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Chloroplast Photorelocation Movement:  
A Sophisticated Strategy for Chloroplasts  

to Perform Efficient Photosynthesis 

Noriyuki Suetsugu and Masamitsu Wada 
Kyushu University 

Japan 

1. Introduction 

Chloroplasts move to weak light so that they can perceive light efficiently (the accumulation 
response), whereas they escape from strong light to avoid photodamage (the avoidance 
response) (Fig. 1).  
 

 

Fig. 1. Typical intracellular distribution pattern of chloroplasts by their photorelocation 
movement. In darkness, chloroplasts are located on the cell bottom in Arabidopsis thaliana. 
Note that the dark position varies among plant species. Weak light induces the chloroplast 
accumulation response along the peliclinal walls so that chloroplasts can perceive light 
efficiently. Strong light induces the chloroplast avoidance response toward the anticlinal 
walls to reduce photodamage. 

The phototropin photoreceptor family of proteins, which includes phototropin (phot) and 

neochrome (neo), mediate chloroplast photorelocation movement in green plants (reviewed 
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by Suetsugu & Wada, 2007b, 2009). Phot mediates blue-light-induced chloroplast movement 

in most green plant species, and neo mediates red-light-induced chloroplast movement in 

ferns and some green alga (reviewed by Suetsugu & Wada, 2005, 2007a). Like other plant 

organelle movement responses, chloroplast photorelocation movement depends on actin 

filaments (reviewed by Wada & Suetsugu, 2004). Detailed physiological and photobiological 

analyses revealed that chloroplasts could move in any direction without turning or rolling 

within a short lag time during both the accumulation and the avoidance responses (Tsuboi 

et al., 2009; Tsuboi & Wada, 2011a). This fact argued that chloroplasts move by utilizing 

preexisting actin filaments and myosins. However, recent detailed microscopic analyses in 

the flowering plant A. thaliana (Kadota et al., 2009), the fern Adiantum capillus-veneris (Tsuboi 

& Wada, 2011b) and the moss Physcomitrella patens (Yamashita et al., 2011) have revealed 

that short actin filaments around the periphery of chloroplasts (called as cp-actin filaments) 

but not cytoplasmic actin cables are involved in chloroplast photorelocation movement and 

in the attachment to the plasma membrane (Fig. 2). Furthermore, chloroplast 

photorelocation movement was normal in all of the examined multiple-myosin knockout 

plants and even in myosin mutant plants severely defective in movements of the 

mitochondria, Golgi bodies, peroxisomes, endoplasmic reticulum and cytoplasm (Suetsugu 

et al., 2010b). Molecular genetic analyses using A. thaliana are of a great benefit to the study 

of chloroplast movement. First, various molecular factors that regulate cp-actin filament 

generation and reorganization during chloroplast movement can be identified (Fig. 3). Two 

phototropins, phot1 and phot2, mediate chloroplast photorelocation movement (Jarillo et al., 

2001; Kagawa et al., 2001; Sakai et al., 2001) by reorganizing cp-actin filaments (Kadota et al., 

2009, Ichikawa et al., 2011). Two interacting coiled-coil proteins, WEB1 (weak chloroplast 

movement under blue light 1) and PMI2 (plastid movement impaired 2), regulate the 

velocity of chloroplast movement via light-induced cp-actin filament reorganization, 

possibly by suppressing JAC1 (J-domain protein required for chloroplast accumulation 

response 1) (Kodama et al., 2010, 2011; Luesse et al., 2006; Suetsugu et al., 2005a). A 

chloroplast outer envelope protein, CHUP1 (chloroplast unusual positioning 1), and two 

kinesin-like proteins, KAC1 (kinesin-like protein for actin-based chloroplast movement 1) 

and KAC2, are indispensable for cp-actin filament formation (Kadota et al., 2009; Oikawa et 

al., 2003; Suetsugu et al., 2010a). CHUP1 and KAC1 showed in vitro F-actin binding activity, 

and CHUP1 also interacted with G-actin and profilin in vitro (Oikawa et al., 2003; Schmidt 

von Braun & Schleiff, 2008; Suetsugu et al., 2010a), suggesting the direct involvement of 

these proteins in cp-actin filament generation and regulation. Most of these components are 

highly conserved in land plants from bryophytes to angiosperms (reviewed by Suetsugu et 

al., 2010b), suggesting that cp-actin filament-mediated chloroplast movement may facilitate 

the explosive evolution of land plants when in a fluctuating, ambient light environment. 

Second, the availability of mutants deficient in chloroplast movement encouraged us to 

verify a long-standing hypothesis that chloroplast movement is required for efficient 

photosynthesis in fluctuating light conditions. Experiments using mutants deficient in 

avoidance movement showed that the avoidance response is necessary for reducing 

photodamage under strong light conditions (Kasahara et al., 2002)(Fig. 4a). Some reports 

have suggested that the avoidance response (i.e. the distribution of chloroplasts on the 

anticlinal walls) affects CO2 diffusion by changing the chloroplast surface that is exposed to 

intercellular air spaces and that the avoidance response in the upper part of the leaf could 
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facilitate leaf photosynthesis by allowing greater light penetration to lower parts within the 

leaf (reviewed by Suetsugu & Wada, 2009) (Fig. 4b & 4c). However, these hypotheses are 

controversial and have not yet been clearly demonstrated experimentally.  

In this chapter, we review three topics of chloroplast photorelocation movement: (i) the 

insights gained from physiological and photobiological analyses, (ii) the molecular 

mechanism and (iii) the contribution to photosynthesis. 

2. From physiological analyses to molecular genetic analyses 

Light-induced chloroplast movement (chloroplast photorelocation movement) has 

fascinated plant biologists since its discovery in the mid-nineteenth century (Böhm, 1856). 

