the method of stationary phase to the Fourier image e(ω) of A(τ)
(Podivilov & Kalashnikov (2005)). Then, the spectral profile corresponding to (23,24) can be
written as

p (ω) ≡ |e (ω) |2 ≈ π (Υ − 1)
(

(Υ − 1) Cb + 4
(

2ω2 − ∆2
))

H
(

∆2 − ω2
)

CΥ ((Υ − 1) (C (a + b + b2 + ω2) + b (∆2 − ω2))− 2 (b + 1) (∆2 − ω2))
,

(28)

The expression for p(ω) allows obtaining the soliton energy by integration: E =
∫ ∆

−∆
dω
2π p(ω).

The soliton parametrical space is given by the following normalizations: τ′ = τ
(

κ
/

ζ
)

√

κ
/

αζ,

∆′2 = ∆2αζ
/

κ, Ω′2 = Ω2αζ
/

κ, P′ = ζP, and E′ = E
(

κ
/

γ
)

√

κζ
/

α (primes will be omitted

thereafter). Hence Υ ≡
√

1 + 4 (∆2 − Ω2)
/

bC and H is the Heaviside’s function in Eq. (28).

As it has been demonstrated in (Kalashnikov (2009a)), the truncated at ±∆ spectra (28) have
convex, concave, and concave-convex vertexes (Fig. 18, left). When χ →0, only convex
truncated spectra remain (Podivilov & Kalashnikov (2005)):

p (ω) ≈ 6πγ

ζκ

H
(

∆2 − ω2
)

Ξ2 + ω2
, E =

6γ

κζΞ
arctan

(

∆

Ξ

)

. (29)

At last, for the cubic nonlinear limit of Eq. (13,20) (χ →0, ζ →0) one may obtain (Kalashnikov
(2009b))

p (ω) ≈ 6πβ

κ (1 + C)
H
(

∆2 − ω2
)

, E =
6β∆

(1 + C) κ
. (30)
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Fig. 18. Left: Spectra corresponding to the positive-branch (i.e. + sign in Eqs. (25,26)) of
chirped dissipative soliton for C =1, a =0.01 and different values of b. b >0 corresponds to
an enhancement of the self-phase modulation with the power growth and |b| → ∞

corresponds to an absence of the quintic self-phase modulation, i.e. |χ| →0. Squares and
circles represent the numerical spectral profiles. Adapted from (Kalashnikov (2009a)). Right:
Normalized spectral half-widths in dependence on C for the different values of a (χ =0).
Positive branch - red solid curves, negative branch - dashed blue curves. Adapted from
(Kalashnikov (2009b)).

That is the truncated flat-top spectrum, which approximates the spectrum of exact solution of
the cubic nonlinear complex Ginzburg-Landau equation.

The important property of the integration procedure considered is that it is applicable
to various types of self-amplitude modulation. For instance, one has for Eqs. (14,20)
(Kalashnikov (2009b); Kalashnikov & Apolonski (2009)):

κP0 =
α

ℓ′C
∆2 =

3

4C

[

2 (1 − ς)− C ±
√

Υ
]

,

dΩ

dτ
=

α

3β

(

∆2 − Ω2
) (

Ξ2 − Ω2
)

∆2 − Ω2 + γ
/

κβ
,

α

ℓ′
Ξ2 =

2α

3ℓ′
∆2 + 1 − ς + C,

p (ω) ≈ 6πβ2

αγ

∆2 − ω2 + γ
/

κβ

Ξ2 − ω2 H
(

∆2 − ω2
)

,

(31)

where ς ≡ σ/ℓ′, and Υ ≡ (2 − C)2 − 4ς (2 − ς + C). For the above introduced normalizations
with the replacement of ζ by κ, the dimensionless energy is

E =
6∆

C2

⎡

⎣1 −
(

Ξ2 − ∆2 − C
)

arctanh
(

∆
Ξ

)

∆Ξ

⎤

⎦ . (32)

