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1. Introduction 

Since instating Title IX of the Education Amendments of 1972, there has been a significant 
increase in sports participation and athletic opportunities among women (1). While it is still 
more common for younger than older women to engage in athletic competition, the 
participation of older women is growing, with over 50 countries sponsoring master athletes 
events (2). While aging is associated with a decrease in metabolic and physiologic function, 
competitive athletic women may experience more gradual declines. These declines can be 
slowed further, by combining adequate dietary intake with proper exercise training. 
Therefore, this chapter will 1) discuss how aging influences physiologic and metabolic 
adaptations of highly trained women athletes and 2) explore how nutrition 
recommendations may change with exercise and the possible benefit of supplementation of 
micronutrients to improve athletic performance.  

2. Aging and physiological adaptations of women athletes 

2.1 Endurance performance 
Many master athletes are capable of performances equal to those of non-elite young athletes 
(3). Nevertheless, age-related alteration to functional and physiological capacities are 
inescapable and as a result these age-related alteration lead to a decline in performances. It is 
widely accepted that aerobic capacity decreases with age. The rate of decline in maximal 
oxygen consumption (VO2max) varies between 5-9% per decade starting at the age of ~35 
years in healthy sedentary adults (4, 5, 6). Several studies report a greater rate of decline with 
age in endurance-trained men and women (7, 8). Running performances decrease in a 
curvilinear fashion with the greatest decline after 60 years of age with women demonstrating a 
threefold greater decrease in performance compared to men (8, 9). Marcell et al. (10) provided 
evidence that a decline in VO2max is the best predictor of age-related changes in endurance 
performances in female athletes. Elite endurance performances are attributed to three primary 
determinants: aerobic capacity, lactate threshold, and exercise economy.  
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2.2 Aerobic capacity 
A high VO2max is an identifiable marker for a successful endurance athlete. Observed 
VO2max in elite male endurance athletes can measure between 75 and 85 ml/kg/min; 
whereas; VO2max is approximately 10% lower in elite women athletes (11). VO2max is higher 
in athletes at any age than sedentary women (8, 7, 11). Endurance performance and aerobic 
capacity are strongly related across varying age groups of competitive athletes (9). Aerobic 
capacity, as measured by VO2max is determined by cardiac output and arteriole-venous 
oxygen difference (12). Both cardiac output and arteriole-venous oxygen difference decrease 
with age in endurance athletes (5). Cardiac output is the product of heart rate and stroke 
volume and accounts for approximately 50% of oxygen consumption during exercise (12). 
Heart rate is the primary factor for increases in cardiac output during exercise; whereas stroke 
volume peaks at ~50% of max exercise then levels off or slightly decreases (12). The age-related 
loss in maximal heart rate is between 0.5-1 beat per year (13). Several studies have exhibited 
that habitual exercise status has no effect on the age-associated reductions in maximal heart 
rate (7, 14, 4). With maximal heart rates similar between athletes and non-athletes, the 
principle difference in cardiac output is stroke volume (11). Ogawa et al. (5) observed a greater 
rate of decline in stroke volume in female athletes compared to that observed in sedentary 
controls. The decrease in maximal heart rate, stroke volume, and arteriole-venous oxygen 
difference contributes to the decline in master athletes’ endurance performances. 

2.3 Lactate threshold 
Lactate threshold is the fraction of VO2max where there is a significant increase in blood 

lactate accumulation (12). Lactate threshold is a primary factor in determining endurance 

performances of both men and women (11). In sedentary subjects there is typically a rise 

in blood lactate concentration to ~60% VO2max. In trained athletes this value can be 75–

90% of VO2max (14). A study by Evans et al. (7), showed that lactate threshold as a 

percentage of VO2max did not change with age in female distance runners. This evidence 

coupled with similar findings in male distance runners (15) suggests that a reduction in 

VO2max rather than a reduction in lactate threshold contribute the most to the decline in 

performance with age.  

