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1. Introduction 

In a thermosolar plant, the engineers locate movable mirrors that concentrate solar 
radiation. These plants are designed to maximize energy capture. In green plants, their 
morphology changes to maximize energy capture as well, but also to avoid light in excess, 
which can damage plant tissues. Contrary to mirrors in thermosolar plants, located in desert 
land and organized in regular arrays, most green plants grow surrounded of vegetation and 
their own tissues are not regularly spaced, new leaves tend to shade older leaves. Hence, 
plants need to use light as a source of information in order to properly locate their “sunlight 
collectors” and be able to efficiently use light as an energy source for photosynthesis.  
To monitor environmental light conditions, plants are equipped with several families of 

photoreceptors: the cryptochromes, the phytochromes and the LOV-domain bearing 

photoreceptors. While phytochromes perceive light most effectively in the red/far-red 

region of the spectrum, cryptochromes and LOV photoreceptors detect blue and UV-A light. 

Downstream these photoreceptors, plants have evolved sophisticated transcriptional 

networks that mediate metabolic and developmental changes in response to light. These 

light-regulated processes include seed germination, seedling photomophogenesis, greening, 

shade avoidance, photoperiodic responses and senescence. 

Greening and chloroplast biogenesis are promoted after light exposure. Phytochromes and 

cryptochromes trigger to initiate this biogenesis, which includes the induction of 

photosynthesis-related genes at the transcriptional level, the import of nuclear-encoded 

proteins and the establishment of a thylakoid network fully assembled with photosynthetic 

electron transport complexes. Furthermore, these photoreceptors affect the synthesis of 

chlorophyll and other photosynthetic accessory pigments; modifying the photosynthetic 

apparatus properties as a result of light quality perception. On the other hand, 

phytochromes are also involved in the induction of Rubisco, a key enzyme of the Calvin 

Cycle. Light quality plays an important role in modulating the photosynthetic 

characteristics. It regulates chlorophyll degradation, modulates photosystem stoichiometry 

and the activity of the ROS scavenging system. 

Besides the role in the formation of the photosynthetic apparatus, the photoreceptors play 
significant roles in establishing how the photosynthetic pigments will be exposed to light to 
harvest its energy content. Under weak light, chloroplasts move towards light, in a blue 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

192 

light dependent way, to optimize the light absorption and photosynthesis. However, under 
strong light, chloroplasts show an opposite response to avoid photodamage (Kodama et al., 
2011). Besides chloroplast movement, photoreceptors modulate plant architecture to 
maximize the photosynthetic surface exposed to light. When plants perceive the presence of 
plant neighbours, phytochromes trigger the elongation of the stem and petioles, a series of 
changes known as Shade Avoidance Syndrome (SAS). The manipulation of phytochrome 
levels has been used to improve the harvest index of tobacco plants (Robson et al., 1996) by 
avoiding the diversion of resources to the SAS. However, the phytochromes are still very 
important to position the leaves in the canopy. Thus, manipulation of phytochrome activity 
must be precise, if used to improve crop performance (Maddonni et al., 2002). 
In this chapter, we focus on the role of the photomorphogenic signal to trigger the synthesis 
of photosynthetic genes and pigments during the greening process and later on, during 
photosynthetic plant development, with emphasis on the regulation of gene expression.  

2. Photomorphogenesis   

Plants are sessile organisms, and as such, have evolved a great deal of developmental 
plasticity to optimally respond to the immediate environment. Light is one of the most 
important cues for plant growth; plants respond to its intensity, wavelength, direction and 
periodicity (Franklin & Quail, 2009). The first physiological consequence of light perception 
is the reprogramming of the seedling development in a process termed deetiolation, or 
photomorphogenesis. In darkness, seedlings display a skotomorphogenesis development 
characterised by the following phenotypes: elongated hypocotyl, closed, pale and 
unexpanded cotyledons; the apical hook remains closed to protect the apical meristem 
before emerging from the soil and chlorophyll and anthocyanin biosynthesis do not take 
place. All these features allow the seedlings to grow through a layer of soil and eventually 
emerge into the light.  Once the seedlings perceive sufficient light, they exhibit a 
photomorphogenic development. They undergo deetiolation that includes inhibition of 
hypocotyl elongation, unfolding and greening of cotyledons, opening of the apical hook, 
chlorophyll and anthocyanin biosynthesis and differentiation of chloroplasts; processes 
aimed to achieve full autotrophy. This transition from skotomorphogenic to 
photomorphogenic development is steered by a complex molecular network that includes 
upstream signalling components (photoreceptors) and intermediate factors transducing the 
signal to downstream regulators. These downstream components integrate the light signals 
from the various photoreceptors and bring about changes in metabolism and gene 
expression that eventually lead to photomorphogenesis (Casal et al., 2003).  

2.1 Photomorphogenic photoreceptors 

Light is directly perceived by protein molecules known as photoreceptors. Photoreceptors 
are considered as such if upon photon absorption they are able to deliver a signal to 
downstream components. Because membranes are transparent to light, most photoreceptors 
are cytoplasmic and water soluble, contrary to other type of receptors whose ligands are not 
able to move through membranes.  
The solar spectrum at Earth’s surface extends from UV (about 280 nm) through the blue to 
red/far red (about 750 nm). Because the polypeptide backbone and amino acid side chains 
do not absorb in most of this range, most photoreceptors contain an organic, non-protein 
component, known as the chromophore. Chromophores can be attached either covalently or 
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non-covalently to the apoprotein (Moglich et al., 2010). As explained above, plants possess 
several classes of photoreceptors whose absorption properties match the spectrum of the 
incoming light: the red/far-red photoreversible phytochromes, the UV-A/blue-light 
absorbing cryptochromes, the phototropins, the members of the Zeitlupe family (Moglich et 
al., 2010) and, more recently, a UV-B specific photoreceptor, UVR8, has been added to the 
list (Rizzini et al., 2011). 