Comprehensive analyses by Gustav Senn (1875-1945) of chloroplast movement in various 

plant species revealed the general responses of chloroplasts to light intensity and direction; 

chloroplasts are distributed at a position that ensures more efficient light absorption under 

weak light conditions, and they are positioned away from strong light, as if they had 

escaped (Senn, 1908). In land plant species, which generally bear multiple small chloroplasts 

in a cell, low light induces chloroplast movement and distribution toward the periclinal 

walls (the accumulation response), whereas strong light induces chloroplast avoidance 

toward the anticlinal walls (the avoidance response) (Fig. 1). Blue light is most effective at 

inducing chloroplast movement in most plant species, but in some cryptogam plant species, 

red light as well as blue light is effective. This red light effect exhibits red/far-red light 

reversibility, suggestive of the involvement of a red/far-red light receptor phytochrome. 

Detailed photobiological analyses, especially by the research groups of Wolfgang Haupt 

(1921-2005) and Jan Zurzycki (1925-1984), have provided many important insights on 

putative photoreceptor molecules that regulate chloroplast movement (Haupt, 1999; 

Zurzycki, 1980). They found that membrane-bound blue light photoreceptors other than 

phytochrome mediate blue-light-induced chloroplast movement in most plant species and 

that membrane-bound phytochromes mediate red-light induced chloroplast movement in 

some cryptogam plants. These predictions were demonstrated by the recent identification of 

photoreceptor genes in various plant species. The blue light receptor phot mediates blue-

light-induced chloroplast movement in various plant species (Jarillo et al., 2001; Kagawa et 

al., 2001, 2004; Kasahara et al., 2004; Sakai et al., 2001). Neo, the chimeric photoreceptor that 

is a fusion of phytochrome and phototropin, regulates red-light-induced chloroplast 

movement in ferns and some green alga (Kawai et al., 2003; Suetsugu et al., 2005b). The 

photoreceptors are not discussed here; for a comprehensive review, see Suetsugu & Wada, 

2005, 2007a, 2007b, 2009. First, we show our attempts to elucidate the mechanism of 

chloroplast photorelocation movement by detailed photobiological analyses. Second, we 

review recent molecular biological analyses of chloroplast photorelocation movement. 

Finally, the contribution of chloroplast movement and positioning to photosynthesis is 

discussed. 

2.1 Elucidation of the mechanism of chloroplast photorelocation movement by 
detailed photobiological analyses 

The underlying processes of chloroplast photorelocation movement can be categorized into 
three parts: photoperception, signal transduction and the motility system. Most of the 
photobiological analyses of chloroplast photorelocation movement were performed to 
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identify the photoreceptor molecules (reviewed by Haupt, 1999; Zurzycki, 1980; Wada et al., 
1993). Many pharmacological (i.e. treatment with chemicals and inhibitors) and microscopic 
(i.e. staining of the cytoskeleton) analyses have provided valuable insights, such as the 
possible involvement of calcium ions in the signal transduction pathway and the actin 
filament-dependency of the motility system (reviewed by Suetsugu & Wada, 2007b, 2009). 
However, the data from pharmacological treatment and microscopic observation of fixed 
samples should be carefully considered because of possible artifactual results. Thus, we 
decided to analyze chloroplast relocation movement using detailed physiological and 
photobiological analyses of the gametophytic cells of a fern A. capillus-veneris as a model 
system (reviewed by Wada, 2007). By changing light conditions, we can easily obtain two 
types of gametophytes: a filamentous protonemal cell or a two-dimensional prothallus, 
which is a cell sheet made of a one-cell layer. This fern regulates chloroplast movement by 
utilizing phot family proteins and actin filaments, like A. thaliana (Kadota & Wada, 1992; 
Kagawa et al., 2004; Tsuboi & Wada, 2011b). Using a microbeam irradiation system, we 
analyzed chloroplast photorelocation movement in protonemal and phothallial cells and 
elucidated several aspects of chloroplast movement, especially putative signaling molecules 
and movement.  

2.1.1 Physiological properties of putative signals in chloroplast photorelocation 
movement 

Blue light mediates the influx of calcium ions (Ca2+) into the cytosol and this influx is 

dependent upon phots in A. thaliana and P. patens (reviewed by Harada & Shimazaki, 2007). 

Importantly, a Ca2+ chelator inhibited chloroplast movement and external Ca2+ ions and 

Ca2+ ionophores changed the distribution of chloroplasts when placed in darkness 

(reviewed by Suetsugu & Wada, 2009). However, plasma membrane Ca2+ channel blockers, 

which effectively inhibited phot-dependent blue light-mediated Ca2+ influx (reviewed by 

Harada & Shimazaki, 2007), were totally ineffective in suppressing chloroplast 

photorelocation movement in various plant species (reviewed by Suetsugu & Wada, 2009). 

Thus, the putative signals that control chloroplast movement remain to be determined. To 

characterize the properties of these putative signals, chloroplast photorelocation movement 

was induced by partial cell irradiation with a microbeam irradiator and analyzed in detail 

(Kagawa & Wada, 1999, 2000; Tsuboi & Wada, 2010a, b).  

An open question was whether the signals were different between the accumulation and 

avoidance responses. When a dark-adapted cell of an A. capillus-veneris prothallus (Kagawa 

& Wada, 1999) and an A. thaliana leaf (Kagawa & Wada, 2000) (in this situation, a few 

chloroplasts were on the upper periclinal walls) were partially irradiated with strong blue 

light, chloroplasts moved to the irradiated area but could not enter the beam area. 

Immediately after the light was turned off, the chloroplasts moved into the formerly 

irradiated area. Similar responses were also found in filamentous protonemal cells in A. 

capillus-veneris (Yatsuhashi et al., 1985) and P. patens (Kadota et al., 2000; Sato et al., 2001). 