It should be noted, that the presented technique based on the adiabatic approximation and
the regularization of dΩ/dt is analogous to that of (Ablowitz & Horikis (2009)). However, an
approximate integration in the spectral domain allows us the further reduction of parametric
space dimension and the construction of physically meaningful master diagrams that makes
the soliton properties to be easily traceable.
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Fig. 19. Left: master diagram for the chirped dissipative soliton (CDS) of Eqs. (13,17), χ =0.
There exists no soliton above the red curve (therein σ <0, i.e. the vacuum of (17) is unstable).
a =0 (zero-level isogain) along the red curve. Blue dashed curve divides the regions, where
the positive (+) and negative (−) branches of (25,26) exist. Crosses (circles) correspond to the
+(−) branch for a=0.01. The normalization for energy is restored. Adapted from
(Kalashnikov (2009a)). Right: master diagram for the chirped dissipative solitons
corresponding to Eqs. (31,32). Red curve is the stability threshold (ς =0), blue curve divides
the regions of positive and negative branches which are shown for ς =0.01 by crosses and
circles, respectively. Adapted from (Kalashnikov (2009b)).

A master diagram connects the normalized energy with the parameter C along an isogain. The
example of master diagram for the CQNGLE with vanishing quintic self-phase modulation
(i.e. χ → 0 in (15)) is presented in Fig. 19 (left). The chirped dissipative soliton has a
two-dimensional parametric space in this case. The solid red curve a =0 shows the border
of the soliton existence. Above this border, the vacuum of Eq. (20) is unstable. One may see
that the stability threshold on C decreases with E. Physically, that means, for instance, the
dispersion growth and the self-phase modulation reduction required for obtaining the more
energetic pulses. The blue dashed curve divides the existence regions for the positive and
negative branches of soliton (the corresponding signs in Eq. (25,26)). The branches merge
along this curve. Crosses (circles) represent the curve along which there exists the positive
(negative) branch for some fixed value of a (isogain curve).

The master diagram reveals four significant differences between the positive and negative
branches of chirped dissipative soliton. The first one is that the negative branch has lower
energy than the positive one for a fixed C. The second difference is that the positive branch
has a finite limit on C for E → ∞. For the zero-level isogain such a limit is C ≈0.66 in the
case considered. This value decreases with χ >0 and increases with χ <0. The existence
of such “resonant” C allows concluding that the positive branch is energy scalable. This
means that the soliton energy growth does not require a substantial change of C, i.e. the
change of relation between spectral dissipation and self-phase modulation from one side and
dispersion and self-amplitude modulation from another side. Such a property corresponds
to the notion of the dissipative soliton resonance of (Grelu et al. (2010)). In the terms of
(Kalashnikov et al. (2006)), the resonant dissipative soliton is an overdeveloped soliton with
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the finger-like spectrum (∆ ≫ Ξ in (29)) that is the pulse with the almost Lorentz spectrum
and the truncated flat-top temporal profile.

The negative branch is not energy scalable, that is the energy growth along this branch needs
a substantial decrease of C (e.g., owing to a dispersion growth or a self-phase modulation
reduction). The third difference is that the positive branch verges on a=0 within a whole
range of E. The fourth difference is that the negative branch has a Schrödinger soliton
limit (27) for ζ, χ →0 (Eq. (13,17)). The detailed description of master diagrams, pulse
characteristics, spectra and temporal profiles of chirped dissipative solitons in the presence
of quintic self-phase modulation χ �=0 can be found in (Kalashnikov (2009a)).

It is of interest to compare the master diagrams for the chirped dissipative solitons of the
CQNGLE (13,17) and the complex nonlinear Ginzburg-Landau equation with a perfectly
saturable absorber (14,17) (see (31,32)). Master diagram for the latter is shown in Fig. 19
(right). Its structure is similar to that in Fig. 19 (left) but there exist two important differences.
First, the C-parameter tends asymptotically to zero with the energy growth. This means that
there is no dissipative soliton resonance in this case. Secondly, the energy on an isogain for the
negative soliton branch remains almost constant with C →0. One may call this phenomena
as the dissipative soliton antiresonance. Nevertheless, in spite of absence of perfect energy
scalability (i.e. absence of the dissipative soliton resonance), the energy of positive soliton
branch can be scaled with C in agreement with the following approximate asymptotical law:

E ≈ 18ℓ′β2

γα3/2
. (33)

This scaling law assumes C ≪1 and gives the energy at the zero-level isogain ς =0,
i.e. at the stability threshold. The quadratic dependence of energy on dispersion is very
promising because comparatively moderate dispersions can provide high energies. Also, it
is very important that the energy is proportional to the cube of a gain bandwidth that offers
advantages to the broadband active media. In agreement with Eq. (33), approximately linear
energy growth with the modulation depth as well as faster than linear energy growth with
the spectral filter bandwidth have been demonstrated experimentally for a dissipative soliton
fiber laser (Lecaplain et al. (2011)).