2.2 Phytochromes 
2.2.1 Generalities about phytochromes 

Phytochromes are the only red and far-red light photoreceptors in plants (Strasser et al., 
2010; Takano et al., 2009) and, together with cryptochromes and phototropins, constitute one 
of the three mayor regulators of photomorphogenesis (Rockwell et al., 2006). Phytochromes 
are synthesised in the cytosol as soluble dimers composed of two 125-kDa polypeptides. 
Each polypeptide folds into two main domains. The amino-terminal domain covalently 
binds phytochromobilin (PфB), a tetrapyrrole chromophore that confers the spectral 
properties characteristic of phytochromes. PфB is synthesised from haeme in plastids, 

haeme oxygenase encoded by HY1 converts haeme into biliverdin IX, which is reduced to 
3Z-PфB by the PфB synthase (HY2). Then 3Z-PфB isomerises to 3E-PфB and attaches 
covalently to phytochrome (Tanaka & Tanaka, 2007). 
The carboxy-terminal part of the phytochrome molecule is involved in dimerisation and 
transfer of the signal to downstream components (Rockwell et al., 2006). Phytochromes are 
synthesised in the dark in a biologically inactive red-light absorbing form (known as Pr). 
Biological activity is acquired upon red-light triggered photoconversion to the far-red light 
absorbing form (known as Pfr). Photoconversion of Pfr back to Pr is triggered by far-red 
light. Both reactions are fully reversible, and eventually results in a dynamic 
photoequilibrium of Pr and Pfr in natural light conditions that depends on the proportion of 
red to far-red light (Franklin & Quail, 2009). The conversion is due to a single photochemical 
isomerisation of the chromophore about a specific double bond between the rings C and D 
of the phytochromobilin (Rockwell et al., 2006). Following conversion, Pfr translocates into 
the nucleus (Fankhauser & Chen, 2008). 
The phytochromes are encoded by a small gene family in angiosperms. The rice genome, for 
example, encodes three members, phyA, phyB and phyC, each representing one of the 
lineages found in plants (Sharrock, 2008). In Arabidopsis, the phytochrome family consists 
of five members, designated phytochrome A (phyA) to phytochrome E (phyE). 
Classical photobiological experiments established three phytochromes modes of acting, the 
Very Low Fluence Response mode (VLFR), where responses to phytochromes are already 
saturated at very low fluencies of light, the Low Fluence Response (LFR) showing the 
classical red and far-red light reversibility and the High Irradiance responses (HIR) that 
require prolonged exposures to light of relative high intensity (Casal et al., 2003). Now that 
we know about each phytochrome species, the phytochrome action modes can be explained 
by the different phytochrome species and different signal transduction pathways. phyA is 
the most specialized of the phytochromes; it is responsible for the VLFR and the HIR. The 
extraordinary sensitivity of this photoreceptor to light allows phyA to control germination 
of buried seeds in the soil and to induce germination when seeds are exposed briefly to 
light. phyA importance is evident when plants germinate under a dense canopy (Yanovsky, 
1995) or for example, when weeds are induced to germinate after soil tillage (Ballaré, 1992). 
The other phytochromes control the R/FR reversible LFR and the responses to continuous 
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red light. phyB is involved in seed germination, deetiolation, stem elongation, the SAS, 
stomatal development and several other aspects of plant development. phyD and phyE act 
in SAS by controlling internode elongation and flowering time, and phyE is also involved in 
far-red HIR- mediated seed germination (Franklin & Quail, 2009).  
Before even knowing of the existence of multiple phytochromes, they were classified in type 
I, the light-labile pool and type II, the light stable pool. Now we know that type I is 
represented by phyA and type II by the other phytochromes. As illustrated above, type I 
and II phytochromes play distinct roles. The rapid proteolytic degradation of phyA is 
believed to be responsible for the termination of signalling. The light stable phytochromes 
are not totally resistant to proteolytic degradation (Jang et al., 2010), but dark reversion also 
emerges as a switch-off mechanism. Dark reversion is a thermal process in which the Pfr 
form is slowly converted to the Pr form in the dark. Although dark reversion is not yet well 
characterised, it makes an important contribution to the balance between Pr and Pfr and 
hence, to determine the output state for a given phytochrome (Rockwell et al., 2006). 

2.2.2 Phytochrome structure and nuclear translocation 

The two phytochrome mayor domains mentioned above are separated by a flexible hinge 
region. The N-terminal photosensory region (70 kDa) contains an N-terminal extension 
(ATE) and three conserved subdomains: PAS, GAF and PHY. The ATE is poorly conserved, 
possibly accounting for some functional differences among phytochromes and it might be 
implicated in stabilization of the Pfr form of photoreceptors. The GAF domain is associated 
with the bilin chromophore and possesses bilin lyase activity. The PAS and PHY domains 
are important for tuning the spectroscopic properties of the bound bilin. 
A flexible hinge region separates the N-terminal domains from the C-terminal regulatory 

region (55 kDa), which is composed of two PAS subdomains, called PAS 1 and PAS 2, and a 

histidine kinase related domain (HKRD) (Figure 1). The PAS and HKRD domains contribute 

to the high-affinity subunit-subunit interaction between the phytochrome monomers to 

form dimers, and both domains are required for the formation of nuclear speckles. Besides, 

the PAS domains contain the nuclear localization signal (NLS) responsible for the 

relocalisation to the nucleus after phytochrome photoconversion (Rockwell et al., 2006). 

Finally, at least one domain must be responsible for the serine/threonine kinase activity that 

governs phytochrome autophosphorylation and phytochrome–directed phosphorylation of 

other proteins, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3). The functional 

significance of this kinase activity remains unknown. HKRD domain was initially suggested 

to be a kinase because of its relatedness to bacterial histidin kinases (Figure 1). However, it 

was shown that the kinase activity resides in the N-terminal domain (Bae & Choi, 2008). 

Further, it was recently shown that a Casein Kinase II is involved in phosphorylating 

phytochrome interacting factor 1 (PIF1), one or the downstream effectors of phytochrome 

signalling (see below) (Bu et al., 2011). 

2.3 Cryptochromes 

Cryptochromes are receptors for blue and ultraviolet light. Arabidopsis contains two 
cryptochromes, cry1 and cry2. They are composed of two domains, an N-terminal 
photolyase related region (PHR), without photolyase activity, and a C-terminal extension 
domain (CCT), more variable among family members (Figure 1). The PHR region binds two 
chromophores, flavin adenine dinucleotide (FAD) and 5,10-methenyltetrahydrofolate 
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(MTFG). The CCT domain appears to be important for cryptochrome function, it interacts 
with downstream effectors and promotes photomorphogenic development in the dark by 
itself (Li & Yang, 2007). cry1 and cry2 form homodimers; dimerisation is mediated by the 
PRH domain and appears to be essential  for signalling (Moglich et al., 2010). cry1 and cry2 
are predominantly nuclear. However, cry1 is also found in the cytoplasm. They mediate the 
regulation of gene expression and together are responsible for blue-light dependent changes 
in gene expression of up to 10-20% of the Arabidopsis genome (Lin & Todo, 2005). cry1 and 
cry2 participate in many blue-light responses including inhibition of hypocotyl elongation, 
anthocyanin accumulation, regulation of flowering time, stem and internode elongation, 
blue-light regulated gene expression, and entrainment of circadian rhythms. The function of 
cry1 and cry2 partially overlap, but differences are evident at different light intensities or at 
different developmental stages. Under high intensities of blue light, cry2 is rapidly 
degraded, leaving cry1 as the predominant photoreceptor, so the role of cry2 during 
seedling deetiolation is more evident under low blue light intensities. In contrast, cry2 role is 
predominant in the regulation of flowering time (Li & Yang, 2007).  
 