2.4 Exercise economy 
Exercise economy is the oxygen cost of an endurance performance at a given velocity and can 

vary up to ~ 30-40% among individuals (11). Exercise economy is a predictor of performance 

in a population with similar VO2max (11). Results in male runners suggest that exercise 

economy does not change with age in highly trained endurance runners (15). Older female 

runners have demonstrated a slight change in economy at submax speeds and yet displayed 

no relationship between age and economy at a 10K race pace (7). Therefore, exercise economy 

is unlikely to contribute to the age-related decline in endurance performances.  

2.5 Physiological and training mechanisms for aging declines in VO2 max 
Both central (cardiac output and blood volume) and peripheral (muscle mass and oxygen 
delivery/utilization) factors contribute to the high VO2max demonstrated in elite athletes 
(11). At present, it is still unclear as to the exact cause(s) of the age-related decrease in 
VO2max in master athletes compared to young athletes. Stroke volume is responsible for the 
higher cardiac output in athletes versus healthy sedentary individuals (11). Determinates of 

www.intechopen.com



 
Aging in Women Athletes  

 

133 

stroke volume are cardiac preload, left-ventricular end-diastolic volume, and myocardial 
contractility. Blood volume plays an important role in stroke volume and decreases with 
normal aging in healthy sedentary females. However, total blood volume is maintained in 
older endurance trained female athletes (16). Master athletes demonstrate a larger left 
ventricular mass and left ventricular end-diastolic volume compared to healthy sedentary 
adults (17). Given the benefits of habitual endurance training, it is uncertain how advanced 
age alters stroke volume which would consequently result in a similar decrease in VO2max 
in aging athletes compared to sedentary women. Peripheral adaptations with aging have 
also been suggested to contribute to reductions in VO2max through changes in both oxygen 
delivery and utilization to active skeletal muscles (9). Arteriole-venous oxygen difference 
decreases slightly with age in trained athletes (5). It has been observed that enzyme activity 
and capillarization (expressed per muscle fiber) of skeletal muscle are preserved in older 
male athletes (18). Though muscle characteristics have not been examined in older female 
athletes, the reduced VO2max per kilogram muscle in female athletes is similar to male 
athletes (19). Therefore, it is likely that the age-associated reductions in VO2max are a result 
of oxygen delivery and/or muscle mass.  
Changes in body weight/composition may be a second mechanism for the decline in 
performance with age in athletes. Regardless of age, a decrease in lean body mass and an 
increase in percent body fat may contribute to a decrease in VO2max (6, 19). Endurance trained 
women did not demonstrate the expected relationship between changes in body composition 
and age-related changes in VO2max (4). Male endurance runners who maintained their lean 
body mass also maintained their relative VO2max, whereas the female runners who 
maintained their relative VO2max had the greatest decrease in lean body mass (4). This finding 
suggests that other factors, including the maintenance of training and/or estrogen rather than 
body composition have a greater affect on the female age-related decline of VO2max (4). 
The training stimulus may also play a role in the performance decline with age. With 
advanced age there seems to be a reduction in overall exercise "stimulus" (i.e. intensity, 
duration, and frequency) (5, 9, 14). VO2max is positively associated with training volume 
and as such, the age-related decrease in VO2max is associated with a reduction in training 
volume (14). However, female endurance athletes between the ages 34-78 years who 
maintained or increased their training volume with age, exhibited a similar change in 
VO2max compared to healthy sedentary adults (14). Training stimulus appears to be a key 
determinant in the decline in aerobic capacity with age. Whether the decline in training is a 
result of the aging-process, injury, time, or motivation, has yet to be determined.  
Despite the health benefits achieved through a lifetime of participating in physical activity, it 
seems that diminished performances are an inevitable aspect of aging. The exact mechanism(s) 
for the reduction in performance with age has yet to be determined. The finding that women 
demonstrate a greater rate of decline in performances compared to men could be a result of 
fewer women participating in competitive events as they age (3). However, given that more 
women have been encouraged to participate in sporting events since the induction of Title IX, 
it will be interesting to see whether the gender difference is maintained in the future.  