These results suggested several characteristics of putative signals (reviewed by Suetsugu & 

Wada, 2009): (i) Signals for both the accumulation and the avoidance responses are 

simultaneously generated by strong light. (ii) Signals for the avoidance response function 

only at the irradiated area whereas those for the accumulation response can be transferred 

toward chloroplasts when located far from the irradiated area. (iii) Signals for the avoidance 

response disappear immediately after the light is turned off, whereas those for the 
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accumulation response are long-lived. (iv) Signals for the avoidance response can be 

override those for the accumulation response, at least in the irradiated area. Alternatively, it 

is possible that the signals for the avoidance response can be generated only when 

chloroplasts are directly irradiated with strong light. In this case, it is likely that the 

photoreceptor is localized on chloroplasts or that a plasma membrane-localized receptor 

generates the signals only when it exists in close proximity to the chloroplasts.  

However, it is clear that the signals for the accumulation response are generated by the 

activation of photoreceptors in the irradiated area and are subsequently transferred toward 

chloroplasts. If measuring the speed of signal transfer for the accumulation response were 

possible, we could guess as to what is the putative signal by comparing the speeds between 

the putative signal and the known signaling molecules. When the chloroplast accumulation 

response was induced by microbeam irradiation in A. capillus-veneris protonemal cells, the 

onset of the accumulation movement lagged in proportion to the increase in the distance 

between the irradiated area and the chloroplasts, suggesting that the speed of the signal can 

be calculated as the lag time before the onset of movement (Tsuboi & Wada, 2010a, b). 

Similar calculations were also performed in A. capillus-veneris prothallial and A. thaliana 

mesophyll cells (Tsuboi & Wada, 2010a, b). These analyses revealed three interesting 

features of the putative signals. First, in protonemal cells, the speed of the signals in the 

basal-to-apical directions (about 2.3-2.4 µm min-1) was about three times faster than that in 

the apical-to-basal direction (about 0.6-0.9 µm min-1). However, the speed of the signals was 

almost equal in each cell type (about 0.9-1.1 µm min-1 in A. capillus-veneris prothallial cells 

and about 0.7 µm min-1 in A. thaliana mesophyll cells) (Tsuboi & Wada, 2010a, b). This 

difference in speed could result from the difference in the cell growth pattern of the cells, i.e. 

polarized (protonemal cells) and diffusive (prothallial and mesophyll cells). Second, in fern 

gametophytic cells, the speed of the signal and the maximum distance over which the 

signals could be transferred were almost equal irrespective of the intensity of the red or blue 

light microbeam, although in this case, more chloroplasts that were located farther away 

responded under continuous irradiation, compared to those submitted to a 1 min pulse of 

irradiation (Tsuboi & Wada, 2010a, b). Interestingly, the velocity of chloroplast 

accumulation movement was constant, regardless of the intensity of the microbeam placed 

on the prothallial cells (Kagawa & Wada, 1996; Tsuboi & Wada, 2011a). These results 

suggested that the properties of the signal, such as the speed, the amount and the activity, 

do not change in proportion to the change of light intensity. However, chloroplasts in the 

protonemal cells accumulated in the area that had been irradiated by a beam with a higher 

fluence rate, compared to adjacent areas that had been irradiated with beam of lower 

fluence rates of blue or red light. This result suggests that the amount or activity of the 

signal was increased when exposed to a beam with a higher fluence rate (Yatsuhashi et al., 

1987; Yatsuhashi, 1996). Third and most importantly, the speed of signals (about 0.6-2.4 µm 

min-1) was much slower than that caused by calcium ion spiking or waves known to occur 

in plant and animal systems (about several µm sec-1 to 100 µm sec-1) (Tsuboi & Wada, 2010a, 

b). Furthermore, the signal transfer must not be actomyosin-dependent because the transfer 

of the signal still occurred when actin filaments were disrupted by treatment with inhibitor 

(Sato et al., 2001). Collectively, although the signals for chloroplast movement remained to 

be determined, our detailed physiological analyses will provide the clue to identify the 

actual signals. 
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2.1.2 An actin-based motility system deduced by detailed observation of chloroplast 
movement  

For a long time, it was believed that the actomyosin system mediated chloroplast 
movement in various species. Many analyses using several kinds of techniques (such as 
inhibitor treatment, immunocytochemistry and observation of the in vivo dynamics of 
actin filaments) clarified the involvement of actin filaments in chloroplast movement in 
various plant species (reviewed by Suetsugu & Wada, 2009; Suetsugu et al., 2010b). 
However, the involvement of myosin motor proteins was still controversial (reviewed by 
Suetsugu et al., 2010b). If the actomyosin system is involved in chloroplast movement, it is 
expected that chloroplasts move along long actin cables that preexist or elongate in the 
direction of movement immediately after light exposure and, thus, that chloroplast 
movement should be polarized (i.e. parallel to actin cables). However, this was not the 
case with chloroplast photorelocation movement at least in A. capillus-veneris prothallial 
and A. thaliana mesophyll cells (Tsuboi & Wada, 2009, 2011a). Importantly, chloroplasts 
moved by sliding but not rolling during both the accumulation and the avoidance 
responses (Tsuboi & Wada, 2009, 2011a), suggesting that chloroplasts moved by attaching 
one side to the plasma membrane via actin filaments that spanned between the 
chloroplasts and the plasma membrane. When observed with a microscope, chloroplasts 
look elliptic (or dumbbell-shaped for dividing chloroplasts) but not completely round. 
Therefore, it is plausible that chloroplasts keep their long axis in parallel with the moving 
direction so that they can take the path of least resistance. If that is the case, then they 
should turn at an angle formed by an imaginary line spanning their long axis and a second 
imaginary line that connects the center of the chloroplast, at the original position, to the 
center of the irradiated area. However, chloroplasts were capable of moving in any direction 
even without turning. Even if chloroplasts turned immediately before or while they moved, 
the extent of their turning was so small (Tsuboi & Wada, 2009, 2011a). Exceptionally, 
chloroplasts of Arabidopsis mesophyll cells tended to adjust their short axis to be parallel 
with the moving direction during the avoidance movement, although they started to move 
without turning (Tsuboi & Wada, 2011a). Importantly, chloroplasts escaped from strong 
light by taking the shortest route, suggesting that they are capable of determining the 
location of the closest area that is out of the strong light (Tsuboi & Wada, 2011a). Moreover, 
when sequentially irradiated with weak or strong light, chloroplasts could change their 
moving direction according to the position of subsequent irradiated beam, with a short lag 
time (Tsuboi & Wada, 2009, 2011a). Collectively, these detailed microscopic analyses argued 
against the hypothesis that chloroplasts utilize of pre-existing actin filaments for 
photomovement and suggested that they move using actin filaments that dynamically 
reorganize in response to light irradiation. 