The spectral width of the dissipative soliton is of interest because it defines the pulse width
after extra-resonator compression: T ≈ 2/∆. For the negative branch having narrower
spectrum than the positive branch, the spectral width decreases with the C-decrease (Fig. 18,
right) owing to the dispersion growth (C ∝ 1/β) which stretches the pulse when the energy
remains almost constant (compare with (Chong et al. (2008b))). When the energy E changes
weakly along an isogain corresponding to the negative branch, the spectrum broadens with
the α-increase (C ∝ α), i.e. the gainband narrowing (Fig. 18, right). The explanation is that
the growth of spectral filtering enhances a cut-off of spectral components located on the pulse
edges (Fig. 6, right). As a result, the pulse shortens and, for a fixed energy, the peak power
P0 increases. Since ∆2 ∝ P0 (Eqs. (26,27,31)), the spectrum broadens. For the positive branch,
the spectrum initially broadens with the C-decrease (Fig. 18, right) because the energy E and,
consequently, the self-phase modulation grow along an isogain (Fig. 19). However, further
decrease of C narrows the spectrum like the negative branch in agreement with the numerical
results of (Siegel et al. (2008)). It is important to note that the dependence of σ on the energy
for a fixed C is inverse for the negative and positive branches: σ increases with E for the
former and decreases for the latter. Hence, Fig. 18 (right) allows concluding that the spectrum
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broadens with energy (up to some ∆ = const for the positive branch). Such a result has been
corroborated by the numerical simulations (Siegel et al. (2008)).

Another important characteristic of chirped dissipative soliton is its chirp, which has to be
≫1 to provide the energy scalability. The chirp at the pulse center (where τ =0 by definition)
normalized to κ/ζβ is (Kalashnikov (2009a))

ψ|τ=0 ≡ dΩ

dτ

∣

∣

∣

∣

Ω=0

= −a − b2

4
(1 − Υ|Ω=0)

(

1 +
2

b
− Υ|Ω=0

)

, (34)

where Υ =
√

1 + 4 (∆2 − Ω2)
/

cb is the normalized version of the corresponding expression

from (24). For a soliton solution (i.e. an isolated solution with the appropriate asymptotic
lim

τ→±∞
P(τ) = 0), the chirp has to be positive that agrees in the limits of β/α ≫1 and

γ/κ ≫1 with the analytical theory presented in (Soto-Crespo et al. (1997)) where 0 <

ψ ≈ 3γ
/

(1 + C) κ < β
/

α (here ψ is defined as the parameter in the phase profile ansatz

φ(τ) ≡ ψ ln
√

P(τ)). It is interesting that the positive (i.e. energy scalable) soliton branch
disappears when the self-phase modulation saturation is strong: 0 > b ≥ −2. In this case,
the “antisoliton” appears which has a truncated (i.e. lim

τ→T
P(τ) = 0) parabolic-top temporal

profile with lim
τ→T

Ω(τ) = ±∞ (Kalashnikov (2009a)). Formally, such a soliton has the temporal

and spectral shapes exchanged in comparison with those for an ordinary chirped dissipative
soliton. Such an “antisoliton” has been observed in (Liu (2010)) and possesses an enhanced
energy scalability.

One may conclude that the adiabatic theory of chirped dissipative solitons provides with
a deep insight into physics of chirped-pulse oscillators. The pulse characteristics become
easily traceable and finding of the true parametrical space of soliton allows looking at
an extremely broad range of oscillators from a unified point of view. Nevertheless, the
underlying approximations of: i) strong domination of the nondissipative effects (dispersion
and self-phase modulation) over the dissipative ones (spectral filtering and self-amplitude
modulation), ii) negligible contribution of the higher-order dispersions, and iii) distributed
character of a laser system impose some restrictions. Second approximation is sound for
the thin-disk oscillators based on comparatively narrow-band active media like Yb:YAG. The
last approximation is well-grounded for the high-energy solid-state oscillators in general.
Moreover, the simple analytical expressions for the complex spectral amplitude of soliton
allow developing the perturbation theory in spectral domain (e.g., see (Kalashnikov (2010;
2011); Kalashnikov et al. (2011))). Nevertheless, another analytical approaches can shed light
on some properties of chirped-pulse oscillators which are beyond the scope of the adiabatic
theory.