3. Aging and metabolic adaptations in women athletes 

3.1 Body composition 
Normal aging results in significant changes in body composition with increases in 

abdominal fat and losses of muscle mass. The increase in obesity alters the risks for type 2 
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diabetes, cardiovascular disease, and hypertension, whereas the decline in fat-free mass 

(FFM) may alter energy expenditure and resting metabolic rate. It is interesting to question 

whether the increase in visceral fat and decrease in FFM can be prevented in women 

athletes. Our study of highly trained competitive women athletes aged 18 – 69 years 

indicates that percent body fat by DXA (dual energy x-ray absorptiometry) was lowest in 30 

– 39 year old women athletes (~16% body fat) but was not different in 18 – 69 yr, 40 – 49 yr, 

and >50 yr old athletes (20). Total body fat was low and averaged 21 – 23% in these groups 

and considerably lower than normal BMI age-matched controls who were approximately 30 

- 36% fat. To address whether central fat was different with age in women athletes, we 

measured visceral fat and subcutaneous fat by CT (computed tomography) scans. Visceral 

fat was significantly lower in the youngest athletes (18 – 29 yrs vs. 30 – 39 yrs) and 

significantly lower in the middle-aged than older athletes (Figure 1). Thus, despite the 

finding that athletes prevented gains in total body fat with aging, visceral fat increased with 

age in women athletes. However, putting the central obesity in context, it is remarkable that 

the oldest athletes have similar visceral fat and lower subcutaneous abdominal fat than 

normal BMI control women who were one-third their age. Lastly, FFM was not significantly 

different among the women athlete groups suggesting that muscle mass was maintained 

with aging and may be, in part, explained by the competitive training of these women.  

 

 

Fig. 1. Visceral adipose tissue (VAT) of women athletes and controls. Values are means ± SE. 
* P< 0.01  

There are only a few other studies besides our own that have examined body composition in 
older women athletes. In agreement with our study, FFM did not differ between pre- and 
post-menopausal women runners (21). However, in contrast to our results, postmenopausal 
women athletes had higher % body fat and fat mass than the premenopausal athletes (21) 
but these differences were modest. More specifically, the difference was less than half that of 
the comparison between the healthy sedentary premenopausal and postmenopausal 
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women. In comparison to sedentary controls, the athletes had lower % body fat, fat mass, 
waist circumference and trunk fat. Their results suggest that women who engage in 
vigorous exercise have a much smaller increase in total adiposity with advancing age (21). 
Two more studies (7, 22) provide some contrast as to whether age-related changes in body 
fat occur in women athletes. When female runners are divided into three age groups (e.g. 
23-35, 37-47, 49-56 years), percent body fat by hydrostatic weighing did not differ by age and 
averaged 15, 14, and 18%, respectively (7). Across a continuum of age (40-77 years), body fat 
measured by hydrostatic weighing increased with age in women athletes, the majority of 
whom (90%) competed in running events (22). Thus, athletes have less total and central 
body fat than sedentary women (21, 23) and the vigorous training of master athletes may 
prevent an increase in total adiposity (7, 21).  
Menstrual dysfunction in athletes could potentially alter body composition in young 

women. Young rowers with menstrual disorders have less subcutaneous and visceral fat by 

MRI compared to young controls (23). We are unaware of any studies in women athletes in 

the perimenopausal state. Further investigation is necessary to investigate whether the 

changes in hormonal status as women athletes age and go through menopause, influence 

body composition. 

3.2 Glucose metabolism 
There are two studies examining glucose metabolism in women athletes (24, 25) with one in 

older women athletes. We utilized a sequential clamp procedure which allowed the 

assessment of both ß-cell sensitivity to glucose and peripheral tissue sensitivity to insulin in 

a single session in young, middle-aged and older female athletes (25). Plasma insulin 

responses during the hyperglycemic clamp were reduced in older athletes vs. older controls 

and ß-cell sensitivity was maintained across the age span. First and second phase insulin 

response was positively correlated with body fat and negatively with VO2max suggesting 

that high levels of training and low body fat in women athletes across the age span predict 

insulin action. Rates of utilization (Rd) of glucose during the euglycemic portion of the 

clamp were significantly higher in athletes than controls and were not different across the 

age groups of athletes (Figure 2). Although some studies show a difference in insulin 

clearance rate with age (26), we showed that insulin clearance rate was similar across the age 

of 18 to 70 years in women athletes. Thus, older sedentary women had a 70% greater first-

phase and 103% greater second-phase insulin response during hyperglycemia than the 

athletes. Moreover, older athletes utilized on average 31% more glucose than similarly aged 

sedentary women, suggesting an increase in insulin sensitivity due to the effects of training. 