2.2 Conserved molecular mechanism of chloroplast photorelocation movement in 
land plants 
Generally, blue light is most effective in inducing chloroplast photorelocation movement, 
although red light can also induce the movement in some cryptogam plants (green algae, 
mosses and ferns). Phot is the blue light receptor for chloroplast movement and also 
mediates phototropism and stomatal opening (reviewed by Christie, 2007). Phototropins 
were identified in green plants, from green alga to seed plants, and were shown to regulate 
blue-light-induced chloroplast movement at least in A. thaliana, A. capillus-veneris and  
P. patens (reviewed by Suetsugu & Wada, 2005, 2007a, 2007b, 2009). Red-light-induced 
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chloroplast movement is mediated by neo in several ferns and probably in some green algae 
(reviewed by Suetsugu & Wada, 2005, 2007a, 2007b, 2009). Regardless of significant 
advances in photoreceptor identification, the molecular mechanism of signal transduction 
and the identity of the motility system for chloroplast movement have been obscure. 
However, molecular genetic analyses using A. thaliana have identified several components 
that regulate chloroplast movement. Furthermore, recent imaging analyses have revealed 
that a novel actin-based mechanism governs chloroplast photorelocation and positioning. By 
combining these results, we could imagine the molecular framework of chloroplast 
photorelocation movement. 

2.2.1 Unique actin-based mechanism for chloroplast movement in land plants 

For many years, it was thought that chloroplasts moved along long cytosolic actin cables by 
myosin motor proteins, similar to the movements of other organelles. However, the 
aforementioned studies (Tsuboi & Wada, 2009, 2011a) suggested that chloroplasts could 
utilize an actin-based mechanism that is different from those of other organelles.  
To find the actin-based mechanism for chloroplast movement, we utilized Arabidopsis 

transgenic lines in which actin filaments could be visualized by various fusions of fluorescent 

proteins and actin binding proteins (such as GFP-talin and tdTomato-fimbrin) and analyzed 

the behavior of the actin filaments during chloroplast movement using a custom-made 

microscope and a confocal microscope (Kadota et al., 2009). Although cytoplasmic actin cables 

and filaments were associated with chloroplasts, they did not change much in response to light 

irradiation, and their behavior did not associate with directional chloroplast movement. 

Instead, we found that short actin filaments found around chloroplasts dynamically changed 

their structure in response to light irradiation and that their dynamics correlated with the 

direction and speed of chloroplast movement. We have named these actin filaments 

chloroplast-actin filaments (abbreviated as cp-actin filaments) (Kadota et al., 2009)(Fig. 2). 

When chloroplasts were stationary, cp-actin filaments were distributed around the chloroplast 

periphery. In response to strong blue light, cp-actin filaments transiently disappeared within 

about 30 seconds and then reappeared at the one side of the chloroplasts, which would 

eventually be the front region of the moving chloroplasts (Fig. 2). We called this pattern of 

localization of cp-actin filaments at the front region “biased” (Fig. 2). After biased cp-actin 

filaments were fully formed, chloroplasts moved toward the side where the cp-actin filaments 

accumulated (Kadota et al., 2009). The generation of biased cp-actin filaments was also found 

during the accumulation response that had been induced by weak blue light, but this was not 

accompanied by a transient disappearance of cp-actin filaments, unlike what occurred during 

the avoidance response (Kadota et al., 2009). Thus, the light-induced generation of biased cp-

actin filaments is a prerequisite for both the avoidance and the accumulation responses. 

Possibly, a transient disappearance of cp-actin filaments induced by strong blue light 

facilitated an acceleration of chloroplast avoidance movement. As more cp-actin filaments 

accumulated at the front halves of the chloroplasts, in relation to the rear halves, the velocity of 

chloroplast avoidance also increased. When irradiated with a higher fluence of blue light, even 

more cp-actin filaments accumulated at the front halves, and chloroplasts moved even faster 

(Kadota et al., 2009). Thus, strong light caused a greater difference in the amount of cp-actin 

filaments at certain locations on the chloroplasts because cp-actin filaments located at the rear 

halves of the chloroplasts did not increase after transient disappearance. Conversely, weak 

light could not induce transient disappearance of cp-actin filaments, so a greater difference in 
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the amount of cp-actin filaments at certain locations was not made. Actually, the velocity of 

chloroplast accumulation movement was constant irrespective of light intensity (Kagawa & 

Wada, 1996; Tsuboi & Wada, 2011a). Cp-actin filaments localized at the interface between the 

chloroplast and the plasma membrane, elongated from the edge of the chloroplast and 

shortened toward the chloroplast periphery, suggesting that the nucleation site of cp-actin 

filaments might exist on the chloroplast edge and that the force for chloroplast movement by 

cp-actin filaments might be generated there (Kadota et al., 2009). Cp-actin filaments mediated 

the anchoring of chloroplasts to the plasma membrane as well as their directional movement 

(Kadota et al., 2009). The strong-light-induced disappearance of cp-actin filaments was 

accompanied by increased chloroplast motility in random directions before avoidance 

movement, suggestive of the detachment of chloroplasts from the plasma membrane. 

