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1. Introduction 

The principle of laser action was first experimentally demonstrated in 1960 by T. Maiman 
(Maiman, 1960). This first system was a solid-state laser in which a ruby crystal and a 
flashlamp served as gain medium and pump source, respectively. Soon after this first laser 
experiment, it was realized that solid-state lasers are highly attractive sources for various 
scientific and industrial applications such as laser marking, material processing, holography, 
spectroscopy, remote sensing, lidar, optical nonlinear frequency conversion, THz frequency 
generation (Koechner, 2006; Hering et al., 2003; Ferguson & Zhang, 2003; Sennaroghlu, 
2007). Since the early 1980’s with the development of reliable high power laser diode and 
the replacement of traditional flashlamp pumping by laser-diode pumping, the diode-
pumped solid-state lasers, DPSSL's, have received much attention and shown the significant 
improvements of laser performance such as optical efficiency, output power, frequency 
stability, operational lifetime, linewidth, and spatial beam quality.  

Nd:YAG and Nd:YVO4 crystals have been extensively used as a gain medium in commercial 
laser products with high efficiency and good beam quality. The active ion of Nd3+ has three 
main transitions of 4F3/2→4I9/2, 4F3/2→4I11/2, and 4F3/2→4I13/2 with the respective emission 
lines of 0.94, 1.06 and 1.3 Ǎm. The emission wavelengths of DPSSL's associated with 
nonlinear crystals cover a wide spectral region from ultraviolet to the mid-infrared range 
and very often terahertz range by difference frequency mixing process in simultaneous 
multi-wavelength solid-state lasers (Saha et al., 2006; Guo etal., 2010).  

DPSSL’s are conventionally categorized as being either end-pumped or side pumped lasers. 
End-pumping configuration is very popular because of higher efficiency, excellent 
transverse beam quality, compactness, and output stability which make it more useful for 
pumping tunable dye and Ti: Sapphire laser, optical parametric oscillator/amplifier, and 
Raman gain medium. The better beam quality is due to the high degree of spatial overlap 
between pump and laser modes while the high efficiency is dependent on good spatial 
mode-matching between the volume of pump and laser modes or nondissipating of pump 
energy over pumping regions that are not used by laser mode. In addition, end pumping 
allows the possibility of pumping a thin gain medium such as disk, slab, and microchip 
lasers that are not be accessed from the side-pumping (Fan &. Byer, 1998; Alfrey, 1989; 
Carkson & Hanna,1988; Sipes, 1985; Berger et al. 1987).  
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The side-pumping geometry allows scaling to high-power operation by increasing the 
number of pump sources placed around the gain medium before occurring thermal fracture. 
In this arrangement the pump power is uniformly distributed and absorbed over a large 
volume of the crystal which leads to reduce the thermal effects such as thermal lensing and 
thermal induced stress. However, the power scaling of end-pumped lasers is limited due to 
the physically couple of many diode-lasers into a small pumped volume and the thermal 
distortion inside the laser crystal. To improve power scaling of an end-pumped laser, a 
fiber-coupled laser-diode array with circular beam profile and high-output power and a 
crystal with better thermal properties can be employed as a pump source and gain medium, 
respectively (Hemmeti & Lesh, 1994; Fan & Sanchez, 1989; Mukhopadhyay, 2003; Hanson, 
1995; Weber, 1998; Zhuo, 2007; Sulc, 2002; MacDonald, 2000). 

Laser performance is characterized by threshold and slope efficiency. The influence of pump 
and laser mode sizes on the laser threshold and slope efficiency has been well investigated 
(Hall et al. 1980; Hall, 1981; Risk, 1988; Laporta &. Brussard, 1991; Fan & Sanchez, 1990; 
Clarkson & Hanna, 1989; Xiea et al., 1999). It is known a smaller value of the pump radius 
leads to a lower threshold and a higher slope efficiency. However, in the case of fiber-
coupled end-pumped lasers, due to pump beam quality, finite transverse dimension, 
diffraction, absorption and finite length of the gain medium, the pump size can be decreased 
only to a certain value.  

It is worthwhile to mention, that for both longitudinal and transverse pumping, the pump 
radius varies within the crystal mainly because of absorption and diffraction. It is possible to 
consider a constant pump radius within the crystal when the crystal length is much smaller 
than the Rayleigh range of the pump beam and also than the focal length of thermal lens. 
However, in the case of longitudinal pumping, the pump intensity is still a function of 
distance from the input end even this circumstance is also satisfied. Meanwhile, the lower 
brightness of the laser-diodes than the laser beam makes the Rayleigh distance of the pump 
beam considerably be shorter than the crystal length.  

The effect of pump beam quality on the laser threshold and slope efficiency of fiber-coupled 
end-pumped lasers has been previously investigated (Chen et al., 1996, 1997). The model is 
developed based on the space-dependent rate-equations and the approximations of paraxial 
propagation on pump beam and gain medium length much larger than absorption length. 
Further development was made by removing the approximation on gain medium length 
(Chen, 1999), while for a complete description, rigorous analysis is required. 

In this chapter, we initially reviewed the space-dependent rate equation for an ideal four-
level end-pumped laser. Based on the space-dependent rate equation and minimized root-
mean-square of pump beam radius within the gain medium, a more comprehensive and 
accurate analytical model for optimal design an end-pumped solid-state laser has been 
presented. The root-mean-square of the pump radius is developed generally by taking a 
circular–symmetric Gaussian pump beam including the M2 factor. It is dependent on pump 
beam properties (waist location, M2 factor, waist radius, Rayleigh range) and gain medium 
characteristics (absorption coefficient at pump wavelength and gain medium length). The 
optimum mode-matching is imposed by minimizing the root-mean-square of pump beam 
radius within the crystal. Under this condition, the optimum design key parameters of the 
optical coupling system have been analytically derived. Using these parameters and the 
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linear approximate relation of output power versus input power, the parameters for 
optimum design of laser cavity are also derived. The requirements on the pump beam to 
achieve the desired gain at the optimum condition of mode-matching are also investigated. 
Since thermal effects are the final limit for scaling end-pumped solid-state lasers, a relation 
for thermal focal length at this condition is developed as a function of pump power, pump 
beam M2 factor, and physical and thermal-optics of gain medium properties. The present 
model provides a straightforward procedure to design the optimum laser resonator and the 
optical coupling system. 

