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1. Introduction 

Carotenoids are isoprenoid molecules of 40 carbons which are synthesized in a wide variety 
of photosynthetic (plants, algae) and non photosynthetic (some fungi and bacteria) 
organisms. So far, over 750 carotenoid structures are known, and these are divided into 
nonoxygenated molecules designated as carotenes and into oxygenated carotenoids referred 
to as xanthophylls. 
In photosynthetic organisms, carotenoids are synthesized in the plastids, such as 
chloroplasts. They are localized and accumulated in the thylakoid membranes of 
chloroplasts (Cunningham & Gantt, 1998), near the reaction center of photosystem II in the 
light harvesting complexes (LHC), along with other pigments such as chlorophyll a and b. 
Carotenoids act as accessory pigments in the LHC, where they absorb light in a broader 
range of the blue spectrum (400-500 nm) than chlorophyll. Carotenoids transfer the 
absorbed energy to chlorophyll a during photosynthesis (Britton, 1995). Carotenoids also 
protect plant cells from photo-oxidative damage as a result of their antioxidant characteristic 
giving by the conjugate bonds of the polyene chain (Britton, 1995; Britton et al., 1998). In this 
context carotenoids absorb the excess of energy from reactive oxygen species (ROS) and 
quench singlet oxygen produced from the chlorophyll triplet in the reaction center of 
photosystem II (Telfer, 2005). Carotenoids also protect the plant from photo-oxidative 
damage through thermal dissipation by means of the xanthophyll cycle (Baroli & Nigoyi, 
2000). This process occurs when excessive light increases the thylakoid ΔpH, which 
activatates the enzyme violaxanthin de-epoxidase (VDE), converting violaxanthin to 
zeaxanthin. Zeaxanthin molecules and protons may change the conformation in the LHC, 
favoring the thermal dissipation.  
Carotenoids are also synthesized and accumulated in chromoplasts, plastids that 
accumulate pigments in flowers, fruits and storage roots. Carotenoids are stored in lipid 
bodies or in crystalline structures inside the chromoplasts where they are more stable 
because they are protected from light (Vishnevetsky et al., 1999). In addition, carotenoids are 
precursors for apocarotenoids such as the phytohormones abscisic acid (ABA) and 
stringolactones. ABA is  involved in dormancy, development and differentiation of plant 
embryos, stomata open-closure and in tolerance to abiotic stress (Crozier et al., 2000). The 
stringolactones act as shoot branching inhibitor hormones. Also they are involved in plant 
signaling to both harmful (parasitic weeds) and beneficial (arbuscular mycorrhizal fungi) 
rhizosphere residents (Walter et al, 2010). 
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In flowers and fruits, the presence of carotenoids serve also to attract pollinators and seed 
dispersal agents by the intense yellow, orange and red colors that they provide to these 
organs (Grotewold, 2006). 
Animals are not able to synthesize carotenoids, so they have to be included in their diet. In 
animals, carotenoids are precursors of vitamin A (retinal) and retinoic acid, which play 
essential roles in nutrition, vision and cellular differentiation, respectively (Krinsky et al., 
1994). These molecules have also antioxidant properties (Bartley & Scolnik, 1995) and 
therefore, oxidative damage, associated with several pathologies, including aging 
(Esterbauer et al., 1992), carcinogenesis (Breimer, 1990) and degenerative processes in 
humans, among others, can be resisted by the ingestion of carotenoids (Rao and Rao, 2007; 
von Lintig 2010). 

2. Biosynthesis of carotenoid in plants 

Carotenogenic genes are encoded in the nuclear genome and the synthesized proteins are 
targeted as preproteins to the plastids, where they are post-translationally processed.  
Chlorophyll, carotenoids, and prenylquinones are key molecules that share early steps in 
the biosynthesis and directly derive from the plastidic isoprenoid biosynthetic pathway. 
This pathway starts within the 2-C-methyl-D-erythritol-4-phosphate (MEP) which provides 
isopentenylpyrophosphate (IPP) for the synthesis of the primal intermediate geranylgeranyl 
diphosphate (GGDP). The MEP pathway is involved in the IPP biosynthesis for plastidial 
isoprenodid, and the mevalonate (MEV) pathway is required for the synthesis of IPP for 
cytoplasmic sterols (brassinoesteroids, cytoquinins, ubiquinones, Figure 1). Despite these 
biosynthetic routes appear as independent and compartmentalized, a regulated metabolic 
cross-talk has been reported between them (Flügge & Gao, 2005).   
The first step of the MEP pathway condenses glyceraldehyde- 3-phosphate and pyruvate—a 
reaction catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS)- to produce deoxy-D-
xylulose 5-phosphate (DOXP). Then, a reductive isomerization by a DOXP reductoisomerase 
(DXR) yields MEP; the introduction of a cytidyl moiety by 2-C-methyl-D-erythritol 4-
phosphate cytidylyl transferase (CMS) produces 4-(cytidine 5’-diphospho)-2-C-methyl-D-
erythritol that is further phosphorylated by 4-(cytidine 5’-diphospho)- 2-C-methyl-D-
erythritol kinase (CMK) and then cyclised by 2-C-methyl-Derythritol 2,4-cyclodiphosphate 
synthase (MCS) to form 2C-methyl-D-erythritol 2,4-cyclo-diP. The final two reactions 
leading to IPP and DMAPP are carried out by (E)-4-hydroxy-3-methylbut-2-enyl 
diphosphate synthase (HDS) and reductase (HDR), respectively. All the enzymes of the 
MEP pathway reside in the stroma. Functional data suggest that the enzymes responsible 
for the biosynthesis of IPP and DMAPP via the MEP pathway in plants are soluble and 
localized to plastids (Lange & Ghassemian, 2003). IPP molecules synthesized in the plastids 
are isomerized to the allylic isomer, dimethylallyl pyrophosphate (DMAPP) through IPP 
isomerase (IPI). Three molecules of IPP condense with DMAPP to generate geranylgeranyl 
pyrophosphate (GGPP), in a process involving GGPP synthase (GGPPS, Figure 1). GGPPS is 
a central intermediate in the synthesis of plastidic isoprenoids: chlorophylls (phytyl side-
chain), carotenoids and prenylquinones (isoprenoid side-chains, Figure 1). 
For chlorophyll biosynthesis, the enzyme geranylgeranyl reductase (GGDR) catalyzes the 
formation of phytyl pyrophosphate (Phytul-PP) from GGPP and chlorophyll synthase 
(CHLG) catalyses the synthesis of chlorophyll a from Phytyl-PP and chlorophyllide (Figure 
1). Chlorophyll a and b are precursors for tocopherols (Joyard et al. 2009). 
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Fig. 1. Scheme of the Isoprenoid Biosynthetic Pathways in Plants. The non-mevalonate 
pathway (MEP) takes place in plastids and the mevalonate route (MEV) ocurrs in the 
cytoplasm of the cell. Isopentenylpyrophosphate (IPP) and geranylgeranyl pyrophosphate 
(GGPP) are key metabolites in the biosynthesis of chlorophylls and carotenoids. 
Abbreviations:  2-C-methyl-D-erythritol-4-phosphate (MEP), 1-deoxy-D-xylulose-5-
phosphate synthase (DXS), 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), 2C-
methyl-D-erythritol 4-phosphate cytidyltransferase (CMS), 4-(cytidine 5#-diphospho)-2-C-
methyl-D-erythritol kinase (CMK), 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 
(MCS), 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), 1-hydroxy-2-
methyl-2-(E)-butenyl 4-diphosphate reductase (HDR), isopentenyl pyrophosphate isomerase 
(IPI), dimethylallylpyrophosphate (DMAPP), geranylgeranyl pyrophosphate syntase 
(GGPPS), phytoene synthase (PSY), phytoene desaturase (PDS), ┞-carotene isomerase (Z-
ISO), ┞-carotene desaturase (ZDS), carotenoid isomerase (CrtISO), lycopene ┚ cyclase 