Conversely, weak blue light induced the increase of cp-actin filaments around the chloroplast 

periphery and accompanied a decrease in chloroplast motility, likely facilitating chloroplast 

anchoring to the plasma membrane. In summary, there are three types of blue-light-induced 

rearrangements of cp-actin filaments that mediate both directional movement and the 

anchoring of chloroplasts to the plasma membrane: (i) the formation of biased cp-actin 

filaments during both the accumulation and the avoidance responses; (ii) a strong-blue-light-

induced transient disappearance of cp-actin filaments; (iii) a weak-blue-light-induced increase 

in cp-actin filaments. Importantly, cp-actin filament-mediated chloroplast movement is 

conserved in a fern, A. capillus-veneris, and in a moss, P. patens (Tsuboi & Wada, 2011b; 

Yamashita et al., 2011). Thus, the regulation of chloroplast movement by cp-actin filaments 

was likely to be utilized during the early stages of land plant evolution. 

 

 

Fig. 2. Light-induced cp-actin filament reorganization during the chloroplast avoidance 

response. The chloroplast avoidance response was induced by scanning circular regions of 

interest (diameter 15 µm indicated by a shaded circle) with 2.8 mW of a 458 nm laser and 

using a confocal microscope (SP5, Leica). Time-lapse images of chloroplast movement and 

the associated cp-actin filament dynamics were captured at the indicated times (sec). 

Detailed dynamics of the cp-actin filaments of a chloroplast marked with a white circle are 

indicated below. After 40 sec of light irradiation, cp-actin filaments disappeared and then 

reappeared at the front region of the chloroplast, which had moved to the upper left side in 

this figure via the avoidance response. 
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2.2.2 Molecular components regulating the generation and/or reorganization of  
cp-actin filaments  

We identified various Arabidopsis mutants deficient in chloroplast photorelocation 
movement (Kagawa et al., 2001; Kodama et al., 2010; Oikawa et al., 2003; Suetsugu et al., 
2005, 2010a), and thus, the analyses of cp-actin filament behavior in these mutants have shed 
light on the molecular mechanism of cp-actin filament-mediated chloroplast movement 
(Kadota et al., 2009; Kodama et al., 2010; Suetsugu et al., 2010a; Ichikawa et al., 2011)(Fig.3). 
Phototropin is a blue light receptor bearing two photosensory LOV (light, oxygen and 
voltage) domains at its N-terminus and a C-terminal serine/threonine kinase domain 
(reviewed by Christie, 2007). In A. thaliana, phot1 and phot2 redundantly mediated the 
chloroplast accumulation response (Sakai et al., 2001), and phot2 alone regulated the 
avoidance response (Kagawa et al., 2001; Jarillo et al., 2001). In phot1phot2 double mutant 
plants, which are completely defective in chloroplast photorelocation movement (Sakai et 
al., 2001), blue-light-induced cp-actin filament reorganization did not occur, indicating that 
phototropins mediated chloroplast movement via the regulation of cp-actin filaments 
(Kadota et al., 2009; Ichikawa et al., 2011). The phot1phot2 double mutant plants also did not 
change their amounts of cp-actin filaments in response to both weak and strong blue light 
and thus showed no light-induced motility changes (Kadota et al., 2009). This outcome 
indicated that phototropins mediated anchoring of the chloroplast to the plasma membrane 
via regulation of the amounts of cp-actin filaments. The strong-blue-light-induced transient 
disappearance of cp-actin filaments did not occurr at all in phot2 mutant plants, which were 
impaired in the avoidance response. However, they showed normal biased cp-actin filament 
formation during the accumulation response (Kadota et al., 2009; Ichikawa et al., 2011), 
indicating that phot2 mediated the strong-blue-light-induced transient disappearance of cp-
actin filaments (Fig.3) and that this reorganization of cp-actin filaments could be a 
prerequisite for the avoidance response. In phot1 mutant plants, chloroplast photorelocation 
movement was only slightly impaired in the accumulation response (Kagawa & Wada, 
2000), and therefore light-induced reorganization of cp-actin filaments in these plants was 
mostly normal (Kadota et al., 2009). However, in response to strong blue light, the onset of 
biased cp-actin formation and the avoidance movement in phot1 mutants occurred earlier 
than in wild-type plants (Ichikawa et al., 2011), suggesting a small inhibition of cp-actin 
filament reorganization by phot1 during the avoidance movement.  
JAC1 has a J-domain at the C-terminus and is similar to a clathrin uncoating factor, 
auxilin (Suetsugu et al., 2005). The J-domain of JAC1 is necessary for JAC1 function and 
the crystal structure showed high similarity between that domain and that of the bovine 
auxilin J-domain (Takano et al., 2010; Suetsugu et al., 2010c). jac1 mutant plants were 
completely defective in the accumulation response but retain the avoidance response 
(Suetsugu et al., 2005). In response to weak blue light, the reorganization of cp-actin 
filaments did not occur in most chloroplasts of jac1 mutant plants, but a few chloroplasts 
that avoided weak light formed biased cp-actin filaments (Ichikawa et al., 2011), 
indicating that JAC1 is essential for the reorganization of cp-actin filaments during the 
accumulation response but not for biased cp-actin filament formation (Fig. 3). 
Interestingly, in jac1 mutant plants, whole cell irradiation with strong blue light did not 
induce the disappearance and subsequent biased localization of cp-actin filaments and 
thus the avoidance movement did not occur. However, when part of a cell was irradiated, 
chloroplasts that were close to the beam edge showed the avoidance movement with 
biased cp-actin filament formation, although cp-actin filaments on chloroplasts inside the 
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beam did not disappear and their motility did not increase (Ichikawa et al., 2011). These 
results indicate that JAC1 is essential for an efficient chloroplast avoidance response by 
regulating the disappearance of cp-actin filaments (Fig. 3). 
 