PASATE GAF PHY PAS1 and PAS2 HKRD Phy

FHR

PHR CCT Cry

MTFG FAD

LOV1 LOV2 Ser/ThrK

FMN FMN

Phot

phytocromobilin

LOV F Kelch Zeitlupe

FMN

 

Fig. 1. Schematic representation of domain structure and chromophores of the main 
photoreceptors: phytochromes (phy), cryptochromes (cry), phototropins (phot) and the 
zeitlupe family. Domain abbreviation are ATE (N-terminal extension); PAS: domain 
acronym derived from period clock (PER) protein, aromatic hydrocarbon receptor nuclear 
translocator (ARNT), and single minded (SIM); GAF: (domain acronym derived from 
vertebrate cGMP-specific phosphodiesterase, cyanobacterial adenylate cyclase and formate 
hydrogen lyase transcription activator FhlA); PHY (phytochrome); FHR (flexible hinge 
region); HKRD (Histidine kinase related domain), PHR (photolyase related region), CCT (C-
terminal extension domain), FAD (flavin adenine dinucleotide), MTFG (5,10-
methenyltetrahydrofolate), LOV (Light-oxygen-voltage domains), Ser/Thrk (serine 
threonine kinase domain), FMN (Flavin mononucleotide), F (F box), Kelch (Kelch repeat). 

2.4 LOV domain photoreceptors: The phototropins and the ztl family 

The phototropic response of plants has been known at least since Darwin times. The 

photoreceptors involved were identified after finding mutants impaired in the phototropic 

response (Huala et al., 1997), and were later named phot1 and phot2. The sequence revealed 
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the presence of two domains showing homology to domains that are involved in sensing 

Light, Oxygen or Voltage, the LOV domains (Figure 1). These domains bind FMN, the 

chromophore for phototropism. Phototropins were important in the identification of other 

LOV-domain containing photoreceptors. 
The second family of LOV photoreceptors is comprised by Zeitlupe/Adagio/LOV KELCH 
Protein 1 (ztl/ado/lkp1), fkf1 and lkp2. Contrary to phototropins, the ztl family contains a 
single LOV domain, an F-box and a C-terminal Kelch domain. F-box proteins play a role in 
recruiting specific substrates for ubiquitination and protein degradation, whereas the Kelch 
domain might aid in this function by mediating protein-protein interactions (Moglich et al., 
2010). These photoreceptors have important functions in flowering time and circadian clock 
function, as we will explain in the following sections, mainly by controlling the stability of 
important clock associated proteins (Harmer, 2009; Mas, 2005). 

2.5 The UV-B specific photoreceptor: The UVR8 protein 

UV-B radiation (280-315 nm) is an integral part of the sunlight reaching the surface of the 
Earth and induces a broad range of physiological responses that are mediated by a recently 
identified UV-B specific photoreceptor, UVR8 (Rizzini et al., 2011). The most extensively 
studied examples of photomorphogenic responses are the suppression of hypocotyl 
extension by low fluences of UV-B and the induction of genes involved in flavonoid 
biosynthesis (Jenkins, 2009). 
UVR8 is a β-propeller protein with similar sequence to the eukaryotic RCC1, a guanine 
nucleotide exchange factor (GEF) for the small GTP-binding protein Ran (Gruber et al., 
2010). Aromatic amino acids absorb UV-B radiation. Tryptophan, with an absorption 
maximum in solution at around 280 nm (which extends to 300 nm and is likely to be further 
shifted in a protein environment), is particularly suited as UV-B chromophore. Structure 
modelling according to structurally related RRC1, identified 14 tryptophans of UVR8 all 

located at the top of the predicted -propeller cluster in the centre of the protein structure. 
Evidence suggests UV-B perception is based on a tryptophan-based mechanism, an 
important difference with the other Photoreceptors that bear chromophores suited for 
visible light perception (Rizzini et al., 2011). 

3. Transducers of light signalling 

3.1 COP1 is a general repressor of photomorphogenesis 

Most of the photoreceptors mentioned above were identified after genetic screenings in 
Arabidopsis and led to the isolation of mutants defective in deetiolation. Other type of 
genetic screenings led to the isolation of mutants with constitutive photomorphogenic 
phenotypes in the dark (cop) or deetiolated (det). The phenotype of one of such mutants, cop1 
(Deng et al., 1992), suggested that it was a negative regulator of photomorphogenesis. COP1 
is an essential protein, null alleles are not viable. The overlap between the light-responsive 
transcriptome and the cop1-responsive transcriptome in dark grown seedlings clearly shows 
that COP1 is a general repressor of photomorphogenesis (Ma et al., 2002). We now know 
that COP1 is a single unit E3 ubiquitin ligase, bearing both the substrate and E2 binding 
motifs. Ubiquitin ligation is the last step in the chain of events that leads to protein 
ubiquitination that marks proteins for degradation by the 26S proteasome. The COP1 
protein bears three domains: a RING-finger motif, a coiled-coil domain and seven WD40 
repeats. The RING domain is essential to recruit E2s and the other domains to recognize 
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substrates. Several of the COP1 substrates have been characterised and they are 
transcription factors that act positively on photomorphogenesis.  