(LCYB), lycopene ┝ cyclase (LCYE), ┚-carotene hydroxylase (CHYB), -carotene hydroxylase 
(CHYE), zeaxanthin epoxidase (ZEP), neoxanthin synthase (NSY), abscisic acid (ABA), 
geranylgeranyl reductase (GGDR), Chlorophyll synthetase (CHLG), light             . 
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With regard to the carotenoid pathway, two molecules of GGPP give rise to the colorless 
phytoene by means of phytoene synthase (PSY, Figure 1). The biosynthesis continues with 
the desaturation of phytoene to produce the pink-colored trans-lycopene. These reactions 
are catalyzed by two desaturases and two isomerases. The first desaturase, phytoene 
desaturase (PDS), catalyzes the biosynthesis of 9,15,9’-tri-cis-┞-carotene, substrate of the 15-
cis- ┞-carotene isomerase (Z-ISO) to produce 9,9’-di-cis- ┞-carotene. After the 15-cis- ┞-
carotene isomerization, the second desaturase termed ┞ –carotene desaturasa (ZDS) leads to 
the formation of 7,9,9’-cis-neurosporene and 7’,9’-cis-lycopene. Finally, the carotene 
isomerasa (CRTISO) catalyzes the isomerization of this compound resulting in all-trans 
lycopene (Isaacson et al., 2004; Chen et al., 2010).  Although isomerization can be mediated 
by light, carotenoid biosynthesis in “dark grown” tissues such as roots and etiolates leaves 
required Z-ISO and CRTISO enzymes.  
Subsequently, lycopene is transformed into different bicyclic molecules by means of 
lycopene cyclases. Lycopene-┚-cyclase (LCYB) converts lycopene into ┛-carotene and 

afterward to ┚-carotene. Lycopene is also cyclized by lycopene--cyclase (LCYE) and by 
LCYB toproduce ┙-carotene. The ┚-carotene is hydroxylated by the enzyme ┚-carotene 
hydroxylase (C┚Hx, CRTZ) to give rise zeaxanthin, while the hydroxylation of ┙-carotene 

by the -carotene hydroxylase (CHx) and C┚Hx results in the formation of lutein.  Abscisic 
acid is synthesized in the cytoplasm at the end of the pathway by the cleavage of 
violaxanthin and neoxanthin by carotenoid cleavage dioxygenases (CDE and NCED, 
Cunningham, 2002). 
Some carotenoid enzymes act in multienzyme complexes in the stroma (isopentenyl 
pyrophosphate isomerase (IPI), geranylgeranyl pyrophosphate synthase (GGPPS) and 
phytoene synthase (PSY) and others are associated with the thylakoid membrane (phytoene 

desaturase (PDS), z-carotene desaturase (ZDS), lycopene -cyclase (LCYB) and lycopene ┝-
cyclase (LCYE) (Cunningham & Gantt, 1998).  

3. Regulation of the carotenogenic pathway 

Due to the importance of carotenoids for plant and animal health, carotenoid biosynthesis 
regulation has been studied for the last 40 years both at the pure and applied levels. Nearly 
all carotenogenic genes in diverse plant species, algae, fungi and bacteria have been 
identified and characterized (Cunningham & Gantt, 1998; Cunningham, 2002; Howitt & 
Pogson, 2006; Cazzonelli & Pogson, 2010). The knowledge generated has been used to 
improve the nutritional value of several organisms, preferentially to metabolically engineer 
-carotene and ketocarotenoid formation in plants (Ye et al., 2000; Davuluri et al., 2005; 
Aluru et al., 2008; Apel & Bock, 2009). 
The regulation of carotenoid biosynthesis has been studied in photosynthetic organs (leaves) 
and in non-photosynthetic organs (fruits, flowers) of traditional plant models such as 
Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Solanum lycopersicon (tomato) (Römer 
and Fraser, 2005; Howitt & Pogson, 2006).  
Almost all of these studies show that carotenogenic genes are expressed in photosynthetic 
organs exposed to different light qualities, during the transition of etioplasts to chloroplasts 
(de-etiolation) which correlates with a high and concomitant increase in the carotenoid and 
chlorophyll levels (Römer & Fraser, 2005; Toledo-Ortiz et al., 2010).  
During these processes, carotenogenic gene expression is mostly regulated at the 
transcriptional level mediated by photoreceptors such as the family of phytochromes 
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(PHYA-PHYE), cryptochromes (CRY) and phototropins. The reaction catalysed by psy has 
been shown to be the rate limiting step of carotenoid biosynthesis in plants and most studies 
on psy have been focused on the induction of its transcription by PHY and CRY during 
plant de-etiolation in A. thaliana, maize, tomato and tobacco. The expression of other 
carotenogenic genes such as lcyb, bhx, zep y vde is also induced in the presence of white 
light or during plant de-etiolation (Simkin et al., 2003; Woitsch & Römer, 2003; Briggs & 
Olney, 2001; Franklin et al., 2005; Briggs et al., 2007, Toledo-Ortiz et al., 2010). 