 

Fig. 3. A schematic model of cp-actin filament-mediated chloroplast movement. Weak light 
activates both phot1 and phot2, which are localized on the plasma membrane and 
subsequently generate an as yet unidentified signal that initiates the chloroplast 
accumulation response. JAC1 may be involved in signal generation, transport and/or 
perception. The signal activates a cp-actin filament nucleation complex, which is localized at 
the chloroplast edge, resulting in the polymerization of cp-actin filaments at the leading 
edge of the chloroplasts (black arrowheads indicate G-actins). CHUP1 could be the 
nucleation factor, and KAC proteins could be involved in cp-actin filament nucleation 
and/or maintenance. THRUMIN1 may interact with cp-actin filaments because 
THRUMIN1-YFP fusion protein decorated actin filaments in vivo. Strong-light-induced cp-
actin filament disappearance (indicated by broken-lined arrowheads) is mediated by phot2, 
JAC1 and WEB1/PMI2. After disappearance, cp-actin filaments reappeared at the leading 
edge, and the chloroplasts escaped from the strong light.  

Recently, we identified two coiled-coil proteins, WEB1 and PMI2, as factors that regulate 

light-induced cp-actin filament reorganization (Kodama et al., 2010; Luesse et al., 2006). 

WEB1 and PMI2 belong to a coiled-coil protein family that contains a DUF827 (Domain of 

Unknown Function 827) domain (Kodama et al., 2010, 2011). WEB1 and PMI2 interacted 

with each other in yeast and plant cells, and WEB1 showed self-interaction activity, forming 

large complexes in plant cells, indicating that both WEB1 and PMI2 have protein-protein 

interaction activity (Kodama et al., 2010). Both web1 and pmi2 mutant plants showed severe 

defects in the avoidance response and slight defects in the accumulation response. Because 

the phenotypes of web1pmi2 double mutant plants were very similar to those of web1 and 

pmi2 single-mutant plants, it was concluded that WEB1 and PMI2 probably function in the 

same pathway, possibly as a complex (Kodama et al., 2010, 2011). Because these mutants 
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were severely impaired in the strong-light-induced disappearance and subsequent biased 

localization of cp-actin filaments, it was concluded that the mutant phenotypes observed 

were a result of the impairment in cp-actin filament reorganization (Kodama et al., 

2010)(Fig. 3). The defective avoidance response phenotype in these mutants was suppressed 

by a jac1 mutation, suggesting a role for WEB1 and PMI2 in suppressing JAC1 activity, 

which regulates the accumulation response under high light conditions (Kodama et al., 

2010). Given that the strong-light-induced reorganization of cp-actin filaments was severely 

impaired in web1, pmi2 and jac1 mutant plants (Kodama et al., 2010; Ichikawa et al., 2011), it 

is possible that WEB1/PMI2 and JAC1 cooperatively mediate the strong-light-induced 

reorganization of cp-actin filaments, although the detailed molecular mechanism remains to 

be determined.  

Currently, two types of proteins, CHUP1 and KAC (KAC1 and KAC2), were identified as 

the factors necessary for the existence of cp-actin filaments, possibly serving as nucleators 

and/or stabilizers of cp-actin filaments (reviewed by Suetsugu et al., 2010b). CHUP1 is a 

multi-domain protein that bears an N-terminal hydrophobic region, a coiled-coil region, an 

F-actin-binding domain, a proline-rich region and a highly conserved C-terminal region 

(Oikawa et al., 2003). The hydrophobic region is essential for the localization of chloroplast 

outer envelope (Oikawa et al., 2003, 2008; Schmidt von Braun & Schleiff, 2008) and the 

coiled-coil region confer the ability of the protein to dimerize in vitro (Lehmann et al., 2011). 

The actin-binding domain was capable of interacting with F-actin in vitro (Oikawa et al., 

2003), and the proline-rich region might serve as the profilin-interacting domain (Schmidt 

von Braun & Schleiff, 2008). KAC proteins belong to a microtubule motor kinesin-14 

subfamily, but their motor and microtubule-binding activities have not yet been detected 

(Suetsugu et al., 2010a). A subset of KAC proteins was associated with the plasma 

membrane and chloroplast envelope although the bulk of the KAC proteins were found as 

soluble proteins (Suetsugu et al., 2010a). Both chup1 and kac1kac2 double mutant plants 

completely lacked cp-actin filaments but retained the normal cytosolic actin filament 

structure, indicating that the CHUP1 and KAC proteins are essential for cp-actin filament 

formation and/or maintenance (Kadota et al., 2009; Suetsugu et al., 2010a)(Fig. 3). 

Importantly, both mutants showed no chloroplast photorelocation movement and defects in 

the anchoring of chloroplasts to the plasma membrane. This result reinforced the notion that 

cp-actin filaments mediate photorelocation and the anchoring of chloroplasts to the plasma 

membrane. In kac1 single mutant plants, significantly fewer amounts of cp-actin filaments 

were observed, the accumulation response was severely impaired and the velocity of the 

avoidance movement was much slower compared to wild-type plants (Suetsugu et al., 

2010a). Thus, the amount of KAC proteins is an important factor that determines the 

chloroplast velocity by regulating the amounts of cp-actin filaments. 

Although PMI1 and THRUMIN1 were identified through the analyses of mutants deficient 

in chloroplast photorelocation movement (DeBlasio et al., 2005; Whippo et al., 2011), their 

involvement in cp-actin filament regulation is unknown. Because THRUMIN1 has an actin 

bundling activity (Whippo et al., 2011), analyses of mutants deficient in these factors will 

reveal a more detailed framework of cp-actin filament-dependent chloroplast movement. 

Three essential genes for cp-actin filament-mediated chloroplast movement, PHOT, CHUP1 
and KAC, are found in the genome of a liverwort, Marchantia polymorpha, and a moss,  
P. patens. Because cp-actin filament-mediated chloroplast movement is found in P. patens 
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(Yamashita et al., 2011), the molecular mechanism of cp-actin filament-mediated chloroplast 
movement must have evolved early in land plant evolution. 