3.2 COP1 targets positive regulators of photomorphogenesis for degradation 
3.2.1 COP1 in phyA signalling 

Genetic and molecular approaches have identified several transcription factors acting 
positively on photomorphogenesis downstream of photoreceptors. As phyA is the main 
photoreceptor perceiving continuous far-red light (acting in the HIR mode), mutants with 
long hypocotyls under far-red light were isolated, leading to phyA signalling components. 
Two of the genes identified, long after far-red light 1 (laf1) and long hypocotyl in far-red (hfr) 
encode an R2/R3 MYB and a bHLH transcription factor respectively. Other mutants helped 
to identify other phyA signalling components; among them, two small plant-specific 
proteins involved in light-regulated phyA import to the nuclei, FAR-RED ELONGATED 
HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) (Fankhauser & Chen, 2008), and 
two transposase-derived transcription factors, FHY3 and its homolog FAR-RED IMPAIRED 
RESPONSE1 (FAR1), which are direct activators of FHY1 and FHL transcription, promoting 
phyA signalling (Lin et al., 2007). 
Genetic screenings for enhancers of phyA signalling led to the identification of 
SUPPRESSOR OF PHYTOCHROME A-105 1 (SPA1), which belongs to a small family of four 
proteins (SPA1-4). The quadruple mutant defective for the four SPA genes shows a 
constitutive photomorphogenesis phenotype in the dark, similar to cop1 mutants (Laubinger 
et al., 2004). SPA proteins and COP1 form complexes and, as mentioned above, show E3 
ligase activity (Zhu et al., 2008).  This SPA-COP1 complex targets HFR and LAF1 for 
degradation, explaining part of its negative role in photomorphogenesis (Henriques et al., 
2009). 
The SPA1-COP1 E3 ligase complex targets other important transcription factors for 
degradation, like elongated hypocotyl 5 (hy5) and hy5 homolog (hyh), two bZIP 
transcription factors. These transcription factors promote photomorphogenesis under 
various wavelengths and will be explained in the following sections. 

3.2.2 COP1 in cryptochrome signalling 

hy5 mutants display a long hypocotyl phenotype under diverse wavelengths of light, 
suggesting HY5 is a common promotor of photomorphogenesis downstream several 
photoreceptor signalling pathways. Interestingly, the association between HY5 and COP1 
can be deduced from the overlapping set of differentially expressed genes in the respective 
mutants (Ma et al., 2002). At the biochemical level, it was shown that both HY5 and HYH are 
targeted for degradation by COP1 (Holm et al., 2002; Osterlund et al., 2000). On the other 
hand, cryptochromes are known to interact with COP1 through its CCT domain and 
negatively regulate COP1 activity (Li & Yang, 2007). However, the precise light-mediated 
mechanism that controls COP1 activity remained unknown until recently. Three 
simultaneous publications addressed this issue (Lian et al., 2011; Liu et al., 2011; Zuo et al., 
2011). They showed that CRY1 interacts with the SPA proteins in a blue-light dependent 
manner and inhibit the interaction between COP1 and SPA proteins. This mechanism 
disrupts the complex E3 ligase activity and avoids HY5 degradation, promoting 
photomorphogenesis. In the case of CRY2, a similar blue-light dependent interaction with 
SPA proteins inhibits the activity of the COP1-SPA complex. This inhibition leads to higher 
levels of CONSTANS, a transcription factor that promotes flowering in long-day conditions. 
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These facts also explain some of the differences between the roles of CRY1 and CRY2 in 
plant development that we mentioned before. 

3.2.3 COP1 in UV-B signalling 

UVR8 forms a dimer but rapidly dissociates as the result of direct perception of UV-B. This 
is followed by a rapid nuclear accumulation of UVR8 and UVR8 interaction with COP1 that 
depends on the C-terminal WD40-repeat domain. The UVR8-COP1 interaction mediates the 
activation of numerous genes, including HY5, inducing photomorphogenic responses 
(Favory et al., 2009; Jenkins, 2009). 

3.3 The PIF family of bHLH transcription factor represses photomorphogenesis 
downstream of phytochromes 

The photoconversion of Pr to Pfr with red light leads to conformational changes that 
unmask the NLS to become accessible for the nuclear-transport machinery and also allow 
the interacting surfaces for partner proteins. Within the nucleus, phytochromes accumulate 
in subnuclear foci, the phytochrome Nuclear Bodies (NBs). The identification of HEMERA, a 
protein involved in the formation of NBs, supports the notion that NBs are the sites of 
phytochrome-induced protein degradation (Chen et al., 2010). Phytochrome-induced protein 
degradation is important to control the activity of the Phytochrome interaction factor (PIF) 
family of bHLH transcription factors. The Pfr form is rapidly translocated into the nucleus, 
where it interacts with PIFs, more strongly with the Pfr form (Fankhauser & Chen, 2008). 
Upon binding Pfr, the PIFs are phosphorylated and degraded. This event initiates a gene 
expression cascade leading to photomorphogenesis (Bae & Choi, 2008; Leivar et al., 2009; 
Shen et al., 2008). 
The PIFs belong to a transcription factor superfamily, which forms dimers to target specific 

DNA sites and are well characterised in nonplant eukaryotes as important regulatory 

components in diverse biological processes. In Arabidopsis, there are at least 133 bHLH 

protein–encoding genes. Phylogenetic analysis of the bHLH domain sequences allowed the 

classification of these genes into 21 subfamilies (Heim et al., 2003; Toledo-Ortiz et al., 2003). 

The PIFs subfamily, called PHYTOCHROME INTERACTING FACTORs (PIFs) is involved 

in the repression of seed germination, promotion of seedling skotomorphogenesis and SAS, 

by regulating the expression of over a thousand genes (Leivar & Quail, 2011). PIF3 was the 

first member identified in this subfamily, isolated by a two-hybrid assay as a PHYB 

interactor (Ni et al., 1998). Afterwards, other members of the family were identified by 

computational analysis (Leivar & Quail, 2011). Unlike other bHLHs, this subfamily have a 

characteristic active phytochrome binding motif (APB) in its N-terminal, that make them 

able to interact with the photoactivated phytochrome (Leivar & Quail, 2011). 

PIFs can form homodimers and heterodimers that bind specifically to the G-box motif 
CACGTG (Toledo-Ortiz et al., 2003) and, in some cases, HFR1 and other bHLH closely 
related to PIFs can form non-DNA binding bHLH heterodimers with some PIFs, preventing 
excessive responses (Hornitschek et al., 2009). In addition, different PIFs are regulated 
preferentially by different phytochromes (Shen et al., 2008).  
As mentioned above, PIF3 is the founding member of this family. PIF3 acts as a negative 
regulator in both phyA and phyB-mediated seedling deetiolation processes such as hook 
opening and hypocotyl elongation. Both phyA and phyB bind to PIF3. This interaction 
leads to the phosphorylation of PIF3, triggering its degradation by the 26S proteasome-
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dependent pathway, and thus relieving its negative regulation of photomorphogenesis. 
phyA is responsible for the rapid degradation of PIF3 in response to far-red light, whereas 
phyA, phyB and phyD are responsible for PIF3 degradation in response to red light (Bae 
& Choi, 2008). 
PIF1 (also known as PIL5), PIF4, PIF5 (also known as PIL6) and PIF6 (also known as PIL2) 
also have important roles in photomorphogenic development. Although they have highly 
similar sequences, their roles do not overlap completely. For example, PIF1 negatively 
regulates seed germination by inhibiting gibberelin (GA) biosynthesis and GA signalling, 
and simultaneously activating abscisic acid biosynthesis. In addition, PIF1 activates the 
expression of two DELLA genes, which are key negative GA signalling components. 
Phytochromes promote seed germination by inhibiting PIF1 activity. Conversely, PIF4 and 
PIF5 have important roles in the regulation of the SAS (Leivar & Quail, 2011). We will 
describe the roles of PIFs in chloroplast biogenesis and c chlorophyll synthesis in a 
following section. 