3.1 Carotenoid gene activation mediated by photoreceptors in plants  

Plant photoreceptors, include the family of phytochromes (PHYA-PHYE) that absorb in the 
red and far red range and cryptochromes (CRY) and phototropins that absorb in the blue 
and UV-A range (Briggs and Olney, 2001; Franklin et al., 2005; Briggs et al., 2007).  
Phytochrome (PHY) is the most characterized type of photoreceptor and their 
photosensitivity is due to their reversible conversion between two isoforms: the Pr isoform 
that absorbs light at 660 nm (red light) resulting in its transformation to the Pfr isoform that 
absorbs light radiation at 730 nm (far red). Once Pr is activated, it is translocated to the 
nucleus as a Pfr homodimer or heterodimer (Franklin et al., 2005; Sharrock & Clack, 2004; 
Huq et al., 2003;) where it accumulates in subnuclear bodies, called speckles (Nagatani, 
2004). PHY acts as irradiance sensor through its active Pfr form, contributing to the 
regulation of growth and development in plants (Franklin et al., 2007). A balance between 
these two isoforms regulates the light-mediated activation of signal transduction in plants 
(Bae and Choi, 2008), Figure 2.  
The signal transduction machinery activated by PHYA and PHYB promotes the binding of 

transcription factors such as HY5, HFR1 and LAF1 and the release of PIFs factors from light 

responsive elements (LREs) located in the promoter of genes that are up regulated during 

the de-etiolation process, such as the psy gene. The most common type of LREs that are 

present in genes activated by light are the ATCTA element, the G box1 (CACGAG) and G 

box (CTCGAG). PHYA, PHYB and CRY1, can also activate the Z-box 

(ATCTATTCGTATACGTGTCAC), another LRE present in light inducible promoters 

(Yadav et al., 2002).  In A.thaliana, it has been shown that PHYA, but not PHYB, plays a role 

in the transcriptional induction of psy by promoting the binding of HY5 to white, blue, red 

and far red light responsive elements (LREs) located in its promoter (von Lintig et al., 1997). 

The involvement of the b-zip transcription factor HY5 in tomato carotenogenesis was 

proven with LeHY5 transgenic tomatoes that carry an antisense sequence or RNAi of the 

HY5 transcription factor gene. The transgenic Lehy5 antisense plants contained 24–31% less 

leaf chlorophyll compared with non-transgenic plants (Liu et al., 2004), while, immature 

fruit from Lehy5 RNAi plants exhibited an even greater reduction in chlorophyll and 

carotenoid accumulation.  

Photosynthetic development and the production of chlorophylls and carotenoids are 
coordinately regulated by phytochrome –interacting factor (PIF) family of basic helix-loop-
helix transcription factors (bHLH, Shin et al., 2009; Leivar et al. 2009) PIFs are negative 
regulators of photomorphogenesis in the dark. In darkness, PIF1 directly binds to the 
promoter of the psy gene, resulting in repression of its expression. Once etiolated seedlings 
are exposed to R light, the activated conformation of PHY, the Pfr, interacts and 
phosphorylates PIF, leading to its proteasome-mediated degradation (Figure 2). Light-
triggered degradation of PIFs results in a rapid de repression of psy gene expression and a 
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burst in the production of carotenoids in coordination with chlorophyll biosynthesis and 
chloroplast development, leading to an optimal transition to the photosynthetic metabolism 
(Toledo-Ortíz et al., 2010).  
 

 

Fig. 2. Ligh-mediated activation of the signal transduction involved in 

photomorphogenesis in plants. The transition from dark conditions (A) to light conditions 
(B) allows the photosynthetic metabolism. Abbreviations: activated phytochromoe (PHY-
Pr), cryptochrome 1 (CRY1), transcription factor LONG HYPOCOTYL 5 (HY5), constitutive 
photomorphogenic 1 (COP1), phytochrome interacting factor (PIF1), light response element 
(LRE). 

Microarray transcriptome analysis during seedling deetiolation indicated that the majority 

of the gene expression changes elicited by the absence of the PIFs in dark grown pifq 

seedlings (pif1 pif3 pif4 pif5 quadruple mutants) are normally induced by prolonged light in 

wild-type seedlings, such as the induction of numerous photosynthetic genes related to the 

biogenesis of active chloroplasts, auxin, gibberellins (GA), cytokinin and ethylene hormone 

pathway-related genes, potentially mediating growth responses and metabolic genes 

involved in the transition from heterotrophic to autotrophic growth.  

Besides, other functions associated with PIFs have been described as: i) regulating seed 

germination; dormant Arabidopsis seeds require both light activation of the phytochrome 

system and cold treatment (stratification) to induce efficient germination. PIF1 repress 

germination in the dark and exerts this function, at least in part, by repressing the 
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expression of the key GA-biosynthetic genes GA3ox1 and GA3ox2 and promoting the 

expression of the GA catabolic genes. PIF1 also promotes the expression of the abscisic acid 

(ABA)-biosynthetic genes, and represses the expression of the ABA catabolic gene, resulting 

in high ABA levels. PIF4 and PI5 also promote ii) Shade Avoidance Syndrome (SAS); the 

abundance of these proteins increases rapidly upon transfer of white-light grown seedlings 

to simulated shade. Pif4, pif5 and pif4 pif5 mutants have reduced hypocotyl-elongation and 

marker-gene responsiveness to this signal compared with wild type (Leivar & Quail, 2011). 