2.3.2.3 Truncation of phase space: variational approximation and method of moments

Both variational approximation and method of moments allow truncating the space of
(unknown) solutions of (17) to a sub-space of soliton-like ones by some appropriate
ansatz (for an overview see (Anderson et al. (2001); Ankiewicz et al. (2007); Malomed (2002);
Perez-Garcia et al. (2007))). The ansatz, as a rule, is the known analytical solution (21) or its
reduced representation. As a result, the complex dynamics of (17) becomes to be reduced to
the comparatively simple one described by a set of ordinary differential equations governing
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an evolution of the ansatz parameters (pulse amplitude, width, chirp, etc.). As a result, the
problem becomes semi-analytical (Tsoy et al. (2006); Usechak & Agrawal (2005)).

The variational approximation can be sketched in the following way. The factors governing
the pulse dynamics are divided into two parts: dissipative and nondissipative ones. The
last underlying the nonlinear Schrödinger equation (Eqs. (15,16)) can be described by the
Lagrangian. In absence of higher-order dispersions and quintic self-phase modulation, the
corresponding Lagrangian density is

L =
i

2

[

A∗ (z, τ)
∂A (z, τ)

∂τ
−A (z, τ)

∂A∗ (z, τ)

∂τ

]

− β

2

∂A (z, τ)

∂τ

∂A∗ (z, τ)

∂τ
+

γ

2
|A (z, τ)|2. (35)

Eq. (35) defines the nonlinear Schrödinger equation through the Lagrange-Euler equation.
The dissipative part of the CQNGLE (see Eqs. (13,20)) is described by the driving force:

Q = −iσA (z, τ) +
ig0

1 + E−1
s

∫ ∞

−∞ |A|2 dτ′

[

A (z, τ) + τ
∂2

∂τ2
A (z, τ)

]

+

+iκ
[

|A (z, τ)|2 − ζ |A (z, τ)|4
]

A (z, τ) . (36)

The force-driven Lagrange-Euler equations

∂
∫ ∞

−∞
L dτ

∂f
− ∂

∂z

∂
∫ ∞

−∞
L dτ

∂f
= 2ℜ

∫ ∞

−∞
Q

∂A∗

∂f
dτ (37)

allow obtaining a set of the ordinary first-order differential equations for a set f of the soliton
parameters if one assumes the soliton shape in the form of some trial function A(z, τ) ≈
F [f(z, τ)]. One may chose (Kalashnikov & Apolonski (2010))

F = A0 (z) sech

(

τ

T(z)

)

exp

[

i

(

φ(z) + ψ(z) ln

(

sech(
τ

T(z)
)

))]

, (38)

with f = {A0(z), T(z), φ(z), ψ(z)} describing amplitude, width, phase, and chirp of
dissipative soliton, respectively.

Substitution of (38) into (37) results in four equations for the soliton parameters. These
equations are completely solvable for a steady-state propagation (i.e. when ∂z A0 = ∂zT =
∂zψ = 0, but ∂zφ �= 0 ).

As it taken a place in the adiabatic theory (see Fig. 19, left), the dissipative soliton is completely
characterized by two-dimensional master diagram if C ≪1 (Fig. 20, left). The red curve
in Fig. 20 corresponds to the stability threshold obtained from the adiabatic theory (see Eq.
(29)): the soliton is unstable on the right of this curve. The positive branch solution with
convex spectrum, which is predicted by the adiabatic theory, cannot be obtained from the
Schrödinger-like ansatz (38) so that the solution for the latter is situated on the left of the
curves corresponding to the different values of γ/κ shown in Fig. (20). These curves are
the zero-level isogains for pulses (38). One has note, that the requirement of γ ≫ κ is not
essential for the variational approximation. Nevertheless, one may see that all solutions have
a single asymptotic (dashed curve) for C ≪1 so that the master diagram is two-dimensional