2. Space-dependent rate equation 

The rate equation is a common approach for dynamically analyzing the performance of a 
laser. For a more accurate analysis of characteristics of an end-pumped laser, particularly 
the influence of the pump to laser mode sizes, it is desirable to consider the spatial 
distribution of inversion density and the pump and laser modes in the rate equation. The 
space-dependent rate equation based on single mode operation for an ideal four level laser 
is developed by Laporta and. Brussard (Laporta &. Brussard, 1991): 

 0
( , , ) ( , , ) ( , , )

( , , ) ( , , )e
l

dN x y z S x y z N x y z
R x y z c N x y z

dt h


 
    (1) 

 0
( , , )

( , , )e
l c

dq S x y z q
c N x y z dV

dt h


 
   (2) 

where z is the propagating direction, N is the upper energy level population density, R is 
the total pumping rate into the upper level per unit volume, S is the cavity mode energy 
density, ǔe is the cross section of laser transition, c0 is the light velocity in the vacuum, h is 
the Plank’s constant, ǎl is the frequency of the laser photon , q is the total number of photons 
in the cavity mode, Ǖ is the upper-level life-time, and Ǖc is the photon lifetime. In Eq. (2) the 
integral is calculated over the entire volume of the active medium. The photon lifetime can 
be expressed as Ǖc=2le/δc0, where le=lca+(n-1)l is the effective length of the resonator, n is 
refractive index of the active material, lca and l are the geometrical length of the resonator 
and the active medium, respectively, and δ=2ǂil-ln(R1R2)+δc+ߜd≈2δi+T+δc+ߜd is the total 
logarithmic round-trip cavity-loss of the fundamental intensity, T is the power transmission 
of the output coupler, δi represents the loss proportional to the gain medium length per pass 
such as impurity absorption and bulk scattering, δc is the non-diffraction internal loss such 
as scattering at interfaces and Fresnel reflections, and ߜd is the diffraction losses due to 
thermally induced spherical aberration. The approximation is valid for the small values of T.  

Note that to write Eq. (2) the assumption of a small difference between gain and logarithmic 
loss has been assumed which maintains when intracavity intensity is a weak function of z. 
For a continuous-wave (CW) laser this situation always holds while for a pulsed laser, it is 
valid only when the laser is not driven far above the threshold. It follows that this analysis is 
appropriated to describe the behavior of low gain diode-pumped lasers, but is not adequate 
for gain-switched or Q-switched lasers and in general for high gain lasers. It is also assumed 
that the transverse mode profile considered for the unloaded resonator is not substantially 
modified by the optical material inside the cavity. 
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The pumping rate R can be related to the input pump power Pin  

 ( , , ) in
p

l

P
R x y z dV

h



  (3) 

where ηp=ηtηa(νl/νp) is the pumping efficiency, ǈt is the optical transfer efficiency (ratio 
between optical power incident on the active medium and that of emitted by the pump 
source), and ηa≈1-exp(-ǂl) is the absorption efficiency (ratio between power absorbed in the 
active medium and that of entering the gain medium), ǂ is the absorption coefficient at 
pump wavelength, l is the crystal length, ǎp is the frequency of the pump photon, and the 
integral extends again over the volume of the active material. Under the stationary 
condition, a relationship between the energy density in the cavity and the pumping rate 
can be easily derived. We define a normalized pump distribution within the gain medium 
as 

 
0

( , , )
( , , )p

R x y z
r x y z

R
  (4) 

where ( , , ) 1pr x y z dV   and R0 represents therefore the total number of photons absorbed 
per unit time in the active medium. We also define a normalized mode distribution as 

 
0

( , , )
( , , )l

S x y z
s x y z

S
  (5) 

where 
1 2

( , , ) ( , , ) 1l lns x y z dV s x y z dV   , and S0 is the total energy of cavity mode 

corresponding to the total number of photons q=S0/hνl  The first integral is taken over the 
whole field distribution in the region of the active medium and the second in the remaining 
volume of the resonator. 

Substituting Eq. (1) into (2), and considering Eqs. (3)-(5), under the steady-state condition, 
we have 

 
1

0 0

( , , ) ( , , )

2 ( , , ) / 1
l pl

in
p e e l sat

s x y z r x y zh
P dV

l c S s x y z I

 
  


 

   
  (6) 

where Isat= hνl/ǔeǕ is the saturation intensity. In the threshold limit (S0≈0) we obtain the 
following formula for the threshold pump power: 

 
 

2
l

th eff
e p e

h
P V

l

 
 

  (7) 

where 

 
1

( , , ). ( , , )eff l pV s x y z r x y z dV


     (8) 

introduces the effective volume of spatial overlap between pump and cavity modes.  

www.intechopen.com



 
Optimum Design of End-Pumped Solid-State Lasers 

 

7 

In the approximation of intracavity intensity much less than saturation intensity, the 
argument of the integral in (6) can be expanded around zero based on Taylor series and 
keep the first term as  

  0 0
0 0

1 /
/ 1
l p

l sat l p
l sat

s r
c S s I s r

c S s I
 


 (9) 

Inserting Eq. (9) into Eq. (6) and developing the integral with assuming the plane wave 
approximation, c0S0/le=2P, where P=Pout/T is the intracavity power of one of the two 
circulating waves in the resonator, yields 

  out s in thP P P   (10) 

where 

 s p slope

T
V 


  (11) 

is the slope efficiency and 

 
 2

2

( , , ). ( , , )

( , , ). ( , , )

l p

slope
l p

s x y z r x y z dV
V

s x y z r x y z dV
 


 (12) 

represents the mode-matching efficiency. The slope efficiency ǈs can be defined as the 
product of the pumping efficiency ǈp, the output coupling efficiency ǈc=T/δ, and the spatial 
overlap efficiency Vslope. The slope efficiency measures the increase of the output power as 
the pump power increases. It is generally somewhat larger than the total power conversion 
efficiency. For high slope efficiency, one wants high ǈp, and low δ. It can also be achieved by 
increasing T if other losses are not low, but this is undesirable because it increases threshold 
pump power.  

We should note that for mode-to-pump size ratio greater than unity, the linear 
approximation in Eq. (10) is valid also when the intracavity intensity is comparable with the 
saturation intensity. It should be also noted that for simplicity we have considered the plane 
wave approximation, but the formalism can be easily expanded for non-plane wave, such as 
a Gaussian beam profile. 