Investigators have examined the relationships between insulin sensitivity, body composition, 

fitness, and muscle and metabolic predictors. In younger women athletes (age 29 yrs), insulin 

sensitivity determined by the frequently sampled intravenous glucose tolerance test (FSIGT) 

was weakly correlated with VO2max and proportion of type 1 muscle fibers but not with 

percent body fat, fasting respiratory exchange ratio (RER) or RER during exercise, energy 

intake, macronutrient composition, and muscle triglyceride and glycogen content (24). In 

women athletes aged 18-69 years, we showed that percent body fat is associated with first-

phase insulin release, whereas visceral fat and total body percent fat predict second-phase 

insulin release during hyperglycemic clamps (25). In addition, glucose uptake during the last 

hour of a hyperinsulinemic-euglycemic clamp was positively associated with FFM and 

VO2max, negatively associated with total fat mass, visceral fat, and subcutaneous abdominal 
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fat (25). Thus, greater physical fitness and muscle mass and lower total and abdominal fat 

contribute to the enhanced tissue sensitivity observed in female athletes. 

 

 

Fig. 2. Rate of utilization (Rd) of glucose during the 3-step clamp in 40- to 50 yr-old athletes 
and controls. Values are means ± SE. * P< 0.005  

3.3 Cardiovascular risk factors 
Lipid profiles are generally better in endurance trained athletes than sedentary 
individuals (27, 28). What occurs with aging in athletes with respect to lipid levels?  We 
showed that total cholesterol, LDL-C (low density lipoprotein cholesterol) and 
triglyceride levels increased with age in women athletes (27). These relationships 
persisted even after adjusting for age-related declines in VO2max and increases in visceral 
fat. HDL-C (high density lipoprotein cholesterol) was higher in athletes than controls and 
LDL-C was lower in athletes than sedentary women. Regarding the lipoprotein 
subfractions, we also demonstrated that LDL3-C (larger LDL-C subfraction) was lower in 
athletes than untrained women and there was a tendency for a higher HDL5-C (the largest 
HDL-C subfraction) which would suggest a protective effect. Middle-aged women (n 
=147) who were grouped into active ex-athletes, sedentary ex-athletes, recreational 
exercisers, and non-exercisers did not differ in TG (triglycerides) and HDL-C (29). In 
another study, HDL-C was higher in master athletes than older sedentary women but 
LDL-C did not differ (28). These lipid differences suggest that women athletes would 
have a lower risk of coronary heart disease. 
Intensity or the level of exercise may influence lipoprotein lipid levels. Williams (30) utilized 
a national survey of ~1800 female recreational runners to examine the dose-response 
relationship between exercise levels and HDL-C and CVD risk factors. The women were 
divided into groups based on weekly running mileage and were on average 40 years of age. 
Lipid levels were obtained from medical records. The results of the survey indicated that 
women who ran more than 64 km/week had significantly higher HDL-C levels than women 
who ran less than 48 km/week. Further analysis revealed that plasma HDL-C was 0.133 
mg/dl higher for every additional kilometer run per week. The results suggest that women 
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who exercise at greater levels have significantly greater increases in HDL-C which in turn 
reduced their risk for CVD (30).  
Other cardiovascular risk and metabolic parameters have been examined in older athletes. 

Women athletes (n=94) between 13 and 77 years of age showed some cardiovascular risk 

factors, including hypertension that were prevalent in athletes over the age of 35 (31). In a 

small sample of women master athletes (n=6), coronary artery calcium which is linked to 

endothelial dysfunction (32) was not significantly different than age-matched sedentary 

women (28). In another study that also contained only six females, older endurance trained 

athletes with pre-hypertension had lower arterial stiffness than sedentary controls and 

longer travel time of pressure waves (33). In addition, the greater augmented pressure in the 

athletes which disappeared after controlling for resting heart rate may have contributed to 

the lack of difference in carotid SBP (systolic blood pressure) and carotid intima-media 

thickness. The authors suggest that the vascular stiffening with pre-hypertension can be 

modified by chronic exercise training but that chronic training is unable to compensate for 

age-associated increases in pressure from wave reflections (33).    