172 Waves in Fluids and Solids

www.intechopen.com



Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses 29

Fig. 20. Left: master diagram of a chirped dissipative soliton (CDS) for the self-amplitude
modulation (13) (CQNGLE). The red solid curve corresponds to the stability threshold
obtained from the adiabatic approximation (29). Another colored curves correspond to the
thresholds obtained from the variational approximations with the ansatz (38) for the different
values of γ/κ. The dashed line corresponds to the asymptotic C ≪1. Right: analogous
master diagram for the self-amplitude modulation (14). Crosses and circles show the stability
thresholds for a chirped dissipative soliton (CDS) obtained from the variational
approximation. The solid line corresponds to the adiabatic approximation with ℓ′ =0.02. The
parameters are shown in Figure. Points correspond to the experimental operational points of
two solid-state oscillators. Right figure is adapted from (Kalashnikov & Apolonski (2010)).

(i.e. it does not depend on the γ/κ-value) in this limit. The asymptotical values of the pulse
parameters along the dashed curve are:

E ≈ 17β√
ακζ

, T ≈ 8

C

γ

κ

√

αζ

κ
. (39)

The importance of these scaling rules (compare with Eq. (33)) is that they correspond
to the flat-top spectrum relevant to (38), which has the spectral chirp with a weak
frequency-dependence within the range of [−∆, ∆] (Podivilov & Kalashnikov (2005)). As a
result, such a pulse is almost perfectly compressible that is the energy loss due to satellite
generation in the process of compression is minimal.

In the case of self-amplitude modulation defined by (14), the master diagram obtained with
the help of the variational approximation and the ansatz (38) is shown in Fig. 20, right.
Crosses and circles correspond to the stability thresholds (zero-level isogain) dictated by the
variational approximation and correspond to the parameters shown in Figure. The solid curve
is based on the adiabatic theory (see Eqs. (31,32)). The points correspond to the operational
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points of two different oscillators (bulk and thin-disk solid-state ones). The asymptotical
energy scaling law is matched perfectly by Eq. (33).

Two observations are of interest. Firstly, the asymptotical scaling law is valid for the
systems with the extremely different ratio γ/κ (e.g., for a thin-disk oscillator with suppressed
self-phase modulation and a Ti:sapphire oscillator with a comparatively large nonlinear phase
shift). This means that a true parametrical space of chirped dissipative soliton remains
two-dimensional. Secondly, the ansatz (38) covers the space of adiabatic solutions better than
it takes a place in the case of CQNGLE (compare Figs. 20 left and right). The last results
from the difference of spectral profiles of (31) and (29). The former corresponding to the
self-amplitude modulation (14) has not finger-like profiles and is nearer to a flat-top spectrum
of (38).

More general ansatz (21) allows describing a variety of spectra appearing in the normal
dispersion regime (Bale & Kutz (2008)) and, that is especially important, one may simulate
an unsteady pulse dynamics in both distributed (Ankiewicz et al. (2007)) and undistributed
(Bale & Kutz (2008)) laser systems. In comparison with the full-sized simulations based on Eq.
(20), the truncation of phase space reduces the problem of pulse dynamics to the solution of
a set of nonlinear ordinary first-order differential equations for the pulse parameters (∂zf �= 0
in Eq. (37) in this case). As a result, the task of optimization of undistributed oscillator can be
solved and, for instance, the optimal placement of laser elements and the optimal dispersion
map parameter can be defined (Bale et al. (2010; 2009; 2008b)). Also, an important advantage
of the approach considered is that it allows investigating the dynamic stability of soliton
solutions like (21,38) (e.g., see (Bale et al. (2008a))). However, it is important to remember that
the results obtained on the basis of simulations in a truncated phase space require verification
by full-sized simulations of Eqs. (17) or (20).