4. The role of the circadian clock in photomorphogenic development  

The circadian clocks are endogenous mechanisms that allow organisms to time their 
physiological changes to day/night cycles. These mechanisms are present in a wide range of 
organisms, from cyanobacteria to mammals. Circadian clocks generate rhythms with a ~24 
hr period, which include changes in gene expression or protein activity. They regulate 
diverse aspects of plant growth and development, such as the movement of leaves and 
flowers, the production of volatiles, the stomatal opening, the hypocotyl expansion, the 
photosynthetic activity and the photoperiodic control of flowering, allowing plants to 
anticipate daily environmental changes and to synchronise their endogenous physiological 
processes to external environmental cues. Circadian rhythms persist with a period close to 
24 hours after an organism is transferred from an environment that varies according to the 
time of the day (entraining condition) to an unchanging condition (free-running condition)  
(Harmer, 2009). 
In a simple way, the circadian system can be divided into three main components: the input 
pathways, involved in the perception and transmission of environmental signals to 
synchronise the central oscillator that generates and maintains rhythmicity through multiple 
output pathways, connecting the oscillator to physiology and metabolism. However, this is an 
oversimplified model of the clock. The circadian system has to be considered as a complex 
network. The central clock is composed of multiple interlocked feedback loops, where clock 
outputs may be regulated directly by clock input signalling pathways and can also feedback 
to clock components and input signalling pathways. Clock genes have multiple functions, 
they can act within the central oscillator and in clock input and output signalling pathways 
(Mas, 2005). A key observation is that circadian clock mutants show defective 
developmental responses to red light (Harmer, 2009), but the endogenous clock oscillates in 
the absence of phyA phyB cry1 and cry2 (Yanovsky et al., 2000) or in a mutant devoid of all 
phytochromes (Strasser et al., 2010). These observations imply that the photoreceptors 
modulate the clock but they are not themselves part of the central oscillator.   

4.1 Molecular basis of the circadian clock 

In Arabidopsis thaliana, the current model for the circadian oscillator is composed of several 
interlocking positive and negative feedback loops. The first loop that was identified involves 
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the Myb-related transcription factors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and 
LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF 
CAB EXPRESSION 1 (TOC1/PRR1) (Loop 1, figure 2). CCA1 and LHY proteins have 
partially redundant functions, bind directly to the TOC1 promoter and inhibit its expression 
during the day (Alabadi et al., 2001). In turn, TOC1 promotes the expression of CCA1 and 
LHY indirectly via a hypothetical component X in the morning. The mechanism by which 
TOC1 induces CCA1 and LHY1 is not completely understood, but it includes CCA1 HIKING 
EXPEDITION (CHE), a TCP type transcription factor, which associates with TOC1 to 
regulate CCA1 (Pruneda-Paz et al., 2009). Eventually, CHE also forms an additional loop 
with CCA1 (Imaizumi, 2010). 
Mathematical modelling suggests that an evening-phased negative loop is coupled to the 

first loop, with an unknown component Y that positively regulates TOC1 whereas Y is 

negatively regulated by TOC1, CCA1 and LHY (Locke et al., 2005) (Loop 2, figure 2). It was 

suggested that a portion of Y activity is provided by the protein GIGANTEA (GI) (Locke et 

al., 2005), but this is still unclear (Ito et al., 2009; Martin-Tryon et al., 2007). 

The Arabidopsis genome contains four genes encoding proteins with similarity to TOC1: 

PSEUDORESPONSE REGULATOR (PRR), PRR3, 5, 7 and 9. All these PRR genes play a role 

in the circadian system, although the effect of single mutations is subtle. Multiple mutants 

generally have stronger phenotypes, for example the triple prr5 prr7 prr9 mutants are 

essentially arrhythmic (Nakamichi et al., 2005a; Nakamichi et al., 2005b). Experimental and 

modelling studies suggest that morning expression of CCA1 and LHY activates the 

transcription of PRR7 and PRR9 (Farre et al., 2005; Nakamichi et al., 2005b; Zeilinger et al., 

2006). This loop is called morning loop (Loop 3, figure 2) and is closed when PRR7 and 

PRR9 feedback to inhibit CCA1 and LHY expression. Together the three interlinked feedback 

loops form an important part of the clock regulatory mechanism and enhance the robustness 

of the network against environmental perturbations (Harmer, 2009).  

Other components that function within or close to the circadian oscillator have recently been 
identified: FIONA 1, TIME FOR COFFEE, LIGHT REGULATED WD-1 (LWD1) and LWD2 
(Ding et al., 2007; Kim et al., 2008; Wu et al., 2008). However, it is not known whether these 
clock proteins are part of pre-existing loops or constitute unidentified regulatory loops. It 
has been recently reported that LWD1/2 regulate the expression of multiple oscillator genes 
and attenuate light signals to adjust period length. Further, it was also proposed that LWD1 
and PRR9 form a positive feedback loop within the central oscillator which is also involved 
in regulating the light input pathway (Wang et al., 2011) (Figure 2). These results underscore 
the difficulties in dissecting which signalling events are part of the circadian oscillator and 
which ones are input pathways.      

4.2 Light signalling input to the circadian clock 

Several different photoreceptors mediate light input to the clock, including the 
phytochromes and the cryptochromes (Somers et al., 1998; Devlin & Kay, 2000; Yanovsky et 
al., 2001). However, the molecular mechanisms are only partially known. The ztl family of 
photoreceptors interacts with clock components and regulates their turnover; hence they are 
potentially part of input mechanisms. ztl interacts with TOC1 and PRR5, leading to their 
degradation via the proteasome pathway in the dark (Kiba et al., 2007; Mas et al., 2003). The 
TOC1-ztl interaction does not depend on light, but an interaction between ztl and GI is blue-
light dependent, stabilizes both ztl and GI, and contributes to the robust rhythms of TOC1 
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(Kim et al., 2007), contributing to a faster degradation of ztl, GI, TOC1 and PRR5 in darkness 
than in light (Loop 4, figure 2) (Kiba et al., 2007; Kim et al., 2007; Mas et al., 2003). Within this 
loop 4, TOC1 binds to PRR3, interfering with TOC1 binding to ztl (Para et al., 2007). Thus, 
PRR3 seems to stabilize TOC1 avoiding its recruitment to the SCF complex and its 
degradation by the proteasome (Loop 4, figure 2).  
 