The cryptochrome CRY, another type of photoreceptor, is also involved in carotenoid light 
mediated gene activation. Phytochrome and cryptochrome signal transduction events are 
coordinated (Casal, 2000); PHYA phosphorylates cryptochrome in vitro (Ahmad et al., 1998) 
and blue and UV-A light trigger the phosphorylation of CRY1 and CRY2 (Shalitin et al., 
2002; Shalitin et al., 2003). CRY1 localizes in the cytoplasm during darkness and when plants 
are exposed to light, CRY1 is exported to the nucleus (Guo et al., 1999; Yang et al., 2000; 
Schepens et al., 2004). CRY2 which belongs to the same family as CRY1, is localized in the 
nucleus of plant cells during both light and dark periods (Guo et al., 1999). Overexpression 
of cry2 in tomato causes repression of lycopene cyclase genes, resulting in an 
overproduction of flavonoids and lycopene in fruits (Giliberto et al. 2005). It has been 
reported that zeaxanthin acts as a chromophore of CRY1 and CRY2, leading to stomatal 
opening when guard cells are exposed to light (Briggs, 1999). The blue/green light absorbed 
by these photoreceptors induces a conformational change in the zeaxanthin molecule, 
resulting in the formation of a physiologically active isomer leading to the opening and 
closing of stomata (Talbott et al., 2002).  
CRY and PHY bind and inactivate COP1 through direct protein-protein contact (Wang et al., 

2001; Seo et al., 2004). COP1 is a ring finger ubiquitin ligase protein associated with the 

signalosome complex involved in protein degradation processes via the 26S proteasome 

(Osterland et al., 2000; Seo et al., 2003). During darkness, COP1 triggers degradation of  

transcription factors committed in light regulation, such as HY5 and HFR1 (Yang et al., 2001; 

Holm et al., 2002; Yanawaga et al., 2004) whose colocalize with COP1 in nuclear bodies and 

are marked for post-translational degradation during repression of photomorphogenesis 

(Ang et al., 1998; Jung et al., 2005). Light promotes conformational changes of COP1, 

inducing the release of photomorphogenic transcription factors. Once these factors are 

released, they accumulate and bind to LREs located in the promoters of genes activated by 

light (Wang et al., 2001;Lin & Shalitin, 2003, Figure 2).  Transgenic tomatoes over expressing 

a Lecop1 RNAi have a reduced level of cop1 transcripts and significantly higher leaf and 

fruit chlorophyll and carotenoid content than the corresponding non-transformed controls 

(Liu et al. 2004),.  

The UV-damaged DNA binding protein 1 (DDB1) and the de-etiolated-1 (DET1) factors are 
also negative regulators of light-mediated gene expression, they interact with COP1 and 
other proteins from the signalosome complex, and lead to ubiquitination of transcription 
factors (Osterlund et al., 2000; Yanawaga et al., 2004). Post transcriptional gene silencing of 
det1 leads to an accumulation of carotenoids in tomato fruits (Davuluri et al., 2005).  Highly 
pigmented tomato mutants, hp1 and hp2 display shortened hypocotyls and internodes, 
anthocyanin accumulation, strongly carotenoid colored fruits and an excessive response to 
light (Mustilli et al., 1999). HP1 and HP2 encode the tomato orthologs of DDB1 and DET1 in 
A. thaliana, respectively (Liu et al., 2004). Carotenoid biosynthesis in hp2 mutants increased 
during light treatments, due to the inactivation of the signalosome, decreasing the 
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ubiquitination of transcription factors involved in phytochrome/cryptochrome transduction 
mechanisms. 
The involvement of other photoreceptors such as phototropins, phytochrome C and E or 
CRY2 in the activation of carotenogenic genes has been evaluated through mutants. PhyC 
mutants, revealed that PHYC is involved in photomorphogenesis throughout the life cycle 
of A. thaliana playing a role in the perception of day length and acting with PHYB in the 
regulation of seedling de-etiolation in response to constant red light (Monte et al., 2003). As 
outlined above, regulation of light-mediated gene expression at the transcriptional level is 
the key mechanism controlling carotenogenesis in the plastids. Nonetheless, Schofield & 
Paliyath (2005) demonstrated post-translational control of PSY mediated by phytochrome. 
In red light exposed seedlings, PHY is activated which lead to an increase in PSY activity 
(Schofield & Paliyath, 2005). Therefore, light by means of photoreceptors, regulates 
carotenoid biosynthesis through transcriptional and post-transcriptional mechanisms.  

3.2 Carotenoid and chlorophyll biosynthesis are simultaneously regulated 

As mentioned previously, carotenoids carry out an essential function during photosynthesis 
in the antennae complexes of chloroplasts from green organs. Therefore, the regulation of 
the biosynthesis of chlorophyll and carotenoid biosynthesis are associated in photosynthetic 
organs (Woitsch & Römer, 2003; Joyard et al., 2009).  
The photosynthetic machinery is composed of large multisubunit protein complexes 

composed of both plastidial and nuclear gene products, therefore a proper coordination and 

regulation of photosynthesis-associated nuclear genes (PhANG) and photosynthesis-

associated plastidic genes is thought to be critical for proper chloroplast biogenesis. Light 

and plastidial signals trigger PhANG expression using common or adjacent promoter 

elements. A plastidial signal may convert multiple light signaling pathways, that perceive 

distinct qualities of light, from positive to negative regulators of some but not all PhANGs. 

Part of this remodeling of light signaling networks involves converting HY5, a positive 

regulator of PhANGs, into a negative regulator of PhANGs. In addition, mutants with 

defects in both plastid-to-nucleus and CRY1 signaling exhibited severe chlorophyll 

deficiencies. 

Thus, the remodeling of light signaling networks induced by plastid signals is a mechanism 

that permits chloroplast biogenesis through the regulation of PhANG expression (Rucke et 

al., 2007)  