The method of moments (Maimistov (1993); Perez-Garcia et al. (2007)) is akin to the variational
one. It considers a set of moments of the nonlinear Schrödinger equation (which consists
of nondissipative terms of Eq. (17) and omits higher-order dispersions, quintic self-phase
modulation, etc.) with the subsequent study of their evolution under action of the dissipative
terms, higher-order phase nonlinearity, higher-order dispersions, etc. For instance, the first
five moments are (Chang et al. (2008b); Maimistov (1993))

E =
∞
∫

−∞

|A|2dτ, P =
∞
∫

−∞

(

A ∂A∗
∂τ − A∗ ∂A

∂τ

)

dτ, I1 =
∞
∫

−∞

τ|A|2dτ,

I2 =
∞
∫

−∞

τ2|A|2dτ, I3 =
∞
∫

−∞

τ
(

A ∂A∗
∂τ − A∗ ∂A

∂τ

)

dτ, etc.
(40)

Here first two moments are the energy E and the momentum P. If one denotes all dissipative
terms as well as higher-order dispersions and phase nonlinearities as R[A], the evolution of
moments can be described in the following way:

dE
dz = i

∞
∫

−∞

(AR∗ − A∗R) dτ, dP
dz = −i

∞
∫

−∞

(

∂A
∂τ R∗ − ∂A∗

∂τ R
)

dτ,

dI1
dz = −2iβP + i

∞
∫

−∞

τ (AR∗ − A∗R) dτ, dI2
dz = 2iβI3 + i

∞
∫

−∞

τ2 (AR∗ − A∗R) dτ,

dI3
dz = −i

∞
∫

−∞

(

4β
∣

∣

∣

∂A
∂τ

∣

∣

∣

2
+ γ|A|4

)

dτ + 2i
∞
∫

−∞

τ
(

∂A
∂τ R∗ − ∂A∗

∂τ R
)

dτ−i
∞
∫

−∞

(AR∗ − A∗R) dτ.

(41)
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The system (41) is exact and the next step is analogous to that for the variational
approximation: we truncate the phase space by substitution of a trial function in place of A.
As a result, one has a set of nonlinear ordinary first-order differential equations for evolvable
pulse parameters which allows exploring the pulse dynamics and stability like the variational
approach (e.g., see (Tsoy & Akhmediev (2005); Tsoy et al. (2006); Usechak & Agrawal (2005))).

The most impressive result of the method of moments concerning the theory of chirped-pulse
oscillators is conception of the so-called dissipative soliton resonance which is a representation
of master diagram asymptotic E → ∞ (see Sec. 2.3.2.2). The corresponding approximate
condition is (Chang et al. (2008b)):

(

6.333 +
3.8

b

)

C = 2, (42)

where the normalizations of (25) are used.

Eq. (42) gives approximately two-fold deviation from the results of the numerical simulations
(see dashed curve in Fig. 11 and (Chang et al. (2009))) and the adiabatic theory (Kalashnikov
(2009a)) but, nevertheless, it provides with the correct representation of soliton parametric
space and the tendencies of its asymptotic behavior. In particular, the constant spectral width
is predicted in the limit of E → ∞ when C → const in agreement with the adiabatic theory
(see Fig. 18 (right), positive branch with C = const and decreasing a; and Figs. 19). Since
∆ → const, the peak power P0 remains constant, as well (Eq. (26)). Hence, the energy scaling
is provided by scaling of the pulse width.

One may conclude that the phase space truncation methods have allowed obtaining the
correct asymptotic representation of the parametric space of chirped dissipative soliton
and revealing the structure of this space in agreement with the results of both numerical
simulations and adiabatic theory. As a result, a unified point of view on a variety of
chirped-pulse oscillators becames possible. Moreover, the advantages of the truncation
methods are that they allow exploring the unsteady pulse evolution as well as the
undistributed laser systems. Another important advantage of these methods is that they
permit to widen the dimensionality of Eqs. (17,20) by including the transverse spatial
dimensions and to consider a space-time dynamics of an oscillator. Some partial reductions of
the space-time dynamics have been used in the numerical simulations (e.g., (Kalosha et al.
(1998))) and semi-analytical matrix formalism has been developed (Jirauschek & Kärtner
(2006); Kalashnikov (2003)). Nevertheless, the space-time theory of chirped pulse oscillators
is not developed to date.