 

 

Fig. 2. A model for the Arabidopsis clock. The circadian clock is composed of several 
interlocking positive and negative loops.   

The other members of the ztl family, fkf1 and lkp2, were also studied. Mutant combinations 
showed that fkf1 and lkp2 play similar roles to ztl in the circadian clock when ztl is absent, 
and that both of them interact with TOC1 and PRR5. These results indicate that ztl, fkf1 and 
lkp2 regulate TOC1 and PRR5 degradation and are important to determine the period of 
circadian oscillation (Baudry et al., 2010).    
Cryptochromes also signal to the circadian clock. However, the mechanisms are still unclear. 

One possibility is through the regulation of COP1 activity; COP1 directly interacts with 

ELF3 and with GI to promote GI degradation by the proteasome. This could be a mechanism 

by which cryptochromes regulate the activity of GI, a protein closely associated with 

circadian clock function (Yu et al., 2008).    

As mentioned above, one interesting aspect of phytochrome and circadian clock is that 
mutants affected in the clock are also affected in phytochrome responses (Ito et al., 2007). 
However, how phytochromes contribute to the entrainment of the clock is still unclear. It 
was previously suggested that PIF3 could directly induce CCA1 and LHY mRNA expression 
(Martinez-Garcia et al., 2000). Later, it was shown that TOC1 interacts with PIF3 and PIL1 
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(Yamashino et al., 2003). However, thorough analysis of PIF3 function has led to the 
conclusion that it does not play a significant role in controlling light input to the circadian 
clock (Viczian et al., 2005). 
Indeed, there is circumstantial evidence of phytochromes regulating CCA1 and LHY. Both 
genes are rapidly induced in a TOC1 dependent manner upon transfer of dark grown 
seedlings to red light. This induction requires EARLY FLOWERING 4 (ELF4), which forms 
with CCA1 and LHY a negative feedback loop in an analogous manner to TOC1 (Kikis et al., 
2005) and ELF4 is itself a direct target of FHY3, FAR1 and HY5 (Li et al., 2011). ELF3, is also 
necessary for light-induced expression of CCA1 and LHY and this event seems to occur 
indirectly, through a direct repression of PRR9 by physically interacting with its promoter 
(Dixon et al., 2011). 

5. Downstream targets of light and clock signalling 

5.1 The impact of the circadian clock in the expression of photosynthesis related 
genes  

As presented above, the interconnections between the clock and light signalling are 
extremely complex. The regulation of outputs is not an exception. One unbiased measure of 
the impact of the circadian clock on plant development is the finding that at least one third 
of the Arabidopsis genome is circadian regulated (Covington et al., 2008). The genes 
involved in photosynthesis are an important target group of the circadian clock, and tend to 
be expressed at the middle of the subjective day, together with genes involved in the 
phenylpropanoid pathway (Edwards et al., 2006). In another global analysis it was shown 
that PRR5, PRR7 and PRR9 are negative regulators of the chlorophyll and carotenoid 
biosynthetic pathways (Fukushima et al., 2009). 
Despite what we know of the clock impact on photosynthetic gene expression, the 
mechanisms are still poorly understood. One such mechanism may involve CCA1. CCA1 
was originally identified by its binding to an AA(CA)AATCT motif in the lhcb1*3 promoter, 
and also shown to be required for phytochrome responsivity (Wang et al., 1997). Hence, 
CCA1 can represent one of the mechanisms by which the clock regulates photosynthetic 
gene expression. Nevertheless, the reality is more complex. CCA1 binding site is similar to 
the Evening Element (AAAATATCT) found in promoters of clock regulated genes that peak  
toward the end of the subjective day (Harmer et al., 2000), including TOC1, which is 
repressed by CCA1 (Alabadi et al., 2001). However, lhcb1*3 expression peaks earlier and is 
promoted by CCA1 (Wang et al., 1997). These apparent contradictions can be reconciled by 
the finding that CCA1 effects depend on the context, showing also another level of 
complexity (Harmer & Kay, 2005).  

5.2 Global expression analysis identifies the targets of photomorphogenesis master 
regulators 

HY5, the bZIP targeted by COP1 for degradation, is necessary for responses to a broad 
spectrum of wavelengths of light and, as explained above, acts as a positive regulator in 
photomorphogenesis. Arabidopsis plants defective in HY5 show aberrant light mediated 
phenotypes, including an elongated hypocotyl, reduced chlorophyll/anthocyanin 
accumulation and reduced chloroplast development in greening hypocotyls (Lee et al., 
2007). HY5 regulates the transcription of multiple genes in response to light signals 
through binding to G-box elements in their promoters such as RBCS1A or CHS1 genes. 
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Genome-wide CHIP-chip analysis was used to identify HY5 binding regions and to 
compare this information to HY5-global expression data. This approach allowed the 
identification of more that 1100 direct targets where HY5 can either activate or repress 
transcription. However, not all the targets were light responsive genes, suggesting that 
HY5 must act in concert with other factors to confer light responsiveness (Zhang et al., 
2011).  

5.3 The dissection of single light responsive promoters reveals another layer of 
complexity 

Most of the photoreceptors, signalling components and transcription factors mentioned above 

were identified using genetic approaches, after Arabidopsis was established as the model 

plant. Another strategy to understand light signalling and photosynthetic gene expression has 

been underway since late mid 80s, after the first transgenic plants became available. This 

strategy was simple, the generation of transgenic plants bearing promoter:reporter gene 

fusions. With this approach, light responsive promoters were the subject of extensive research 

with the aim of finding the light responsive elements (LREs) and their cognate binding factors. 

The genes encoding the small subunits of the Rubisco (RbcS) and the light-harvesting 

chlorophyll a/b-binding proteins (Lhc; previously known as Cab), were considered a 

paradigm of light-regulated gene expression (Akhilesh & Gaur, 2003). 