From Eq. (7), threshold pump power depends linearly on the effective mode volume, and 
inversely on the product of the effective stimulated-emission cross-section and the lifetime 
of laser transition. Thus, if laser transition lifetime be the only variable, it seems the longer 
lifetime results in a lower pump threshold for CW laser operation. However, the stimulated-
emission cross section is also inversely proportional to the lifetime of laser transition. 
Offsetting this is the relation between the laser transition lifetime and the stimulated 
emission cross-section. In many instances, the product of these two factors is approximately 
constant for a particular active ion. Consequently, threshold is roughly and inversely 
proportional to the product of the effective stimulated emission cross-section and the 
lifetime of the laser transition. Notice that larger stimulated-emission cross section is useful 
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in a lower pump threshold for CW laser operation and a smaller cross section has 
advantages in Q-switch operation. On the other hand, slope efficiency depends on the 
overlap or mode-matching efficiency and losses as well. Overlap efficiency is dependent on 
the particular laser design but generally it is easier to achieve when laser pumping is used 
rather than flashlamp pumping. 

The total round-trip internal loss, Li=2δi+δc+ߜd, in the system can be determined 
experimentally by the Findlay-Clay analysis. This was done by measuring the different 
pumping input power at the threshold versus the transmission of output coupling mirror as 
(Findlay & Clay 1966) 

 p th iT K P L   (13) 

where Kp=(2ηple/IsatVeff) is the pumping coefficient.  

According to Koechner (Koechner, 2006) the optimum output coupler transmission Topt can 
be calculated using the following standard formula: 

 0( / 1)opt e i iT g l L L   (14) 

where g0 is the small signal round-trip gain coefficient. The small-signal round-trip gain 
coefficient for an ideal four-level end-pumped laser is often expressed as:  

 0 2 ( , , ) ( , , )e lg s x y z N x y z dV   (15) 

According to Eqs. (1), (2) and (15), the small-signal round-trip gain coefficient which under 
the steady-state condition can be found as 

 0

2 p
in

sat eff

g P
I V


  (16) 

As can be seen in (16), for an ideal four-level laser, the small-signal gain coefficient g0 varies 
linearly with pump power and inversely with effective mode volume. 

3. Optimum pumping system 

A common configuration of a fiber-coupled laser diode end-pumped laser is shown in Fig. 
1. In this arrangement, the coupled pump energy from a laser-diode into a fiber is strongly 
focused by a lens onto the gain medium. The wpo and wl0 are the pump and beam waists, 
respectively, l is the gain medium length, and z0 is the location of pump beam waist. 

Assuming a single transverse Gaussian fundamental mode (TEM00) propagates in the cavity 
and neglecting from diffraction over the length of the gain medium, sl can be expressed as: 

 
2 2

2 2

2
( , , ) exp 2

( ) ( )
l

l e l

x y
s x y z

w z l w z

 
   

 
 (17) 

where 
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Fig. 1. Schematic diagram of a fiber-coupled laser-diode (FC LD) end-pumped solid-state laser.  

 
2

2 2 2
0 02

0

( ) 1 l
l l l

l

z
w z w w

n w




          
 (18) 

represents the spot size at a distance z, where wl0 is the waist of the Gaussian beam, n is the 
refraction index of the crystal, λl is the fundamental laser wavelength in free space. The 
neglect of diffraction is justified if 2

0 /l ln w   is much larger than physical length l of the 
gain medium. 

The intensity of the output beam comes out from a fiber-coupled laser-diode, rp, may be 
described by a circular Gaussian function (Gong et al., 2008; Mukhopadhyay, 2003) 

 
 

2 2

2 2

2
( , , ) exp 2

( ) 1 exp( ) ( )p
p p

x y
r x y z z

w z l w z

 
 

    
    

 (19) 

Here, ǂ is the absorption coefficient at pump wavelength, l is the gain medium length, and 
wp(z) is the pump beam spot size given by: 

 
2

2 2 0
0( ) 1p p

R

z z
w z w

z

      
   

 (20) 

where wp0 is the waist of the pump beam, z=z0 is the beam waist location and zR is the 
Rayleigh range: 

 
2

0
2

p
R

p

n w
z

M




  (21) 

Note in the above equations z =0 is taken at the incidence surface of the gain medium. In Eq. 
(21) M2 is the times diffraction limited factor which indicates how close a laser is to being a 
single TEM00 beam. An increasing value of M2 represents a mode structure with more and 
more transversal modes. Beam M2 factor is a key parameter which defines also how small a 
spot of a laser can be focused and the ability of the laser to propagate as a narrow thereby in 
some literatures it is called beam focusability factor. An important related quantity is the 
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confocal parameter or depth of focus of the Gaussian beam b=2zR. It is a measure of the 
longitudinal extent of the focal region of the Gaussian beam or the distance that the 
Gaussian beams remains well collimated. In other word, over the focal region, the laser 
field, called the near field, stays roughly constant with a radius varying from wp0 to √2 wp0. 
We see from (21), Rayleigh range is directly proportional to the beam waist wp0 and 
inversely proportional to the pump wavelength ǌp. Thus, when a beam is focused to a small 
spot size, the confocal beam parameter is short and the focal plane must be located with 
greater accuracy. A small spot size and a long depth of focus cannot be obtained 
simultaneously unless the wavelength of the light is short.  

Inherent property of the laser beam is the relationship between beam waist w0, far-field 
angle ǉ, and the index of refraction n. Based on the brightness theorem (Born & Wolf, 1999)  

 2
0 /pn w C M     (22) 

where C is a conserved parameter during focusing associated to the beam quality. For a 
fiber-coupled laser-diode, the value of C can simply be calculated from the product of fiber 
core radius and beam divergence angle. From Eq. (22), focusing a laser beam to a small spot 
size increases the beam divergence to reduce the intensity outside the Rayleigh range. 

Putting Eqs. (17) and (19) into Eqs. (7) and (11), we obtain  

 
2
0

0 0 02 ( , , , , , )
l sat

th
p l p R

w I
P

F l w w z z


 

  (23) 

 
2

0 0 0

0 0 0

( , , , , , )

( , , / 2 , , , )
p l p R

s
l p R

T F l w w z z

F l w w z z

 


 
  (24) 

where  

 
2
0

0 0 0 2 2 2 20
0 0 0

exp( )1
( , , , , , )

1 exp( ) [1 ( ) / ]

l l
l p R

l p R

w z
F l z z dz

l w w z z z

 
  




 
      (25) 

is the mode-matching function describes the spatial-overlap of pump beam and resonator 
mode. The maximum value of the mode-matching function leads to the lowest threshold 
and the highest slope efficiency (Laporta & Brussard, 1991; Fan & Sanchez, 1990). Thereby 
the mode-matching function is the most important parameter to improve the laser 
performance. In general, this function cannot be solved analytically and to obtain the 
optimum pump focusing, Eq. (25) should be numerically solved. A closed form solution can 
be found by defining a suitable average pump spot size inside the active medium: 