3. Experimental realizations of solid-state chirped-pulse oscillators

In this part, some experimental realizations of chirped-pulse oscillators will be considered.
Although the theory of chirped dissipative soliton is suitable for both solid-state and fiber
lasers, we confine ourself exclusively to the former. Also, the energy scalable solid-state
oscillators operating in the anomalous (i.e. negative in our terms) dispersion regime
(Steinmeyer et al. (1999); Südmeyer et al. (2008)) are beyond the scope of this review. Taking
into account these limitations, one may divide the oscillators considered into two classes
different by an active medium thickness, diode-pump ability and average power scalability:
i) bulk and ii) thin-disk oscillators. The last class possesses excellent average power scaling
properties and diode-pump ability (Giessen & Speiser (2007)) but the available active media
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have comparatively narrow gainbands (i.e. the large α-parameter in Eq. (19)). The bulk
crystalline media, vice-versa, have limitations of power scaling but, as a rule, are broadband
(Sorokina (2003)). Of course, such a division is not fundamental and the thin-disk laser
systems evolve in a direction of broader available gainbands (Südmeyer et al. (2009)).

The femtosecond pulse breakthrough for a Ti:sapphire oscillator has been closely connected
with the dispersion compensation technique (Spence & Sibbett (1991)). As a result, the first
normal (i.e. positive) dispersion regime in this broadband mode-locked oscillator has been
observed and characterized immediately (Proctor et al. (1993)). The regime obtained has
demonstrated the truncated spectra of chirped picosecond pulses. It was observed that this
regime is disconnected from the anomalous dispersion one due to instability in the vicinity
of zero dispersion. The connection with the theoretical model of (Haus et al. (1991)), where
the mechanism of chirped-pulse formation has been suggested, has been declared. The
next step was an observation that a chirped-pulse oscillator allows the pulse energy scaling
(Apolonski et al. (2000); Fernandez et al. (2004)). The result was a swift rise of the pulse
energy from a Ti:sapphire chirped-pulse oscillator (Fernández et al. (2007); Naumov et al.
(2005); Siegel et al. (2009)). The decisive steps were the cavity period Trep growth and the
positive dispersion control within a broad spectral range (Pervak et al. (2008)). The results are
shown in Fig. 21. The near-1-µJ pulses with a compressibility down to sub-40 fs have been
obtained. The preferable mode-locking technique for a highest-energy pulse generation in
the case of a reduced oscillator repetition-rate is based on a semiconductor saturable absorber
(Kalashnikov et al. (2006); compare Eqs. (33,39) where the scaling law is more promising for
a perfectly saturable absorber). A further pulse energy growth by the means of a growth of
cavity period is problematical because the gain relaxation time of 3 µs for this medium is about
of an ultimate Trep and the gain dynamics begins to destabilize the pulse (Kalashnikov et al.
(2006)).

As a development of the chirped-pulse oscillator technique, a further shift into the infrared
generation range taken a place (Cankaya et al. (2011); Lin (2010); Sorokin et al. (2008);
Tan et al. (2011)). The characteristics of a Cr:forsterite broadband oscillator approach the
Ti:sapphire ones (Cankaya et al. (2011)). The problem is that the relative contribution
of higher-order dispersions increases in the mid-infrared range. As a result, the pulse
spectra becomes distorted and the chaotic mode-locking becomes the principal destabilizing
mechanism (Kalashnikov et al. (2011); Sorokin et al. (2008)). Nevertheless, the potential of
such media as Cr-doped chalcogenides allows reaching around-1-µJ sub-100 fs pulses at 2.5
µm wavelength.

The technique of averaged power scaling based on using the thin-disk diode-pumped media
(Giessen & Speiser (2007)) has allowed reaching a highest sub-picosecond pulse energies in
the anomalous (negative) dispersion regime (Südmeyer et al. (2008)). In such a regime the
scaling law obtained from the variational approximation for a perfectly saturable absorber is

E ∝
|β|

γ
√

α
(43)

and the comparison with Eq. (33) shows that the dispersion required for a pulse stabilization
in a chirped-pulse oscillator can be substantially lower. Such a conclusion is supported by
data of (Palmer et al. (2008; 2010)) where the high-energy pulses of approximately 400 fs
width are realized by using a moderate positive dispersion (750 fs2 and ranging from 1500
to 4700 fs2 for different configurations) for the pulse stabilization. Another advantage of
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Fig. 21. Experimental realizations of chirped-pulse solid-state oscillators.

the positive dispersion regime over the negative one is the cubic energy scaling with a gain
bandwidth versus the linear one for the latter (Eqs. (33,43)). Therefore, the use of more
bradband materials like Yb:Lu2O3, Yb:LuScO3, and Yb:CALGO (Südmeyer et al. (2009)) is
very promising for a further energy scaling in the positive dispersion regime.