White light induces a moderate stimulation of the expression of ppox, that encodes for 
protophorphirine oxidase (PPOX), an enzyme involved in chlorophyll biosynthesis, and 
simultaneously induces the expression of several carotenogenic genes (lcy┚, c┚hx, 
violaxanthin de-epoxidase (vde) and zeaxanthin epoxidase (zep) genes). In addition, the psy 
gene, the fundamental gene that controls the biosynthesis of carotenoids, is co-expressed 
with photosynthetic genes that codify for plastoquinone, NAD(P)H deshydrogenase, 
tiorredoxin, plastocianin and ferredoxin  (Meier et al, 2011). Moreover, according to the 
induction of carotenogenic genes during de-etiolation, chloroplyll genes are also induced 
(Woitsh & Römer, 2003) and the inhibition of lycopene cyclase with 2-(4 chlorophenylthio- 
triethyl-amine (CPTA) leads to accumulation of non-photoactive protochlorophyllide a (La 
Rocca et al., 2007). Also, PIF1 has been shown to bind to the promoter of PORC gene 
encoding Pchilide oxidoreductase whose activity is to convert Pchlide into chlorophylls 
(Moon et al., 2008).   
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Chlorophyll and carotenoid biosynthesis are also regulated indirectly by light through the 
redox potential generated during photosynthesis. In this process, plastoquinone acts as a 
redox potential sensor responsible for the induction of carotenogenic genes, indicating that 
the biosynthesis of carotenoids is under photosynthetic redox control (Jöet et al., 2002; 
Steinbrenner & Linden, 2003; Woitsch & Römer, 2003).  
Different experimental approaches were used to determine the regulatory mechanism in 
which carotenoid and photosynthetic components are involved to determine the chloroplast 
biogenesis. Arabidopsis pds3 knockout mutant, or plants treated by norflurazon (NF) exert 
white tissues (photooxidized plastids) due to inactivation of PDS. The immutans (im) 
variegation mutant, that has a defect in plastoquinol terminal oxidase IMMUTANS (IM) 
termed PTOX that transfers electrons from the plastoquinone (PQ) pool to molecular 
oxygen, presents variegated leaves. Considering the PQ pool as a potent initiator of 
retrograde signaling, a plausible hypothesis is that PDS activity exerts considerable control 
on excitation pressure, especially during chloroplast biogenesis when the photosynthetic 
electron transport chain is not yet fully functional and electrons from the desaturation 
reactions of carotenogenesis cannot be transferred efficiently to acceptors downstream of the 
PQ pool (Foudree et al., 2010). 
Several different types of electronic interactions between carotenoids and chlorophylls have 
been proposed to play a key role as dissipation valves for excess excitation energy.  
In Arabidopsis, the carotenoids–chlorophyll interactions parameter correlates with the 
nonphotochemical quenching (NPQ), and the fluorescence quenching of isolated major 
light-harvesting complex of photosystem II (LHCII). During the regulation of 
photosynthesis, the carotenoids excitation occurs after selective chlorophylls excitation.  
Furthermore, the new possibility to quantify the carotenoids–chlorophyll interactions in real 
time in intact plants will allow the identification of the exact site of these regulating 
interactions, using plant mutants in which specific chlorophyll and carotenoide binding sites 
are disrupted (Bode et al., 2009). 

3.3 Regulation of carotenoid expression in photosynthetic organs 

Light is a stimulus that activates a broad range of plant genes that participate in 

photosynthesis and photomorphogenesis. Carotenoids are required during photosynthesis 

in plants and algae and therefore, genes that direct the biosynthesis of carotenoids in these 

organisms are also regulated by light (von Lintig et al., 1997; Welsch et al., 2000; Simkin et 

al., 2003; Woitsch & Römer, 2003, Ohmiya et al., 2006; Briggs et al., 2007). 

The process of de-etiolation of leaves has been used to compare the levels of carotenoids and 

gene expression in dark-grown plants versus plants that were transferred to light after being 

in darkness. During de-etiolation of A. thaliana, the expression of ggpps and pds genes are 

relatively constant, whereas expression of the single copy gene, psy and hdr are significantly 

enhanced (von Lintig et al., 1997; Welsch et al., 2000, Botella-Pavía et al., 2004). Evidence 

indicates that the transcriptional activation of psy, dxs and dxr is essential for the induction of 

carotenoid biosynthesis in green organs (Welsch et al., 2003; Toledo-Ortiz et al., 2010).  

During de-etiolation of tobacco (Nicotiana tabacum) and pepper, xanthophyll biosynthesis 
genes are transcriptionally activated after 3 or 5 h of continuous white-light illumination 

(Simkin et al., 2003; Woitsch & Römer, 2003). In A. thaliana and tomato, lcy mRNA 
expression increases 5 times when seedlings are transferred from a low light to a high light 
environment (Hirschberg, 2001). With the onset of red, blue or white light illumination, 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

86

significant induction of the expression of carotenogenic genes was documented in etiolated 
seedlings of tobacco, regardless of the light quality used (Woitsch & Römer, 2003). The 
expression level was dependent of phytochrome and cryptochrome activities. However, 
considerable differences in expression levels were observed with respect to the type of light 
used to irradiate the seedlings. For example, psy gene expression was significantly induced 
after continuous red and white light illumination, pointing to an involvement of different 
photoreceptors in the regulation of their expression (Woitsch & Römer, 2003). PHY is 
involved in mediating the up-regulation of psy2 gene expression during maize (Zea mays) 

seedling photoinduction (Li et al, 2008). Also Lcy, cβhx and vde are induced upon red light 
illumination. However, zep shows similar transcriptional activation in the presence of red or 
blue light (Woitsch & Römer, 2003). 
Compared to normal carotenogenic gene induction mediated by light, the contribution of 

photo-oxidation to the amount of carotenoids produced in leaves is also important. 

Carotenoids are synthesized during light exposure but when light intensity increases from 

150 to 280 mol/m2/s, the rate of photo oxidation is higher than the rate of synthesis and 

carotenoids are destroyed, reaching a certain basal level (Simkin et al., 2003). The level of 

expression of some carotenogenic genes is also reduced following prolonged illumination at 

moderate light intensities (Woitsch & Römer, 2003). During darkness, when photo oxidation 

of carotenoids does not occur, biosynthesis of carotenoids in leaves is stopped due 

principally to the very low level of expression of carotenogenic genes. In C. annum, psy, pds, 

zds and lcy genes are down regulated in darkness (Simkin et al., 2003) while in A. thaliana 

the psy and hdr are active in darkness only at basal levels (Welsch et al., 2003, Botella-Pavía 

et al., 2004).  