 
2 2
0 0

0 0 0 2 20 2 2
0 ,0

exp( )1
( , , , , , )

1 exp( ) ( )

l l l
l p R

l p rmsl p

w z w
F l z z dz

l w ww w z

 
  




  
  

  (26) 

In this equation, wp,rms is the root-mean-square (RMS) of pump beam spot size within the 
active medium: 
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 2
, ( )p rms pw w z  (27) 

where 2( )pw z  is the mean of square pump beam spot size along the active medium given by 
(Shayeganrad & Mashhadi, 2008): 

 
2

2 0

0

( )exp( )
( )

exp( )

l

p

p l

w z z dz
w z

z dz













 (28) 

The exp(-ǂz) is the weighting function comes from the absorption of the pump beam along z 
direction. After putting Eq. (20) into Eq. (28) and performing the integrations we can obtain: 

 
2

2 2 0 0
0 2

2 ( ) 2 ( 2) /[exp( ) 1]
( ) 1p p

R

Z Z f L L L L
w z w

Z

     
   

 
 (29) 

where Z0 =ǂz0, ZR =ǂzR,, and L=ߙl are dimensionless waist location, Rayleigh range and 
crystal length, respectively. In Eq. (29) ( ) 1 exp( ) / efff L L L L   where 1 exp( )effL L   is 
the dimensionless parameter which defines the effective interaction length. Note that Leff→L 
for L<<1, and leff→1 for L>>1. Thus for a strongly absorbing optical material (l1ب/ǂ) the 
effective interaction length is much shorter than physical length of the medium. This 
configuration can be useful for designing the disk or microchip laser with high absorption 
coefficient and short length gain medium. 

We see from (26) that the maximum value of mode-matching can be raised by minimizing 
the RMS of beam spot size at a constant mode size. A minimum value of wp,rms can occur 
when ∂wp,rms/∂Z0 is equal to zero at a fixed L, wp0 and ZR. The solution is 

 0, ( ) / 2optZ f L L   (30) 

After substituting Eq. (30) into (29) we obtain  

 
2 2

2 2
, 0 2

( ) ( )
( ) 1p rms p R

RR

g L g L
w z w Z

ZZ


   
         

   
 (31) 

where ǃ=C/nǂ is pump beam quality which is often quoted in square millimeter and 

 22( ) 1 exp( ) / effg L L L L   . The value of parameter ǃ can be calculated by substituting the 
value of C and the properties of the active medium, n, and ǂ. 

Differentiating (31) respect to ZR and put it equal to zero, we find 

 , ( ) /2 3R optZ g L L   (32) 

In each expression the last form gives the asymptotic value for small L compared to unity. 
One sees that asymptotically the optimum waist location and Rayleigh range depend only 
on crystal length. While in the case of L1ب or strong absorbing gain medium, they both tend 
to absorption lenght 1/ǂ and are much shorter than physical length of the gain medium.  
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Fig. (2) shows the dimensionless optimum waist location and Rayleigh range of the pump 
beam. We can see, when absorption coefficient ǂ increases, the optimum waist location 
and optimum Rayleigh range move closer to the incident surface of the active medium 
and they both increase with increasing active medium length l at a fixed ǂ. These results 
were expected; because for large value of ǂ, the pump beam is absorbed in a short length 
of the active medium. It can be also seen that the optimum waist location is larger than 
optimum Rayleigh range for 1<L<8 and for large L (L≥8) they both tend to the absorption 
length 1/ǂ. For L=1.89 and L=1.26 optimum Rayleigh range and optimum waist location 
are equal to half of the absorption length independently on the gain medium length that is 
considered as the optimum range in several papers (Laporta & Brussard, 1991; Berger et 
al., 1987).  

 
Fig. 2. The optimum dimensionless waist location and Rayleigh rang of the pump beam as a 
function of L. 

Substitution (32) into (21) gives 

 0, ( ) / 2 3p optw g L L    (33) 

Hence wp,opt becomes, after replacing ZR by its value g(L) into Eq. (31): 

 , 2 ( )p optw g L  (34) 

From this equation, minimum pump spot size is a function of M2 factor and two 
characteristic lengths: crystal length and absorption length 1/ǂ. For L1ا, the minimum 
pump beam spot size ,p optw can be expressed in the following form: 

 , / 3p optw L  (35) 

L 

Z0,opt

ZR,opt
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As a result, optimum mode-matching function depends on the pump beam quality and gain 
medium characteristics as well. In practice, the experimentally measured optimum pump 
beam spot size wp,opt, usually differs from that of calculated based on Eq. (34) because of the 
diffraction and thermal effects in a realistic laser gain medium. Nevertheless, this formula 
can provide a very good estimate for the wp,opt. 

Putting Eq. (34) into (22), optimum far-field-angle of pump beam  is given by:  

 , ( )p opt
g L

   (36) 

It can be seen from Eqs. (34) and (36), optimum pump spot size and optimum pump beam 
divergence angle increase with increasing ǃ to obtain maximum mode-matching efficiency. 
Equations (30), (33) and (36) provide a good guideline to design an optimum optical-
coupling system. Again, these parameters are governed by the absorption coefficient, the 
gain medium length and the pump beam M2 factor.  

To reach the optimal-coupling, the incident Gaussian beam should be fitted to the aperture 
of the focusing lens with the largest possible extent without severe loss of pump power due 
to the finite aperture of the focusing lens and also serious edge diffraction. As one 
reasonable criterion for practical design, we might adapt the diameter of the focusing lens to 
πwp, where wp is the pump spot size of the Gaussian beam at the focusing lens. The waist 
and waist location for a Gaussian beam after passing through a thin lens of focal length f can 
be calculated with the ABCD Matrix method. For a collimated beam with radius wp,  they 
can be respectively described as 

 0 2

/

1 ( / )

p
p p

p

f z
w w

f z





 (37.a) 

 0 2 2/ 1p

f
z

f z
 

 
 (37.b) 

where 2 2/p p pz n w M   is the Rayleigh range of the incoming beam. In these two equations, 
for simplicity, z=0 is considered the location of the lens. If we assume z´p>>f, which is 
usually satisfied for fiber-coupled end-pumped lasers, Eq. (37) are reduced to: 

 
2

p

p
po

f M
w

n w




  (38.a) 

 0z f   (38.b) 

From Eqs. (33) and (38.a) we obtain 

 p
( )

opt

g L
F w


  (39) 
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where Fopt=ǂfopt is dimensionless optimal focal length of the focusing lens is plotted in Fig. 3 as 
a function of L for wp=1 and several pump beam quality factors ǃ. At a fixed ǃ, optimal focal 
length of the focusing lens is an increasing function of L and is not very sensitive to L when 
pump beam quality is poor. It can be also seen, for a specific active medium, when pump 
beam quality increases by increasing divergence angle and/or core diameter of the fiber a lens 
with a small focal length satisfies in Eq. (39) is needed to achieve an optimal focusing and 
consequently a higher mode-matching efficiency. At a fixed l and ǃ, if absorption coefficient ǂ 
increases the optimal focal length decreases because of the moving pump beam waist location 
closer to the incident surface of the active medium. Putting the values of ǃ, L and wp into (30) 
and (39), optimal focal length lens and optimal location of the focusing lens can be determined. 