2.3 Contribution of chloroplast photorelocation movement to photosynthesis 

The intracellular distribution of chloroplasts is essential for the promotion of photosynthetic 
performance. For example, the chloroplast distribution in bundle sheath cells of C4 plants 
may be necessary for efficient C4 photosynthesis because it controlled CO2 diffusion and/or 
facilitated the metabolite exchange between mesophyll and bundle sheath cells (reviewed by 
von Caemmerer & Furbank, 2003). The chloroplast accumulation response could play an 
important role in efficient light capture under weak light conditions, although it has not 
been demonstrated experimentally (Zurzycki, 1955). The avoidance response is required for 
chloroplats to escape from photodamage under excess light conditions (Fig. 4a); however, 
two other hypotheses exist that could also explain the ecological advantages of chloroplast 
distribution on anticlinal walls by the avoidance response (Fig. 4b & 4c).  

2.3.1 Promotion of light penetration to deeper leaf cell layer by the avoidance 
response 

In the leaves of Oxalis, Marah and Cyrtomium, changes in leaf absorptance due to chloroplast 

movement positively correlated with changes in fluorescence emission; in particular, 

changes in fluorescence emissions increased during the avoidance response induced by 

strong blue light, whereas they decreased during subsequent relaxation in red light 

(Brugnoli & Björkman, 1992). Considering that leaves consist of multiple layers of 

photosynthetic cells and that the efficiency of net leaf photosynthesis depends on the 

efficient light utilization of chloroplasts in all cell layers, it is reasonable to conclude that 

chloroplast distribution to anticlinal cell walls, as a result of the avoidance response in the 

upper cell layer (or palisade layer), could facilitate the penetration of the incident light to a 

deeper cell layer (or sponge layer)(Fig. 4b). Light transmittance through the palisade layer 

was greater in high light-irradiated Alocasia leaves than in dark-adapted leaves. However, 

the difference in light transmittance through the spongy layer was not significant between 

high light- and dark-adapted leaves, indicating that chloroplast positioning on the anticlinal 

walls by the avoidance response in the palisade layer could facilitate light penetration to a 

deeper layer (Gorton et al., 1999). In Tradescantia leaves, which consist of three mesophyll 

cell layers (the first is a palisade layer, and the second and third are sponge layers), the 

chloroplasts in the second layer did not move to the anticlinal walls when irradiated with 

strong light of 100 µmol m-2 s-1 from either the adaxial or the abaxial side. However, by 

abaxial-side irradiation, chloroplasts in the third layer were positioned on the anticlinal 

walls by way of the avoidance response (Terashima & Hikosaka, 1995). These results 

suggest that the avoidance response in the surface mesophyll layer facilitates light capture 

in the deeper cell layers, resulting in a net increase of whole leaf photosynthesis. However, 

this hypothetical role of the avoidance movement in the enhancement of light penetration to 

the deeper cell layers has not yet been demonstrated conclusively. 

2.3.2 Influence of the chloroplast avoidance response on CO2 diffusion between air 
spaces and mesophyll cells      

The diffusion path length of CO2 from intercellular air spaces to the chloroplast stroma must 
be short so that mesophyll chloroplasts can efficiently utilize CO2 from those air spaces. 
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Thus, chloroplasts should be located on the cell wall facing air spaces. Mesophyll cell 
chloroplasts tended to be located along intercellular air spaces in various plant species 
(Senn, 1908; Psaras et al., 1996) (Fig. 4c). Senn (1908) hypothesized that this positioning 
might result from the chemotaxis of chloroplasts to the CO2 in air spaces. Using different 
approaches and plant species, three groups examined whether chloroplast photorelocation 
movement, especially the avoidance response, influenced CO2 diffusion in leaves (Gorton et 
al., 2003; Loreto et al., 2009; Tholen et al., 2008). One research group hypothesized that 
chloroplast distribution on the anticlinal walls by the avoidance response facilitated CO2 
utilization by shortening the CO2 diffusion path length from air spaces to the mesophyll 
chloroplasts (Gorton et al., 2003). This group measured oxygen diffusion times using pulsed 
photoacoustics (as a substitution for CO2 diffusion) between control and strong light-
irradiated Alocasia leaf samples, but they could not find any differences in CO2 diffusion 
rates between the two samples (Gorton et al., 2003). Additionally, they could found no 
difference in the distance between the centers of the chloroplasts and the closest air spaces 
between two samples (Gorton et al., 2003). Another group found that blue light rapidly 
reduced CO2 diffusion from intercellular air spaces to the chloroplasts in both Nicotiana and 
Platanus leaves and that this reduction was completed before chloroplasts finished the 
avoidance movement to the aniticlinal walls (Loreto et al., 2009). Importantly, the blue-light-
induced reduction of CO2 diffusion was still normal in samples treated with an anti-actin 
inhibitor cytochalasin, which completely inhibits chloroplast movement (Loreto et al., 2009). 
Thus, results by two independent groups indicated that chloroplast movement did not 
significantly change the efficiency of CO2 diffusion from intercellular air spaces to the 
chloroplasts. However, the results by a third group suggested that the avoidance response 
reduced the CO2 diffusion rate rather than increased it (Tholen et al., 2008). In Arabidopsis 
wild-type plants, the surface area of chloroplasts facing air spaces was reduced after the 
induction of the chloroplast avoidance response and resulted in the reduction of CO2 
diffusion. However, these reductions were not found in phot2 and chup1 mutant plants or in 
cytochalasin-treated plants (Tholen et al., 2008). Compared to wild type, the surface area of 
chloroplasts that faced air spaces and the rate of CO2 diffusion were constitutively lower in 
chup1 mutant plants because of aberrant positioning of their chloroplasts (Tholen et al., 
2008). Collectively, these results suggested that the chloroplast avoidance response was not 
involved in CO2 diffusion or that it possibly decreased, rather than increased, the diffusion 
rate. However, these three groups examined the contribution of chloroplast movement to 
CO2 diffusion using different plant species and techniques: pulsed photoacoustics (Gorton et 
al., 2003), a chlorophyll fluorescence-based method (Loreto et al., 2009) and a carbon isotope 
discrimination method (Tholen et al., 2008). The examination of one plant species using 
different techniques and/or that of various plant species by one technique are required to 
uncover whether chloroplast photorelocation movement influences CO2 diffusion. 