4. Nutrition recommendations in women athletes 

4.1 Energy and macronutrients 
Most athletes strive to achieve energy balance where energy intake = energy expenditure 

during exercise training. Energy expenditure (EE) consists of 3 components: basal metabolic 

rate, thermic effect of activity, and the thermic effect of food. These generally account for 60-

70%, 25-35%, and 5-10%, respectively, of total daily energy expenditure, but can be greatly 

altered by the type, intensity, and duration of exercise. 

Typically, energy requirements decline with age; however, debate exists whether these 

declines are due only to decreases in physical activity patterns or if there is also an 

accompanying decline in basal metabolic rate. This information is difficult to obtain because 

environmental factors, such as work schedules and family obligations, often make 

maintaining vigorous intensity training difficult for older athletes. However, in older adults, 

matched for exercise volume, compared to younger adults, RMR is not different (34). This 

one study would suggest that the decline in RMR does not occur in older adults who 

maintain their exercise volume. Lean mass is the greatest determinant of basal metabolic 

rate, accounting for up to 75-80% of energy expenditure. In our study of women athletes, 

age and FFM were independent predictors of the decline in RMR where the oldest athletes 

expended approximated 965 kJ/day less than the youngest athletes (20). In middle aged 

women with similar BMI and fat-free mass, habitual exercisers (9 hours per week of physical 

activity for 10 or more years) have greater RMR than their sedentary counterparts (35).  

In women athletes, decreased energy intake can result in declines in body weight, muscle 

mass and bone density, as well as increased menstrual dysfunction, fatigue, injury and 

illness. Maintaining or gaining body weight is often difficult for athletes performing large 

volumes of physical activity. A popular trend is for athletes to consume only extra protein 

which may promote greater WL, (weight loss) by increasing EE through thermogenesis (36). 

Ideally, extra energy should come from a combination of all three macronutrients. Caloric 

intake recommendations are often based upon prediction equations, which multiply a 

predicted resting metabolic rate by a physical activity factor, and the athlete’s goal to 

maintain, gain, or lose weight. 
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While numerous studies exist examining the macronutrient requirement of athletes, a 
variety of variables (i.e. sport type, training status) affect nutritional requirements, resulting 
in broad recommendations. Current recommendations for a trained women include 45-65% 
(5-7 g/kg/d for general training, 7-10 g/kg/d for endurance athletes, and 11+g/kg/d for 
ultraendurance athletes) of energy from carbohydrates, 20-35% (~1 g/d) from fat, for 
general training, and 10-35% (1.2-1.4 g/kg/d for endurance trained and 1.6-1.7 g/kg/d for 
strength trained athletes) from protein (37). For all athletes, carbohydrates are 
recommended to make up the majority of energy intake, with an emphasis on whole grains, 
fruits, and vegetables. A diet high in carbohydrates typically results in adequate total 
protein intake, but may be lacking some of the essential amino acids, as well as intake of 
essential fatty acids and fat soluble vitamins and minerals.  
Meal timing and nutrient composition recommendations surrounding athletic competition 

recommendations are based upon substrate utilization. Exercise intensity and duration 

drive these recommendations. For lower intensity activities (performed at ~25% of VO2max), 

circulating fat provides the majority of energy during exercise. At moderate intensity 

(performed at ~65% VO2max), fat oxidation contributes less and energy is mainly supplied 

from intramuscular stores of fat and glycogen. During high intensity exercise (performed at 

~85% VO2max), glycogen is the major energy source. At lower intensities where fat oxidation 

is providing the dominate source of energy, exercise can be sustained for up to a few hours; 

however, as intensity increases and requirements switch to glycogen, the ability to perform 

physical activities decline without carbohydrate repletion. Few studies have examined how 

macronutrient needs of women are altered by age; therefore, current macronutrient 

recommendations are similar between older and younger women athletes. During 

endurance based activities, depletion of plasma and muscle glycogen results in reduced 

exercise performance and fatigue. Prior to endurance exercise, it is recommended that 1 

g/kg of carbohydrates be consumed for each hour prior to exercise (i.e. 1 g/kg if 1 hour 

prior and 4 g/kg if 4 hours prior) (37). Also, the meal should be low in fat and fiber and 

moderate in protein to facilitate gastric emptying and minimize gastrointestinal distress. 