 
Fig. 3. Dimensionless optimized focal length of the focusing lens, ǂfopt., as a function of L for 
ωp=1 and several pump beam quality factors ǃ. 

On the other hand, based on the paraxial approximation, pump spot size wp(z) may be given 
by (Fan &. Sanchez, 1990) 

 0 0( )p p pw z w z z    (40) 

Several authors (Fan & Sanchez, 1990; Laporta & Brussard, 1991; Chen, 1999; Chen et al., 
1996, 1997) have considered Eq. (40) to describe the evolution of pump beam radius within 
the gain medium in their model. This functional dependence is appropriate for beams with 
partial-spatial coherence (Fan & Sanchez, 1990). Also, if one is focusing the beam to a small 
spot size, the paraxial approximation is not justified and making questionable using Eq. (40) 
which is derived under the paraxial approximation. Using this function to describe the 
evolution of pump beam radius, the optimum pump spot size is defined as (Chen, 1999): 

 ,
2

2 coth
1 exp( ) 2 exp( ) 1p opt

L L
w ln

L L

               

 (41) 
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p

t 

L
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For L1ب, this equation yields (Chen et al., 1997) 

 , 2 (2)p optw ln  (42) 

Fig. (4) shows comparison of the optimum pump spot size using Eqs. (34) and (41). It can be 
seen, at a fixed ǃ, minimum pump size is an increasing function of L. For the case of poor 
pump beam quality, it initially increases rapidly and then this trend becomes saturate and is 
not significantly sensitive to L, while for the case of a good pump beam quality, it varies 
smoothly with increasing L. Further, for a specific active medium with a defined L, a poorer 
pump beam quality leads to a higher wp,opt to maximize the mode matching because of 
governing focusability with beam quality. Note that a good agreement between the Chen‘s 
model (Chen, 1999) and present model is obtained only when the pump beam has a good 
quality and the deviation increases with increasing pump beam quality ǃ. 

 
Fig. 4. Comparsion of optimum pump spot size, wp,opt ,  as a function of L for values of ǃ=0.1 
and ǃ=0.01 mm2. Solid and pointed curves are calculated from Eqs. (36) and (43), 
respectively.  

The saturation of the minimum pump spot size and hence the optimum mode-matching 
efficiency is due to the limit of interaction length which causes by the finite overlap distance 
of the beams in space. When crystal length becomes larger than the beams-overlap length in 
the crystal, an increasing in crystal length no larger contributing to generate the laser. To 
achieve the maximum mode-matching efficiency for a given crystal length and a pump 
beam M2 factor, when absorption coefficient increases the optimum pump size should 
decrease. Hence, in the case of poor pump beam quality, the mode-overlapping could not be 
maintained through the length of the crystal and slow saturation prevented us from using a 
short crystal with a high absorption coefficient to improve the overlap. 

To examine the accuracy of the present model, we compared Eq. (34) with the results 
determined by Laporta and Brussard (Laporta and Brussard, 1991). They have found that 
the average pump size 

O
p

ti
m

u
m

 p
u

m
p

 s
iz

e 
(m

m
) 

L

ǃ=0.001 mm2

ǃ=0.01 mm2 

ǃ=0.1 mm2 

www.intechopen.com



 
Solid State Laser 

 

16

 
1/2

2
0

1
( )

l

p pw w z dz
l

      (43) 

with ( 2.3 1.8)(1 / )pl       for ǉp≤ 0.2 rad or 1.34l    can give a fairly accurate estimate 
of the overlap integral. l is the effective length related to the absorption length 1/ǂ of the 
pump radiation and the divergence angle ǉp of the pump beam inside the crystal. 

Fig. 5 shows a comparison of the minimum average pump size within the active medium 
using. Eqs. (34) and (41)-(43). It can be seen that the results calculated from (34) are in a good 
agreement with the results evaluated by Laporta and Brussard. Again, it can be also seen 
that, the optimum pump spot size in the active medium is an increasing function of ǃ.  

 

 

Fig. 5. Minimum pump spot size as a function of pump beam quality ǃ for L=1.34 and L=0.5. 
Solid, solid diamond, open circle, and plus curves is calculated from Eqs. (34), (41), (42) and 
(43), respectively. 

4. Optimum laser resonator 

According to Eqs. (23)-(26) and (10), the output power at the condition of optimum pumping 
is given by 

 
2 2

20 0
02 2

0

( 4 ( ))
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 
   

   
 (44) 

Now, we define, for generality, the normalized output efficiency as 
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 (45) 
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where the input power is normalized as 

 
( / 2 )

in

sat p

p

I


 
  (46) 

It is often quoted in square millimeter. At a fixed ǃ and Pin, the optimum mode size, wl0,opt 
for the maximum output power can be obtained by using the condition  

 0/ 0out lP w    (47) 

This equation yields the solution 

  0, 2 ( ) ( , , ) ( , , ) 1l optw g L h L h L         (48) 

where  

 

1/3
23 27( / 2 ( )) 1

( , , )
9 2 ( )

g L
h L

g L

   


   
 
 

 (49) 

Fig. 6 shows a plot of optimum mode size, wl0,opt as a function of dimensionless crystal 
length, L, for several values of χ and ǃ. One sees, at a fixed χ and ǃ, wl0,opt  is initially a 
rapidly increasing function of L, and then its dependence on L becomes weak. Also, at a 
fixed L, the poorer pump beam quality and larger χ leads to a larger mode size to reach a 
higher slope efficiency and a lower pump threshold. Increasing optimum mode size with 
increasing pump beam quality is attributed to the increasing optimum pump beam spot size 
with increasing its beam quality and maintaining the optimum mode-matching. 