2.3.3 Chloroplast avoidance response is essential for protection against 
photodamage by strong light 

The two aforementioned hypotheses on the roles of the avoidance response are applicable 
only in multilayered leaf tissue and not in gametophytic cells that have single cell layers or 
in the filamentous structures of fern, moss, liverwort and green alga. During the early 
period of land plant evolution, plants were exposed directly to sunlight until seed plants 
eventually dominated terrestrial ecosystems and formed a dense canopy. Thus, it is 
plausible that the main role of the chloroplast avoidance response is to prevent chloroplasts 
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from photodamage caused by strong light (Zurzycki, 1957) (Fig. 4a). Shade plants (such as 
Oxalis oregana and Tradesdantia albiflora) showed a greater avoidance response than that of 
non-shade plants (such as sunflower and pea) (Brugnoli & Björkman, 1992; Park et al., 1996), 
partly explaining why T. albiflora was more tolerant of strong light stress than pea plants 
(Park et al., 1996). Furthermore, cytochalasin-treated Platanus leaves, whose chloroplast 
movements were inhibited by the drug, but not untreated leaves showed a strong inhibition 
of photochemical efficiency (Loreto et al., 2009). Clumping of chloroplasts in succulent 
plants (Kondo et al., 2004) and the aggregative movement of C4 mesophyll chloroplasts 
(Yamada et al., 2009) were induced by drought stress in a light-dependent fashion, and these 
 

 

Fig. 4. Three hypotheses for the ecological significance of the chloroplast avoidance 

response: (a) Protection from photodamage. Chloroplasts escape from strong light and 

distribute along the anticlinal walls so that they do not directly perceive excess light energy, 

which could cause photodamage. As a result, plants can tolerate strong light stress. Mutants 

deficient in the avoidance response, such as Arabidopsis phot2 mutants, cannot survive 

under the strong light conditions because their chloroplasts are directly exposed to 

extremely strong light and are therefore severely damaged and die. (b) Promotion of light 

penetration in leaves. Chloroplasts distributed along the anticlinal walls in the upper cell 

layer facilitate light penetration to deeper cell layers. Consequently, light perception and 

thus photosynthesis in the deeper cell layers increases. (c) Modulation of CO2 diffusion from 

intercellular air spaces to the chloroplast. The chloroplast avoidance response can change 

the total chloroplast surface area facing airspace and thus the efficiency of CO2 diffusion 

from intercellular air spaces to the chloroplast may increase. 
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responses were implicated in the protection from photodamage in plants that inhabit 
tropical and/or dry areas. Experiments using Arabidopsis wild-type and mutant plants 
definitely demonstrated that chloroplast avoidance movement is essential for the protection 
of plants from photodamage by strong light (Kasahara et al., 2002). Leaf transmittance in 
wild type and phot1 mutant plants increased as light intensity was increased to about five-
fold of the initial value (about 500 µmol m-2 s-1 of white light). However, little change in leaf 
transmittance occurred in phot2 and chup1 mutant leaves, even at 2000 µmol m-2 s-1 of white 
light, indicating that phot2 and chup1 mutant plants are defective in the avoidance response 
under a wide range of light intensity. When low-light-acclimated plants were shifted to a 
strong light condition, the leaves of phot2 and chup1 mutant plants were bleached after 10 h 
and were severely necrotic after 22 h. However, wild-type and phot1 plants did not show 
leaf necrosis even after 31 h. When the change in the chlorophyll fluorescence parameter 
Fv/Fm (representing the maximal quantum yield of photosystem II photochemistry) was 
analyzed during strong light treatment, the Fv/Fm value in wild-type and phot1 plants 
steeply declined to about 80% of the initial value within 1 h and then gradually decreased 
and finally reached about 70% of the initial value in 5 h. However, the Fv/Fm values in phot2 
and chup1 mutant plants declined more rapidly than in wild type and consequently reached 
about 50% of the initial value in 5 h. In phot2 mutants, the extent of the decrease of the Fv/Fm 
value after 1 h of light treatment was larger at all examined light intensities than that of 
wild-type plants. Furthermore, the Fv/Fm value in phot2 mutant plants did not fully recover 
after 6 h, whereas the Fv/Fm values in wild-type plants almost fully recovered after 3 h 
under low light. Collectively, these results indicate that phot2 and chup1 mutant plants are 
highly susceptible to strong light stress and their photosystem IIs are much less tolerant of 
light stress resulting in leaf necrosis. Note that phot2 and chup1 mutant plants were normal 
in chlorophyll content, chlorophyll fluorescence parameters, antioxidant contents and the 
activities of reactive oxygen-scavenging enzymes. phot2 mutant plants showed a slight 
defect in stomatal opening (Kinoshita et al., 2001), but this defect was less than that in phot1 
mutant plants and was negligible in the strong light conditions used by Kasahara et al. 
Recently, another research group confirmed that photosystem II of phot2 mutant plants was 
more susceptible to strong light (Sztatelman et al., 2010). Overall, we conclude that 
chloroplast avoidance movement is indispensable for plant survival under strong light 
conditions. 

3. Conclusion  

Although chloroplast photorelocation movement has been extensively studied by many 
researchers, we still cannot accurately explain the molecular mechanism of chloroplast 
photorelocation movement. Some unanswered questions remain: what is the signal for the 
chloroplast accumulation response?; what protein(s) nucleate cp-actin filaments?; and how 
do cp-actin filaments generate the motive force for chloroplast movement? To answer these 
questions, chloroplast movement must be analyzed by combining various approaches: 
physiology, molecular biology, proteomics, crystallography and imaging techniques. 
Chloroplast movement under natural light conditions must also be examined because 
natural light is usually much more severe and always fluctuates, compared to laboratory 
conditions. Because various mutants deficient in chloroplast movement are available, the 
growth of these mutant plants under natural conditions must be analyzed, and the 
ecological significance of chloroplast photorelocation movement must be verified. 
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