One may conclude that the experimental realization of chirped-pulse oscillators is at the
beginning of the development. Although the scaling potential of Ti:sapphire, it seems,
is close to exhaustion, the mid-infrared broadband media like Cr:ZnSe and Cr:ZnS are
extremely promising for a further development which can be achieved by enhancement
of pumping sources and chirped mirrors. On the other hand, a swift growth of pulse
energy of thin-disk oscillators is expected. As the numerical simulations have demonstrated
(Kalashnikov & Apolonski (2010)), the pulses with 100 µJ energies are completely accessible
in a thin-disk chirped-pulse oscillator with perfectly saturable absorber (see scaling rule (33)).
A further progress will be based on an optimization of oscillator, SESAM and pump designs;
on a progress in the chirped mirror technology; on using the more broadband active media
and, probably, on a transition to the Kerr-lens mode-locking technique.

4. Conclusion

A rapid progress in the field of energy scaling of femtosecond pulse oscillators has yielded
three main fruits: i) thin-disk solid-state oscillators operating in the anomalous-dispersion
regime, ii) both bulk and thin-disk oscillators operating in the normal dispersion regime, and
iii) fiber lasers operating in the net-normal dispersion regime. In this review, the second
type of oscillators has been under consideration. It was affirmed, that the source of energy
scalability is a formation of chirped dissipative soliton therefore these oscillators are named
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“chirped-pulse oscillators”. The main factors governing the chirped dissipative soliton have
been considered and the decisive contribution of dissipative effects such as saturable gain,
spectral filtering and self-amplitude modulation has been analyzed.

The theory of such solitons demonstrates that the relevant control parameters for a chirped
dissipative soliton are some specific dimensionless combinations of oscillator parameters
but not their absolute values. As a result, a chirped dissipative soliton “lives” in a
low-dimensional parametric space and a variety of chirped-pulse oscillators (including the
fiber ones) can be considered from a unified point of view. The insight into nature of
dissipative soliton parametric space underlies the interrelated concepts of “master diagram”
and “dissipative soliton resonance”. The achievement of these concepts is the formulation of
extremely simple scaling rules which relate the pulse parameters with those of an oscillator.
As a result, the properties of chirped-pulse oscillator becomes to be easily traceable within
an extremely broad parametric range. Also, these rules allow comparing between different
mode-locking mechanisms and demonstrate the advantage of the normal dispersion regime
over the anomalous dispersion one in further energy scaling.

The stability of chirped-pulse oscillators has been considered with respect to gain saturation,
higher-order dispersions and internal spectral perturbations. The numerical simulations
demonstrate a variety of destabilization scenarios including the chaotic mode-locking induced
by the odd-order dispersions and by the dispersion decrease towards the pulse spectrum
edges. It was conjectured that the underlying mechanism is a resonance with dispersive
waves but the corresponding analytical theory remains to be undeveloped, to date. The
noise properties and the self-starting ability of mode-locking in the positive dispersion regime
remain to be controversial, as well.

The experimental realizations of chirped-pulse solid-state oscillators have been surveyed.
For convenience, the oscillators have been divided into bulk and thin-disk ones. At this
moment, the bulk active media are more broadband than the thin-disk ones. There are another
differences (gain relaxation times, thermal properties, diode-pump abilities, etc.), as well. But
it is clear at this moment, that the chirped-pulse oscillators promise (or have fulfilled, as for a
Ti:sapphire oscillator) an outstanding scalability due to: i) reduced dispersion, ii) potentially
broader spectra, and iii) rapid energy growth with the gain bandwidth in comparison with
oscillators operating in the anomalous dispersion regime. One may hope, that a chirped-pulse
oscillator is superior to an anomalous dispersion one in stability, starting-ability and noise
properties and that sub- and over-100 µJ femtosecond pulse generation will be achievable
directly from an oscillator as a result of development of this technique.
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