 
Fig. 6. Optimum mode size, wl0,opt , as a function of dimensionless active medium length, L, for 
several values of χ and ǃ. Pointed lines are for ǃ=0.01 mm2 and solid lines are for ǃ=0.1 mm2. 
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Equation (35) can be used as a guideline to design the laser resonator. First, the value of 
parameter ǃ is calculated by considering values of C, n, and ǂ. Then, for a given Pin and gain 
medium, the value of χ is determined from Eq. (46). Putting ǃ, L and χ into (48), the 
optimum mode size can be determined and subsequently substituting calculated optimum 
mode size into (45), the maximum output efficiency ǔout,max can be also determined.  

Fig.7 shows the maximum output efficiency as a function of L for several values of χ and ǃ. 
It is clear, the maximum output efficiency rapidly decreases with increasing L particularly 
when the available input power is not sufficiently large and beam quality is poor. It results 
because of the spatial-mismatch of the pump and laser beam with increasing L. Further, the 
influence of dimensionless gain medium length is reduced for high input power and better 
pump beam quality. For a poor pump beam quality, the maximum attainable output power 
strongly depends on the input power. This can be readily understood in the following way: 
the increasing pump power leads to increase the gain linearly while the better pump beam 
quality leads to the better pump and signal beams overlapping regardless of the value of the 
gain which continues to increase with increasing pump power. The large overlapping of the 
pump and signal beams in the crystal ensures a more efficient interaction and higher output 
efficiency. Note that the laser pump power limited by the damage threshold of the crystal, 
then χ can be an important consideration in the choice of a medium. It looks like, in the case 
of high pump power, the pump beam quality is a significant factor limiting to scale end-
pumped solid state lasers. 

 

Fig. 7. Maximum output efficiency, ǔout,max, as a function of dimensionless active medium 
length, L, for several values of χ and ǃ. Pointed and solid curves are for ǃ=0.01 mm2 and 
ǃ=0.1mm2, respectively. 

In comparison, Fig. 8 shows the maximum output efficiency calculated from Eq. (45), and 
determined by Chen (Chen, 1999). One sees the Chen’s model make a difference compared 
to the present model. The difference increases for low input power χ and poor pump beam 
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quality with increasing L. The present model shows a higher output efficiency in each value 
of ǃ, χ and L. Typically, the maximum output efficiency calculated using this model is ~5%, 
16%, 12% and 15% higher than those obtained from the Chen’s model for sets of (L=8, χ=0.5 
mm2, ǃ=0.001 mm2), (L=8, χ=0.5 mm2, ǃ=0.1 mm2), (L=1, χ=0.5 mm2, ǃ=0.1 mm2) and (L=5, 
χ=0.5 mm2, ǃ=0.1 mm2), respectively. 

 

      
Fig. 8. Comparison of the maximum output efficiency, ǔout,max, as a function of L for several 
values of χ  and (a) ǃ=0.001 mm2, (b) ǃ=0.1 mm2. Solid  curves calculated from Eq. (45) and 
pointed curves are determined from Chen’s model (Chen, 1999). 
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Note that we assumed the pump beam distribution comes out from the fiber-coupled laser-
diodes is a Gaussian profile. Nevertheless, a more practical distribution for the output beam 
from the fiber-coupled laser-diodes may be closer to a Top-Hat or super-Gaussian 
distribution: 

 
 

 2 2
2( , , ) ( )exp
( ) 1 exp( )

p p
p

r x y z x y z
z l

  
 

    
 

 (50) 

where 2 2( )p x y    is the Heaviside step function and p  is the average pump-beam 
radius inside the gain medium. Solving Eqs. (7) and (11) with considering (50) we can obtain 
mode-match-efficiency as follow: 
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 (51) 

Fig. 9 shows the mode-match-efficiency calculated from (51) and (26) versus wl0/wp,opt. One 
sees the differences is small, especially for wl0/wp,opt<1. Therefore the Gaussian distribution 
can be considered a reasonable approximation for analysis the optical pump conditions.  

 
Fig. 9. Mode-match efficiency as a function of wl0/wp,opt. Solid and pointed curves represent 
the results for Gaussian distribution and Top-Hat profile, respectively. 

5. Pump source requirements 

In an end-pumped laser, the brightness of the pump source may be a critical factor for 
optimizing the laser performance. For instance, tight focusing of the pump beam is required 
to enhance the nonlinear effect for mode-locking of a femtosecond laser while the long 
collimation of a tight-focused pump beam is crucial for mode-matching of the laser beam 
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along the gain medium. According to Eq. (16), the desired exponential unsaturated gain at 
optimal design can be determined by the optimum mode size and the optimum average 
pump beam spot size: 

 
2 2
0, ,

2 1in p

sat l opt p opt

P

I w w




 


 (52) 

Putting Eq. (34) into (52), the small-signal round-trip gain at the optimum condition is 
expressed as: 
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2 1
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
 (53) 

Note that, if the volume of pump beam stays well within the volume of the fundamental 
cavity mode, TEM00 operation with diffraction-limited beam quality is often possible. It is 
because of, at this condition, gain of the high-order modes  is too small to balance the losses 
and start to oscillate. Therefore, for oscillating laser in TEM00, we have 

 0, 0,l opt p optw w  (54a) 

or 

 2
0 2 ( )lw g L  (54b) 

The constraint condition in (54) can be rewritten as: 
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g L
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The brightness of the beam in the air B can be defined as (Born & Wolf, 1999): 
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Substituting the constraint of (55) into (56), we find  
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Now, we can obtain a relation between the required brightness of the pump beam in air, 
desired gain Γ, properties of the gain medium (Isat, l, and n) at a given pump power Pi and 
pump beam quality ǃ:  
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This is a requirement on B to achieve a gain value of Γ at a pump power Pi. If the inequality 
in (58) is not satisfied, the laser will not work at the design point. It can be simply shown, in 
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the limit case of l=2zR=2g(L)/ǂ and ǃ→0, Eq. (58) reduces to that of developed by Fan and 
Sanchez (Fan & Sanchez, 1990): 
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The limit of ǃ→0 is justified when the M2 factor is small and the absorption coefficient is high 
in which the effective interaction length is much shorter than physical length of the medium.  

Notice the power scaling with maintaining operation in the TEM00 mode has been limited by 
the formation of an aberrated thermal lens within the active medium. Besides the thermal 
lens, the maximum incident pump power is restricted by thermal fracture of the laser 
crystal. Therefore, it is of primary importance for the laser design to avoid thermally 
induced fracture and control the thermal effects.  