Several LREs were described, as GT-1-Boxes (core sequence GGTTAA), I-Boxes (GATAA), 
G-Boxes (CACGTG), H-Boxes (CCTACC), AT-rich sequences (consensus 
AATATTTTTATT) (Akhilesh & Gaur, 2003). Using complementary approaches as Gel 
Shift analysis and DNA footprinting, some of the cognate binding factors were identified. 
However, three difficulties hampered this approaches. First, the LREs identified were not 
always enough to sustain light regulation. Hence, it was proposed that combinations of 
different motifs but not multimerisation of single motifs could function as LREs, 
confirming the complex nature of these regulatory elements (Chattopadhyay et al., 1998; 
Puente et al., 1996). Second, when the cognate transcription factors were studied in 
Arabidopsis with available mutants, a direct role in light signal was not evident. This can 
be illustrated by the GT-element binding factors, a small family of plant trihelix DNA-
binding proteins comprising Arabidopsis GT2 (AT1G76890), DF1L (AT1G76880), PTL 
(At5g03680), GT-2-LIKE1 (GTL1, AT1G33240), GT2L (At5g28300), EDA31 (AT3G10000) 
and GTL1L (AT5G47660). Some of these transcription factors have roles in the fusion of 
the polar nuclei, in the development of the embryo sac or even perianth development 
(Brewer et al., 2004; Pagnussat et al., 2005), but were not involved in responses to light. The 
third difficulty was the apparent “redundancy” of LREs in single promoters. This 
redundancy could be just the consequence of a single promoter responding to several 
different light inputs, as will be explained below. 
In a few examples, thorough analysis of promoter sequences, combined with genetic 

approaches significantly advanced our understanding of light-regulated transcription, but 

also revealed the complex nature underneath this process. The Arabidopsis Lhcb1*1 (Cab 2) 

promoter fused to luciferase reporters has been extensively used as a marker for light and 

circadian expression. Genetic screenings using this construct led to the isolation of toc1 

mutants (Strayer et al., 2000). Promoter analysis of Lhcb1*1 allowed the identification of a 78 

bp fragment that was sufficient to confer phytochrome and circadian regulation to a 

minimal promoter (Anderson et al., 1994). Further analysis of this promoter allowed the 
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identification of HY5, CCA1 and a DET1 responsive elements (Maxwell et al., 2003). 

Similarly, it has been shown that HY5 binds to the Lhcb1*3 promoter and physically interacts 

with CCA1 to synergistically regulate expression (Andronis et al., 2008). 

Another promoter analysed in more detail was the tobacco Lhcb1*2. First, a 146 bp promoter 
fragment sufficed to confer VLFR (mediated by phyA), LFR (mediated by phyB) and HIR 
(mediated by phyA) to a minimal promoter (Cerdan et al., 1997). Then, the motifs for VLFR 
and LFR were dissected from the HIR responsive motifs (Cerdan et al., 2000) and finally, the 
TGGA motif was shown to bind Bell-like homeodomain 1 (BLH1) as part of the phyA 
mediated HIR (Staneloni et al., 2009). This promoter is an example of how several different 
photoreceptors can regulate a single gene and integrate their signalling pathways at the 
promoter level; at least four different photoreceptors were shown to regulate this single 
promoter (Casal et al., 1998; Cerdan et al., 1999; Mazzella et al., 2001) . 

6. Light promotes chloroplast development 

Proplastids are found in the embryo; they are undifferentiated plastids that are converted to 
other kind of plastids like chromoplasts, amyloplasts, chloroplasts and etioplasts. During 
skotomorphogenic development, proplastids turn into etioplasts, the chloroplast precursors. 
Etioplasts contain the prolamellar body, a structure rich in protochlorophyllide, the 
chlorophyll precursor, and the enzyme protochlorophyllide oxidoreductase (POR). During 
the development of etioplasts into chloroplasts, the POR is directly activated by light to 
convert protochlorophyllide into divinyl-chlorophyllide a, which is chlorophyll a and b 
precursor (Tanaka & Tanaka, 2007). This light-dependent step can be promoted by red-light 
in Arabidopsis, even in the absence of phytochromes (Strasser et al., 2010). However, other 
events that occur during chloroplast biogenesis require the signals transduced by 
photoreceptors. These signals ensure proper coordination of synthesis and import of LHCB 
proteins, which are essential for the assembly of the photosynthetic complexes. These events 
are also coordinated with the synthesis of carotenoids, which are necessary for 
photoprotection (Cazzonelli & Pogson, 2010). 
Phytochromes, through the action of PIFs, regulate the transition from amiloplasts to 
etioplasts and to chloroplasts. For example, the PIFs inhibit the conversion of endodermal 
amyloplasts to etioplasts, whereas the phytochromes antagonise this inhibition, promoting 
the formation of chloroplasts (Figure 3) (Kim et al., 2011).  

6.1 Chlorophyll biosynthesis is regulated by light  

Chlorophyll biosynthesis and the synthesis of other components of the photosystems are 
tightly regulated by light and the circadian clock. This coordination is necessary because 
when the chlorophyll synthesis exceeds the accumulation of chlorophyll-binding 
apoproteins, reactive oxygen species are generated, ultimately leading to cell death. 
However, when the chlorophyll synthesis is not enough, the amount of fully functional 
chlorophyll-binding proteins is not sufficient to gain optimal photosynthetic activity. 
Another example highlighting the importance of proper coordination is that PIF deficient 
plants accumulate protochlorophyllide in the dark during skotomorphogenic development, 
but this accumulation leads to bleaching upon exposure to light (Stephenson et al., 2009). 
Plants have four classes of tetrapyrroles: chlorophyll, phytochromobilin, haeme and 
siroheme, all derived from the same biosynthetic pathway. The flow of the tetrapyrrole 
pathway is strictly regulated, keeping at low levels the potentially toxic intermediates 
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(Tanaka & Tanaka, 2007). Phytochrome and cryptochrome mutants contain lower levels of 
chlorophyll (Strasser et al., 2010) stressing out the importance of the photomorphogenic 
signal for proper assembly of the photosynthetic machinery. In the next paragraphs we 
review how light signalling pathways regulate chlorophyll biosynthesis (Figure 4). 
 

 

Fig. 3. Light interactions in plastid development. Phytochrome and PIFs roles during the 
transition from proplastid or amyloplast to chloroplast. 