3.4 Effect of light in non-photosyntetic organs  

Light has not only been analysed in photosynthetic tissue as a regulatory agent. In actual 
fact, light effect on carotenogenic pathway has been report in a number of species during 
physiological processes like fruit ripening and flower development (Zhu et al., 2003; 
Giovanonni, 2004; Adams-Phillips et al., 2004; Ohmiya et al., 2006). 
In tomato, normal pigmentation of the fruits requires phytochrome-mediated light signal 
transduction, a process that does not affect other ripening characteristics, such as flavor 
(Alba et al., 2000). During tomato fruit ripening, carotenoid concentration increases 10 to 14 
times, due mainly to accumulation of lycopene (Fraser et al., 1994). An increase in the 
synthesis of carotenoids is required during the transition from mature green to orange in 
tomato fruits. During this process, a coordinated upregulation of dxs, hdr, pds and psy1 is 

observed, whilst at the same time the expression of lcy, cyc and lcy decreased (Fraser et 
al., 1994; Pecker et al., 1996; Ronen et al., 1999; Lois et al., 2000; Botella-Pavía et al., 2004). 

Two lcy genes have been identified in tomato, cyc and lcy. The first is responsible for 

carotenoid biosynthesis in chromoplasts whereas lcy performs this role preferentially in 

chloroplasts (Ronen et al., 1999). The down regulation of lcy and cyc in tomato during 
ripening leads to an accumulation of lycopene in chromoplasts of ripe fruits (Pecker et al., 

1996; Ronen et al., 1999). In C. annuum, lcy is constitutively expressed during fruit ripening 

leading to an accumulation of -carotene and the red-pigmented capsanthin (Hugueney et 
al., 1995). The psy gene also plays a considerable role in controlling carotenoid synthesis 
during fruit development and ripening (Fraser et al., 1999, Giuliano et al., 1993) and during 
flower development (Zhu et al., 2002, Zhu et al., 2003). In tomato, two distantly-related 
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genes, psy1 and psy2 code for phytoene synthase, and the former was found to be 
transcriptionally activated only in petals and ripening tomato fruits after continuous blue 
and white-light illumination (Welsch et al., 2000; Schofield & Paliyath, 2005; Giorio et al., 
2008). Transgenic tomato plants expressing an antisense fragment of psy1 showed a 97% 
reduction in carotenoid levels in the fruit, while leaf carotenoids remained unaltered due to 
the expression of psy2 (Fraser et al., 1999). psy2 is expressed in all plant organs, preferentially 
in tomato leaves and petals (Giorio et al., 2008), but in green or ripe fruits it is only 
expressed at low levels (Bartley & Scolnik, 1993; Fraser et al., 1999; Giorio et al., 2008). psy1 is 
also induced in the presence of ethylene, the major senescence hormone implicated in fruit 
ripening, indicating that PSY is a branch point in the regulation of carotenoid synthesis (Lois 
et al., 2000).  
Evidence emphasizing the importance of light effectors during fruit ripening and carotenoid 
accumulation was obtained through post-transcriptionally silencing of negative regulators 
of light signal transduction such as HP1 and HP2, as described above (Mustilli et al., 1999, 
Liu et al., 2004, Giovannoni, 2004). These high–pigment tomato mutants (hp1 and hp2) have 
increased total ripe fruit carotenoids and are hypersensitive to light, having little effect on 
other ripening characteristics,  similar to transgenic tomato plants that overexpress CRY 
(Davuluri et al., 2004; Giliberto et al. 2005).  
The up regulation of carotenoid gene expression during ripening has also been reported in 

other species. In Japanese apricot (Prunus mume) psy, lcy, cβhx and zep transcripts 
accumulate in parallel with the synthesis of carotenoids (Kita et al., 2007). In juice sacs of 
Satsuma mandarin (Citrus reticulata), Valencia orange (C. sinensis) and Lisbon lemon (C. 
limon) the expression of carotenoid biosynthetic genes such as CitPSY, CitPDS, CitZDS, 
CitLCYb, CitHYb, and CitZEP increases during fruit maturation, co-ordinately with the 
synthesis of carotenes and xanthophylls (Kato et al., 2004). In citrus of the “Star Ruby” 
cultivar, the high level of lycopene was correlated with a decrease in CβHx and lcyb2 
expression, genes associated to the synthesis of carotenoids in chromoplast (Alquezar et al., 
2009). In G. lutea analysis of the expression of carotenogenic genes during flower 
development and in different plant organs indicated that psy was expressed in flowers 
concomitant with carotenoid synthesis but not in stems and leaves (Zhu et al., 2002).  
Carotenoids are also present in amyloplasts of potato and cereal seeds such as maize and 
wheat (Triticum aestivum; Panfili et al., 2004, Howitt & Pogson 2006; Nesterenko & Sink, 
2003). Both potatoes and cereals accumulate low levels of carotenoid in the dark 
(Nesterenko and Sink, 2003) in contrast to the highly pigmented modified root of carrots.  
Daucus carota L. (carrot, 2n=18) is a biennal plant whose orange storage or modified root is 

consumed worldwide. Orange carrot contains high levels of -carotene and -carotene (8 
mg/g dry weight, Fraser, 2004) that together constitute up to 95% of total carotenoids in the 
storage root Baranska et al., 2006). The kinetics of the transcript accumulation of some of the 
carotenogenic genes correlates with total carotenoid composition during the development of 
storage roots grown in the dark (Clotault et al., 2008).  
We are focused in the study of carotenoid regulation in this novel plant model, taken in 
account that carotenoids in carrot are synthesized in leaves exposed to light, and also in the 
storage root that develops in darkness. All carotenogenic genes in carrot are expressed in 
both, leaves and roots during plant development, but the expression level is higher in leaves  
maybe due the faster exchange rate of carotenoids during photosynthesis (Beisel y et al., 
2010). Lcyb1 gene presents the higher increase in transcript level during leaves development 
and the paralogous genes, psy1 and psy2 are differentially expressed during development.  
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In roots, the expression of almost all carotenogenic genes are induced during storage root 
development and it correlates with carotenoid accumulation. In this organ carotenoids are 
stored in plastoglobuli in the chromoplasts, where they are more photo-stable than in 
chloroplasts (Merzlyak & Solovchenko, 2002). Therefore, photo-oxidation does not affect 
carotenoid content in these organs, even when they are exposed to light.  
When roots were exposed to light, they did not develop normally and the expression of 

almost all genes differs from the pattern obtained in dark-grown roots during development 

(Figure 3A). In addition, the roots developed in the presence of light have the same 

carotenoid composition and amount as in leaves (Stange et al., 2008; Fuentes et al., 2011 in 

preparation). The thin non-orange carrot root also accumulates chloroplasts instead of 

chromoplasts, as leaves, and the carotenoid gene expression profile is almost the same as 

those expressed in the photosynthetic organ.  