6. Thermal effects in end-pumped lasers 

The thermal lens generated within a gain medium may hinder the power scaling of such 
lasers by affecting the mode size of the laser inside the resonator and reducing the overlap 
between the pump and cavity modes. Efficient design consideration usually is dominated by 
heat removal and the reduction of thermal effects for high-power solid-state lasers. In end-
pumped solid-state lasers the requirement for small focusing of pump beam size leads to a 
very high pump deposition density and further exacerbate thermal effects such as (a) 
thermal lensing and aberration, (b) birefringence and depolarization caused by thermal 
stress, (c) fracture and damaging the laser crystal by thermal expansion which limit the 
power-scaling of end-pumped lasers. The thermal lens in the gain medium will act as 
another focusing element which should be taken into account in order to optimize the 
matching between the cavity and the pump beams in the gain medium. 

One of the main problems encountered in end-pumped lasers is beam distortion due to the 
highly aberrated thermal lens, making it extremely difficult to simultaneously achieve high 
efficiency and good beam quality. Many methods such as low quantum defect level, double-
end pumping, composite crystal and low doping concentration have been proposed to 
reduce the thermal effects and increase output power (Koechner, 2006). The lower doping 
concentration and longer length crystal decrease the thermal lens effect greatly and also are 
preferable for the efficient conversion.  

In the case of longitudinal pumping, most of the pump energy absorbed close to the end 
surface of the rod. This means the gradient-index lens is strongest near the pump face and 
the end effect localized at this first face of the rod. Since the generated lenses are located 
inside the crystal and the thickness of the gain medium is very small compared the cavity 
length, the separation between these lenses can be neglected and the combination can be 
well approximated by an effective single thin lens located at the end of the laser rod with the 
effective thermal focal length (distance from the end of the rod to the focal point) as 
(Shayeganrad, 2012) 
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where ηh is the heat conversion coefficient resulting from fluorescence efficiency, 

upconversion, and quantum defect, 3
,( 1)(1 ) 2T r t T

n
n C n

T
   
    


 is the-averaged 

thermo-optic coefficient, ∂n/∂T is the thermal-optics coefficient, ǂT is the thermal expansion 
coefficient, Cr,t is the photo-elastic coefficient of the material, n is refractive index of the gain 
medium, and ǎ is Poisson’s ratio. Note that under efficient laser operation and low-loss 
cavity ηh=1-λp/λl. Also, the factor (n-1) has to be replaced by n in the case of end-pumped 
resonators with a high reflectivity coating on end surface of the crystal. The first term results 
from the thermal dispersion, the second term is caused by the axial mechanical strain, and 
the third term represents the strain-induced birefringence. Though for most cases 
contribution of thermal stress effect is small. Further, the Gaussian pump beam leads to a 
much more highly aberrated thermal lens, which is a factor of two stronger on axis for the 
same pump spot size and pump dissipation (Fan et al., 2006). 

Equation (60) cannot be solved analytically. To obtain the focal length, this equation must be 
solved numerically. Again, similar solving mode-matching function, an average pump spot 
size inside the active medium is considered. Then, we have  

 2
,

1 1
2
h in

th c p opt

P

f k

 
 

  (61) 

This function shows that when pump beam spot size increases the thermal focal length 
increases, while a smaller pump radius needs to achieve a lower threshold and higher 
slope efficiency. Most importantly, when the pump beam waist is decreased, the 
temperature and temperature gradient in the laser rod would be very high due to the 
resulting heat.  

Substituting Eq. (34) into Eq. (61), we can obtain thermal focal power Dth as: 
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It is clear that the focal power of the thermal lens depends on the gain medium 
characteristics, pump beam properties and is independent on the crystal radius. It increases 
directly with pump power and inversely with pump beam M2 factor. Increasing Pin leads to 
increase the deposited heat and hence increase the themprature gradiant and Dth. 
Decreasing M2, leads to increase focusability of the beam and hence increasing Dth. In 
addition, utilizing a material with small value of Ǐ, and high values of thermal conductivity 
kc can help to reduce the thermal effect.  

Eq. (62) has the following properties: for small values of L (L<<1): 
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and for large values of L (L>>1): 
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It can be seen in the asymptotic, values are independent of the active medium length. 

7. References 

Alfrey, A. J. (1989). Modeling of longitudinally pumped CW Ti: Sapphire laser oscillators. 
IEEE J. Quant. Electron, Vol. 25 PP. 760-765. 

Berger, J., Welch, D. F., Sciferes, D.R., streifer, W. and Cross, P. (1987). High power, high 
efficient neodymium: yttrium aluminum garnet laser end-pumped by a laser diode 
array. Appl. Phys. Lett., Vol. 51 PP. 1212-1214. 

Bollig, C., Jacobs, C., Daniel Esser, M. J., Bernhardi, Edward H., and Bergmann, Hubertus M. 
von. (2010). Power and energy scaling of a diode-end-pumped Nd:YLF laser 
through gain optimization. Opt. Express, Vol. 18, PP. 13993-14003. 

Born M., and Wolf E. (1999). Principles of Optics. 7th extended edition, Pergoman Press Ltd. 
Oxford, England. 

Carkson, W. A., and Hanna,D.C. (1988). Effects of transverse mode profile on slop efficiency 
and relaxation oscillations in a longitudinal pumped laser. J. Modm Opt., Vol. 36 PP. 
483-486. 

Chen, Y. F. (1999). Design Criteria for Concentration Optimization in Scaling Diode End-
Pumped Lasers to High Powers: Influence of Thermal Fracture. IEEE J. Quantum 

Electron.,  Vol. 35, PP. 234-239. 
Chen, Y. F., Kao, C. F., and Wang, C. S. (1997). Analytical model for the design of fiber-

coupled laser-diode end-pumped lasers. IEEE J. Quantum Electron., Vol. 133 PP. 
517-524. 

Chen, Y. F., Liao, T. S., Kao, C. F., Huang, T. M., Lin, K. H., and Wang, S. C. (1996). 
Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-
beam quality. IEEE J. Quantum Electron., Vol. 32, PP. 517-524. 

Clarkson, W. A., and Hanna, D. C. (1989). Effects of transverse-mode profile on slope 
efficiency and relaxation oscillations in a longitudinally-pumped laser. J. Mod. Opt. 
Vol. 27 PP. 483-498. 

Fan, S., Zhang, X., Wang, Q., Li, S., Ding, S., and Su, F. (2006). More precise determination of 
thermal lens focal length for end-pumped solid-state lasers, Opt. Commun. Vol. 266, 
PP. 620-626. 

Fan, T. Y., and Byer, B. L. (1988). Diode-pumped solid-state lasers. IEEE J. Quantum Electron., 
Vol. 24, PP. 895-942. 

Fan, T. Y., and Sanchez, A. (1990). Pump source requirements for end pumped lasers. IEEE J. 