Chlorophyll synthesis occurs in plastids; in the first step glutamate is activated to Glutamyl-
tRNA by the Glutamyl-tRNA synthetase, a step shared with plastid protein synthesis. The 
following step, the reduction of the Glutamyl-tRNA to produce glutamate-1-semialdehyde 
is subjected to tight regulation (Figure 4). In Arabidopsis, the Glutamyl-tRNA reductases are 
encoded by a little family of nuclear genes called HEMA. Of this family, the expression of 
HEMA1 correlates with the expression of Lhcb1 genes, which encode light-harvesting 
proteins of the photosystem II; in some way the expression of HEMA1 reflects the demand 
of chlorophyll synthesis. On the other hand, HEMA2 is not light regulated (Matsumoto et al., 
2004; McCormac et al., 2001; McCormac & Terry, 2002a; McCormac & Terry, 2002b). 
Glutamyl-tRNA reductase activity is regulated by negative feedback loops; the 

accumulation of Haeme, Mg-Protoporphyrin IX or Divinyl protochlorofilide a antagonise 

Glutamyl-tRNA reductase activity (Srivastava et al., 2005). At the transcriptional level, 

HEMA1 expression is induced by red and far-red light, implicating at least phyA and phyB, 

and blue light perceived by cry1 (McCormac et al., 2001; McCormac & Terry, 2002a). pif1 and 

pif3 mutants contain higher levels of HEMA1 mRNA, higher levels of protochlorophyllide 

and partially developed chloroplasts in the dark, a phenotype observed in cop mutants. The 

effects of pif1 and pif3 mutations are essentially additive, suggesting a model where 

phytochromes promote chloroplast biogenesis by antagonizing the activity of at least PIF1 

and PIF3. As PIF1 and PIF3 are regulated by the circadian clock, but do not seem to affect 

central clock components (TOC1, CCA1, LHY), these PIFs seem to integrate chloroplast 

biogenesis with circadian and light signalling (Stephenson et al., 2009).   
The expression of photosynthetic nuclear genes is repressed by plastid signals if chloroplast 
biogenesis is blocked (retrograde signalling). This finding led to the isolation of mutants that 
disrupt chloroplast to nucleus communication, the genomes uncoupled mutants (gun) (Nott 
et al., 2006). These mutants show high levels of lhcb1 mRNA in the presence of 
norfluorzazon and were named gun1 to gun5. gun2 and gun3 are allelic to hy1 and hy2 and 
disrupt phytochromobilin synthesis, leading to haeme accumulation and feedback 
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inhibition of Glutamyl-tRNA reductase (Nott et al., 2006). The product of the GUN4 gene, a 
22 kD protein localized to Chloroplasts, promotes Magnesium chelatase (MgCH) activity 
which catalyses the insertion of Mg2+ into protoporphyrin IX (Tanaka & Tanaka, 2007). The 
GUN4 gene is also under circadian clock regulation and is repressed by PIF1 and PIF3 
suggesting a similar regulatory mechanism to HEMA1 (Stephenson et al., 2009). The 
expression of GUN4 is primarily under the control of phyA and phyB with some input from 
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Fig. 4. Simplified chlorophyll biosynthesis pathway and light regulated steps. We emphasise 
how the light regulate directly the activity of NADPH:protochlorophyllide oxidoreductase 
(POR); or indirectly, through phytochrome and PIFs the expression of genes encoding the 
Glutamyl-tRNA reductases (HEMAs), Ferrum chelatase (FeCH), Magnesium chelatase 
(MgCH), NADPH:protochlorophyllide oxidoreductase (POR), Chlorophyllide a oxygenase 
(CAO), Mg-protoporphyrin IX methyltransferase (MgMT), and Mg-protoporphyrin IX 
monomethyl estercyclase (MgCy). The ATP/ADP ratio, the Mg2+ concentration and the 
thioredoxin levels also affect the MgCH activity, furthermore, these factors are light 
regulated (Tanaka & Tanaka, 2007). LHCs attach chlorophyll a, and CAO converts the 
chlorophyll a to b on the LHC apoprotein (Tanaka & Tanaka, 2007). 
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the cryptochromes, establishing GUN4 as a link between the phytochromes and the regulation 
of MgCH activity (Stephenson & Terry, 2008). GUN5 encodes the H subunit of MgCH, known 
as CHLH (Nott et al., 2006). The expression of CHLH is regulated at the mRNA level by 
light/dark cycles and by the circadian clock. Interestingly, this gene is co-regulated with 
HEMA1, lhcb, Mg-protoporphyrin IX monomethyl estercyclase (MGCy) and the gene encoding the 
chlorophyll(ide) a oxygenase (CAO) (Matsumoto et al., 2004). On the other hand, GUN1 
encodes a pentatricopeptide repeat–containing protein that does not affect chlorophyll 
synthesis. GUN1 was proposed to generate a signal in chloroplast that represses nuclear 
photosynthetic gene expression; this repression on lhcb genes seems to be mediated by direct 
binding of ABI4, an AP2–type transcription factor (Koussevitzky et al., 2007).  
Another connection between light signalling and the retrograde signalling was recently 
established. A sensitive genetic screening for the gun phenotype uncovered new cry1 alleles. 
These results establish that cry1 is necessary for maximal repression of lhcb genes, when 
chloroplast biogenesis is blocked (Ruckle et al., 2007). 
One of the latest steps in chlorophyll synthesis is the reduction of 3,8-divinyl 
protochlorophyllide to 3,8-divinyl chlorophyllide. This protochlorophyllide to chlorophyllide 
conversion is catalysed by the POR enzyme. In angiosperms, POR is light-dependent and it is 
likely the source of red-light promoted chlorophyll synthesis in the absence of phytochromes 
(Strasser et al., 2010). Angiosperms carry three POR-encoding genes, PorA, PorB and PorC, 
which are differentially regulated by both light and developmental stage. PORA expression is 
high in etiolated seedlings and rapidly becomes undetectable after illumination with FR, a HIR 
response mediated by phyA, whereas PORB expression persists throughout greening and in 
adult plants (Runge et al., 1996). PORC is expressed during the adult life and together with 
PORB is responsible for bulk chlorophyll synthesis in green plants (Paddock et al., 2010). It has 
been recently shown that PORC expression is directly activated by PIF1 binding to a G-box in 
PORC promoter, whereas PORA and PORB are also induced by PIF1, presumably in an 
indirect manner (Moon et al., 2008).  

7. Conclusion 

During the last twenty years, plant biologists have witnessed major advances in our 
understanding of how plants use light as a source of information. These advances were 
possible thanks to the adoption of Arabidopsis as a model system. During these twenty 
years, 13 Arabidopsis photoreceptors were characterised In molecular terms and these 
findings extended to other species as well. A high number of signal transduction 
components were also characterised. With the advent of “omics” technologies, the networks 
that work downstream photoreceptors and their targets started to surface. However, with 
all these advances, we still do not know in detail how a single light responsive promoter 
works. How many transcription factors are sitting there? Which are their identities? How do 
they interact to fine tune expression under the diverse light conditions found in nature? If 
we multiply these questions by the number of light responsive promoters we can just have a 
hint of the enormous task ahead. 
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