During exercise, 30-60 g should be consumed every hour. If longer than 90 minutes, 6-20 g 

of protein should also be consumed during exercise and 1.5 g/kg carbohydrates with a 

small amount of protein immediately following exercise, with an additional 1.5 g/kg of 

carbohydrates consumed 2 hours later (37). Ensuring adequate fat intake during aerobic 

training is important since fat oxidation results in sparing of glycogen. Very low fat diets 

reduce intramuscular fat stores, impeding endurance. For strength based activities, protein 

intake has been suggested to maximize muscle synthesis by enhance amino acid uptake into 

skeletal muscle, providing substrate for hypertrophy if consumed immediate after the 

strength training bout. However, protein intake greater than 1.7-1.8 g/kg/d results in 

oxidation of the excess amino acids and is not incorporation into greater muscle mass, even 

when coupled with vigorous resistance training (38).  

4.2 Micronutrients 
Exercise and micronutrient activity work synergistically to ensure maximal performance of 
the body; therefore, if micronutrient deficiencies exist, there is a subsequent risk for declines 
in metabolic and physical function. Studies of dietary intake in women endurance athletes 
shown low intakes of calcium, vitamin D, vitamin E and zinc (39, 40). However, numerous 
other nutrients should be monitored for insufficient intake in women master athletes, 
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including B12, folate, riboflavin, pyridoxine, and magnesium (41). Additionally, the Dietary 
Reference Intakes (DRIs) acknowledge a decreased need for iron in older  
women (http://www.iom.edu/Activities/Nutrition/ SummaryDRIs.pdf). Because specific 
recommendation regarding micronutrient intake for older women have not been 
established, women athletes should consume at least the recommended dietary allowance 
(RDA) for all micronutrients to avoid nutrient deficiencies. In female master athletes 
partaking in nutritional supplementation, the supplemented group had significantly greater 
intakes of calcium, magnesium, vitamin C, and vitamin E than non supplemented women, 
indicating that female master athletes may rely on supplements to assist achieving 
micronutrient intake goals (40). If women consume a variety of foods in their diets and meet 
caloric requirements, vitamin and mineral supplementation typically is not necessary. 
Women greater than 60 years of age may want to consider a synthetic form of vitamin D and 
B12 because of altered absorption and nutrient action occurring with age. If a nutrient-
balanced diet is not consumed, athletes should consider taking a multivitamin and mineral 
supplement. Too little data exists to recommend micronutrient supplementation above the 
RDA to improve athletic performance. 
Free radicals produce oxidative damage during aging, as well as following strenuous 

exercise. During an intense endurance competition, master athletes experience elevations in 

reactive oxygen metabolites and biological antioxidant potentials, which continue at least 48 

hours after completion of competition (43). Antioxidant supplementation may improve 

athletic performance, recovery time, and overall health by reducing oxidative damage. In 

endurance trained master athletes supplemented with antioxidants 21 days prior to intense 

cycling, antioxidant supplementation resulted in improved cycling efficiency (44). 

Unfortunately, most over the counter antioxidant supplements are not regulated by the 

FDA, and are not subject to thorough safety and effectiveness tests. One should heed 

caution not to consume vitamin intakes beyond the recommended upper limit (i.e. 2,000 mg 

for vitamin C and 1,000 mg for vitamin E). 