Quantum Electron., Vol. 26 PP. 311-316. 
Fan, T. Y., Sanchez, A., and Defeo, W. G. (1989). Scalable end-pumped, Diode-laser pumped 

lasers. Opt. Lett., Vol. 14 PP. 1057-1060. 
Ferguson, B., and Zhang, X. C.  (2002). Materials for terahertz science and technology. Nature 

Materials, Vol. 1, PP. 26-33. 
Findlay, D., and Clay, R. A. (1966). The measurement of internal losses in 4-level lasers. 

Physics Letters, Vol. 20, PP. 277-278 

www.intechopen.com



 
Optimum Design of End-Pumped Solid-State Lasers 

 

25 

Gong, Lu, M., Yan, C., P., and Wang, Y. (2008) Investigations on Transverse-Mode 
Competition and Beam Quality Modeling in End-Pumped Lasers. IEEE J. Quantum 

Electron., Vol. 44, PP. 1009-1019. 
Guo, L., Lan, R., Liu, H., Yu, H., Zhang, H., Wang,  J.,  Hu, D.,  Zhuang, S.,  Chen,L., Zhao,Y., 

Xu, X., and Wang, Z. (2010). 1319 nm and 1338 nm dual-wavelength operation of 
LD end-pumped Nd:YAG ceramic laser.  Opt. Express, Vol. 18, PP. 9098–9106. 

Hall, D. G. (1981). Optimum mode size criterion for low gain lasers. Appl. Opt., Vol. 20 PP. 
1579-1583. 

Hall, D. G., Smith, R. J., and Rice, R. R. (1980). Pump size effects in Nd:YAG lasers. Appl. 

Opt., Vol. 19 PP. 3041-3043. 
Hanson, F. (1995). Improved laser performance at 946 and 473 nm from a composite 

Nd:Y3Al5O12 rod. Appl. Phys. Lett. Vol. 66, PP. 3549-3551. 
Hemmeti, H., and Lesh, Jr. (1994). 3.5 w Q-switch 532-nm Nd:YAG laser pumped with fiber-

coupled diode lasers. Opt. Lett. Vol. 19 PP. 1322-1324. 
Hering, P., Lay, J. P., Stry, S., (Eds). (2003). Laser in environmental and life sciences: Modern 

analytical method. Springer, Heidelberg-Berlin. 
Koechner, W. (2006). Solid state laser engineering. Sixth Revised and Updated Edition, 

Springer-Verlog, Berlin. 
Laporta, P., and Brussard, M. (1991). Design criteria for mode size optimization in diode 

pumped solid state lasers. IEEE J. Quantum Electron., Vol. 27 PP. 2319-1326. 
MacDonald, M. P., Graf, Th., Balmer, J. E., and Weber, H. P. (2000). Reducing thermal 

lensing in diode-pumped laser rods. Opt. Commun. Vol. 178, PP. 383-393. 
Maiman, T. H. (1960). Stimulated Optical Radiation in Ruby. Nature, Vol. 187, PP. 493-494. 
Mukhopadhyay, P. K., Ranganthan, K., George, J., Sharma, S. K. and Nathan, T. P. S. (2003). 

1.6 w of TEM00 cw output at 1.06 µm from Nd:CNGG laser end-pumped by a fiber-
coupled diode laser array. Optics & Laser Technology, Vol. 35  PP. 173-180. 

Risk, W. P. (1988). Modeling of longitudinally pumped solid state lasers exhibiting 
reabsorption losses. J. Opt. Amer. B, Vol. 5PP. 1412-1423. 

Saha, A., Ray, A.,  Mukhopadhyay, S., Sinha, N., Datta, P. K., and Dutta, P. K. (2006). 
Simultaneous multi-wavelength oscillation of Nd laser around 1.3 Ǎm: A potential 
source for coherent terahertz generation.  Opt. Express , Vol. 14, PP. 4721-4726. 

Sennaroghlu, A. (Ed.). (2007). Solid atate lasers and applications. CRC Press, Taylor & 
Francis Group. 

Shayeganrad, G. (2012). Efficient design considerations for end-pumped solid-state-lasers.  
Optics and laser Technology, Optics & Laser Technology, Vol. 44, PP. 987–994. 

Shayeganrad, G., and Mashhadi, L. (2008). Efficient analytic model to optimum design laser 
resonator and optical coupling system of diode-end-pumped solid-state lasers: 
influence of gain medium length and pump beam M2 factor. Appl. Opt., Vol. 47, PP. 
619-627. 

Sipes, D. L. (1985). Highly efficient neodymium: yttrium aluminum garnet lasers end-
pumped by a semiconductor laser array. Appl. Phys. Lett., Vol. 47 PP. 74-76. 

Šulc, J., Jelínková, H., Kubeček, V., Nejezchleb, K.. and Blažek, K.. (2002). Comparison of 
different composite Nd:YAG rods thermal properties under diode pumping. Proc. 

SPIE Vol. 4630, PP. 128-134. 

www.intechopen.com



 
Solid State Laser 

 

26

Weber, R., Neuenschwander, B., Donald, M. M., Roos, M. B., and Weber, H. P. (1998). 
Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods. IEEE J. 

Quantum Electron. Vol. 34, PP. 1046-1053. 
Xiea, W., Tama, S. C., Lama, Y. L., Yanga, H., Gua, J., Zhao, G., and Tanb, W. (1999). 

Influence of pump beam size on laser diode end-pumped solid state lasers. Optics 

& Laser Technology Vol. 31 PP. 555-558. 
Zhuo, Z., Li, T., Li, X.  and Yang, H. (2007). Investigation of Nd:YVO4/YVO4 composite 

crystal and its laser performance pumped by a fiber coupled diode laser, Opt. 

Commun. Vol. 274, PP. 176-181. 

www.intechopen.com



Solid State Laser

Edited by Prof. Amin Al-Khursan

ISBN 978-953-51-0086-7

Hard cover, 252 pages

Publisher InTech

Published online 17, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book deals with theoretical and experimental aspects of solid-state lasers, including optimum waveguide

design of end pumped and diode pumped lasers. Nonlinearity, including the nonlinear conversion, up

frequency conversion and chirped pulse oscillators are discussed. Some new rare-earth-doped lasers,

including double borate and halide crystals, and feedback in quantum dot semiconductor nanostructures are

included.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gholamreza Shayeganrad (2012). Optimum Design of End-Pumped Solid-State Lasers, Solid State Laser,

Prof. Amin Al-Khursan (Ed.), ISBN: 978-953-51-0086-7, InTech, Available from:

http://www.intechopen.com/books/solid-state-laser/optimum-design-of-end-pumped-solid-state-lasers



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