 

 

+++: high gene expression level, ++: middle gene expression level, +: low gene expression level. : 

expression increases during development, : expression decreases during development 

Fig. 3. Light affects morphology and carotenogenic gene expression in carrot roots A; a 
comparison of carotenogenic gene expression in roots under light (R/L) and dark (R/D) 
conditions during the developmental process from 4 weeks to 12 weeks. Abbreviations: 
phytoene synthase 1 (psy 1), phytoene synthase 2 (psy 2), phytoene desaturase (pds), ┞-
carotene desaturase 1 (zds1), ┞-carotene desaturase 2 (zds2), lycopene ┚ cyclase 1 (lcyb1), 
Develoment (Develop). B; changes in the phenotype of a 8 weeks old carrot root grown in 
light (R/L) and then transferred to dark conditions (R/D) until 12 weeks and 24 weeks. The 
root normal development is inhibited by light in a reversible manner (Modified from Stange 
et al., 2008).   

Also, when the carrot root of an 8 weeks old plant was transferred from light to darkness, 
the root started to develop (Figure 3B). Therefore, light alters the morphology and 
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development of carrot modified roots in a reversible manner (Stange et al., 2008). Light 
inhibited storage root development, possibly because some transcriptional or growth 
factors are repressed, although more extensive studies are needed to investigate this 
phenomenon. 

4. Conclusion 

Light induces photomorphogenesis, chlorophyll and carotenoid biosynthesis through the 
signal transduction mediated by photoreceptors such as PHYA, PHYB and CRY in 
photosynthetic organs. At present, the principal components involved in the carotenogenic 
pathway have been described in many plant models, but fundamental knowledge regarding 
to the regulation is still necessary. In fact, psy gene may be the rate limiting step on 
carotenoid biosynthesis in leaves and also in chromoplasts accumulating organs. In 
addition, the highly regulated machinery on carotenoid biosynthesis can also be displayed 
through the organ specificity associated with carotenogenic gene function and their 
correlation with chlorophyll biosynthesis.  
New strategies aimed to elucidate the regulation of carotenoid pathway could be associated 
with transcriptome analysis which could provide insights into regulatory branch points of 
the pathway. Conventional studies focused on the identification and characterization of 
carotenogenic gene promoters could also help to understand the regulation of the 
expression of the genes in photosynthetic and in non-photosynthetic organs. In fact, light 
responsive elements (LRE) in such promoters could be associated with transcription factors 
involved in carotenogenic and chlorophyll gene expression.  On the other hand, research 
focused in the adjustment of the light- mediated signal transduction machinery would also 
be an effective metabolic approach for modulating chlorophyll and fruit carotenoid 
composition in economically valuable plants. 

5. Acknowledgements 

Acknowledgements to the Chilean Grant Fondecyt 11080066 

6. References  

Adams-Philips, L.; Barry, C. & Giovannoni, J. (2004). Signal transduction system regulating 
fruit ripening. Trends Plant Sci, Vol.9, No.7, (July 2004), pp. 331-338. 

Ahmad, M.; Jarillo, JA.; Smirnova O. & Cashmore, AR. (1998). The CRY1 blue light 
photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell, 
Vol.1, No.7, (June 1998), pp. 939–948. 

Alba, R.; Cordonnier-Pratt MM. & Pratt LH. (2000). Fruit localized phytochromes regulate 
lycopene accumulation independently of ethylene production in tomato. Plant 
Physiol, Vol.123, No.1, (May 2000), pp. 363-370. 

Alquézar, B.; Zacarías, L. & Rodrigo, MJ. (2009). Molecular and functional characterization 
of a novel chromoplast-specific lycopene ┚-cyclase from Citrus and its relation to 
lycopene accumulation. Journal of Experimental Botany, Vol.60, No.6, (March 2009), 
pp.1783-97. 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

90

Aluru, M.; Xu, Y.; Guo, R.; Wang, Z.; Li, S.; White, W. & Rodermel, S. (2008). Generation of 
transgenic maize with enhanced provitamin A content. J Exp Bot, Vol.59, No.13, 
(Agust 2008), pp.3551-62. 

Ang, LH.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A. & Deng, XW. 
(1998). Molecular interaction between COP1 and HY5 defines a regulatory switch 
for light control of Arabidopsis development. Mol Cell, Vol.1, No.2, (January), 
pp.213-222.  

Apel, R.; Rock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic 
Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiol, 
Vol.151, No.1, (September 2009), pp.59-66.   

Averina, NG. (1998). Mechanism of regulation and interplastid localization of chlorophyll 
biosynthesis. Membr. Cell Biol., Vol.12, No.5, pp.627-643. 

Bae, G. & Choi, G. (2008). Decoding of light signals by plant phytochromes and  their 
interacting proteins. Annu Rev Plant Biol, Vol.59, (June 2008), pp.281-311. 

Ballesteros, ML.; Bolle, C.; Lois, LM.; Moore, JM.; Vielle-Calzada, JP.; Grossniklaus, U. & 
Chua, N. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. 
Genes Dev.  , Vol.15, No.19, (October), pp.2613–25. 

Baranska M, Baranski R, Schulz H, Nothnagel T. (2006). Tissue-specific accumulation of 
carotenoids in carrot roots. Planta, Vol.224, No.5, (October 2006), pp. 1028-37. 

Baroli, I. & Nigoyi, KK. (2000). Molecular genetics of xanthophylls-dependent 
photoprotection in green alge and plants. Philos Trans R Soc Lond B Biol Sci. Vol.355, 
No.1402, (October 2000), pp.1385–94. 

Bartley, G. & Scolnik, P. (1993). cDNA cloning expression during fruit development and 
genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J 
Biol Chem, Vol.268, No.34, (December 1993), pp.25718-21. 

Bartley, G. & Scolnik, P. (1995). Plant carotenoids: pigments for photoprotection, visual 
attraction and human health. Plant Cell, Vol.7, No.7, (July 1995), pp.1032. 