The injury rate for master athletes is higher than younger athletes, making a balanced 

dietary intake especially important to support tissue healing (45). Ensuring adequate protein 

intake is important during all phases of tissue repair. Insufficient protein intake can inhibit 

wound healing and increase inflammation (46). It appears that several amino acids, 

including leucine, arginine, and glutamine, play a role in tissue repair mainly through 

amelioration of muscle atrophy (47) and/or stimulation of collagen formation (48). Current 

recommendations do not include supplementing with a specific amino acid as limited 

research exists research exists. While it is possible to consume all essential amino acids from 

plant based sources, it is easier to consume the essential amino acids from animal based 

protein sources. Omega-3 fatty acids modulate inflammation, resulting in reduced wound 

healing time (49). Unless the athlete encounters excessive inflammation following an injury, 

supplementation is not necessary. A diet high in omega-3 rich foods, such as salmon, 

walnuts, and flaxseeds would be effective. Several micronutrients also act to enhance tissue 

healing. For example, vitamin A is required for epithelial and bone formation, cellular 

differentiation, and immune function, vitamin C for collagen formation, proper immune 

function, and as a tissue antioxidant. Vitamin E is the major lipid-soluble antioxidant in the 

skin (50). Although not enough information exists to warrant supplementation to promote 

wound healing above RDA recommendations, nutritional intake should be assessed to 

ensure recommended dietary intake of all micronutrients.  
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4.3 Fluid 
Dehydration can have serious health consequences to all athletes, but older athletes are 

more susceptible than younger ones. During periods of heat stress, older individuals 

typically respond with attenuated sweat gland output, decreased skin blood flow, reduced 

cardiac outputs, and smaller distribution of blood flow from the splanchnic and renal 

circulation (51). Kenney et al. (52) compared the effects of fluid restriction while exercising 

under different environmental stimuli in older versus younger women. They found that the 

percent decrease in sweat rate and plasma volume is greater in older versus younger 

women, indicating that older women have a greater propensity to develop dehydration 

associated with lack of fluid replacement. Additionally, older individuals are more likely to 

have altered thirst and kidney function placing them at increased risk for consequences of 

dehydration. However, if older women athletes are well conditioned and acclimatized to 

exercising in warm environments, a tolerance to heat stress can be developed. Athletes 

should drink 16 oz of fluid 30-40 minutes prior to exercise to ensure enough time to 

optimize hydration status and excrete excess fluid (37). During exercise, athletes should 

attempt to match their sweat rate with fluids following the guideline to consume 6-12 fl oz 

every 15-20 minutes (37). Sports drinks containing 6% to 8% carbohydrates and electrolytes 

are recommended for events lasting greater than 1 hour (41). One needs to compare post 

exercise weight to pre exercise weight and replace 16-24 fl oz of a fluid for every 0.5 kg of 

weight lost during exercise. This should supply ample fluid for rehydration following 

exercise (41). Additionally, consuming foods with high water content will aid rehydration 

following exercise.  

Prior to and during exercise, nutrition intake should be aimed at maintaining hydration, 

while providing carbohydrates to maintain blood glucose concentrations during exercise. 

After exercise, meals should provide adequate fluids, electrolytes, energy, protein, and 

carbohydrates to replace nutrients lost during exercise and promote recovery. More research 

is needed before nutritional supplementation to improve performance, promote tissue 

healing, and optimize aging are recommended to women master athletes. However, 

encouraging a varied diet with balanced energy intake will help to ensure adequate macro- 

and micronutrient intakes.  

5. Summary 

Competitive athletic women may experience successful aging. Older trained women athletes 

can have a 30-50% higher VO2max than sedentary women but may have a greater  

age-related decline per decade than the normal population. Factors such as a decrease in 

cardiac output due to a decrease in maximal heart rate and stroke volume, altered 

pulmonary function, changes in arteriole compliance, and a decrease and change in skeletal 

muscle fibers  may play a role in the age associated decrease in aerobic capacity in the 

normal population as well as in athletes. Women athletes also confer a favorable body 

composition coincident with enhanced glucose and lipid metabolism. Highly trained 

women athletes maintain a low percentage of total and central body fat compared to healthy 

sedentary women. The reduced body fat and maintenance of muscle mass may contribute to 

enhanced glucose uptake and insulin action observed in highly trained women athletes. 

Proper nutrition is essential for maximizing athletic performance and general health in older 

women athletes. Specific needs are highly individualized and depend upon the athlete’s 
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mode of exercise, stage of training, and recovery time, as well as the intensity, duration, and 

frequency of each exercise session. Athletes may want to consider taking a multivitamin  

and mineral supplement, pay attention to fluid requirements and consume a nutrient-

balanced diet.  
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