Beisel, KG.; Jahnke, S.; Hofmann, D.; Köppchen, S.; Schurr, U. & Matsubara, S. (2010). 
Continuous turnover of carotenes and chlorophyll a in mature leaves of 
Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol, Vol.152, No.4, 
(April 2010), pp.2188 - 99. 

Bode, S.; Quentmeier, C.; Liao, P.; Hafi, N.; Barros, T.; Wilk, L,; Bittner, F.; & Walla, PJ. 
(2009). On the regulation of photosynthesis by excitonic interactions between 
carotenoids and chlorophylls. Proc Natl Acad Sci U S A, Vol.106, No.30, (June 2009), 
pp. 12311–12316. 

Botella-Pavía, P.; Besumbes, O.; Phillips, M.; Carretero-Paulet, L.; Boronat, A. & Rodríguez-
Concepción, M. (2004). Regulation of carotenoid biosynthesis in plants: evidence 
for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the 
supply of plastidial isoprenoid precursors. Plant Cell, Vol.40, No.2, (October 2004), 
pp.188–199. 

Breimer, L. (1990). Molecular mechanisms of oxygen radical carcinogenesis and 
mutagenesis: the role of DNA base damage. Mol. Carcinog., Vol.3, No.4, pp.188-197. 

Briggs, W.; Tseng, T.S.; Cho, H-T.; Swartz, T.; Sullivan, S.; Bogomolni, R.; Kaiserli, E. & 
Christie, J. (2007). Phototropins and their LOV domains: versatile plant blue-light 
receptors. J Integr Plant Biol, Vol.49, No.1, (January 2007), pp.4-10. 

www.intechopen.com



 
Carotenoids and Photosynthesis - Regulation of Carotenoid Biosyntesis by Photoreceptors 

 

91 

Briggs, W. & Olney, M. (2001). Photoreceptors in plant photomorphogenesis to date. Five 
phytochromes, two Cryptochromes, one phototropin, and one superchrom. Plant 
Physiol., Vol.125, No.1, (January 2001), pp.85-88. 

Briggs, W. (1999). Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol, Vol.15, 
(November 1999), pp.33-62.  

Britton, G. (1995). Regulation of carotenoid formation during tomato fruit ripening and 
development. J Exp Bot, Vol.53, No.377, (October 1995), pp.2107-2113.  

Britton G. (Ed.), Liaaen-Jensen S. (Ed.), Pfander H. (Ed.) (1998). Carotenoids: Biosynthesis and 
Metabolism (1 edition), Birkhauser Basel, ISBN-10: 3764358297, Switzerland. 

Casal, JJ. (2000). Phytochromes, Cryptochromes, phototropin: Photoreceptor interaction in 
plants. Photochem Photobiol, Vol.71, No.1, (May 2000), pp.1–11. 

Cazzonelli, CI. & Pogson, BJ. (2010). Source to sink: regulation of carotenoid biosynthesis in 
plants. Trends Plant Sci, Vol.15, No.5, (May 2010), pp. 266 - 274.  

Chen, Y.; Li, F. & Wurtzel, E. (2010) Isolation and Characterization of the S-ISO Gene 
Encoding a Missing Component of Carotenoid Biosynthesis in Plants. Plant Physiol, 
Vol. 153, (May 2010) pp. 66-79.  

Clotault J.; Peltier, D.; Berruyer, R.; Thomas, M.; Briard, M. & Geoffriau, E. (2008). 
Expression of carotenoid biosynthesis genes during carrot root development. J Exp 
Bot, Vol.59, No.13, (Agust 2008), pp.3563-73 

Crozier, A.; Kamiya, Y.; Bishop, G. & Yolota, T. (2000). Biosynthesis of hormone and elicitor 
molecules. Pages 865-872. In: B. Buchanan, W. Gruissem, & R. Jones (eds.), 
Biochemistry and Molecular Biology of Plants. American Society of Plant 
Physiologist.  

Cunningham, FX. & Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in 
plants. Annu Rev Plant Physiol Plant Mol Biol, Vol.49, (June 1998), pp.557-583. 

Cunningham, FX. (2002). Regulation of carotenoid synthesis and accumulation in plants. 
Pure Appli Chem, Vol.74, No., (8), pp.1409-17. 

Davuluri,  GR.; Van Tuinen, A.; Mustilli, AC.; Manfredonia, A.; Newman, R.; Burgess, D.; 
Brummell, DA.; King, SK.; Palys, J.; Uhlig, J.; Pennings, HM. & Bowler, C. (2004). 
Manipulation of DET1 expression in tomato results in photomorphogenic 
phenotypes caused by post-transcriptional gene silencing. Plant J, Vol.40, No.3, 
(November 2004), pp.344-354. 

Esterbauer, H.; Gebiki, J.; Puhl, H. & Jurgens, G. (1992). The role of lipid peroxidation and 
antioxidants in oxidative modification of LDL. Free Radic Biol Med, Vol.13, No.4, 
(October 1992), pp.341-391. 

Flügge, UI. & Gao, W. (2005). Transport of isoprenoid intermediates across chloroplast 
envelope membranes. Plant Biol, Vol.7, No.1, (January 2005), pp. 97-97. 

Franklin, KA.; Larner, VS. & Whitelam, GC. (2005). The signal transducing photoreceptor of 
plants. Int. J. Dev. Biol., Vol.49, No.5-6, pp.653-664. 

Franklin, K.; T. Allen, & G. Whitelam. (2007). Phytochrome A is an irradiance-dependent red 
light sensor. Plant J, Vol.50, No.1, (April 2007), pp.108-117. 

Fraser, PD.; Truesdale, MR.; Bird, CR.; Schuch, W. & Bramley PM. (1994). Carotenoid 
biosynthesis during tomato fruit development. Plant Physiol., Vol.105, No.1, (May 
1994), pp.405-413. 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

92

Fuentes, P.; Pizarro, L.; Handford, M.; Rodriguez-Concepción, M.& Stange C (2011). Light-
dependent changes in plastid differentiation influence carotenoid gene expression 
and accumulation in carrot roots.Plant Mol. Biol , under evaluation, July 2011 

Foudree, A.; Aluru, M.; & Rodermel, S. (2010). PDS activity acts as 
a rheostat of retrograde signaling during early chloroplast biogenesis. Plant Signal 
Behav, Vol.5, No.12, (December 2010), pp. 1629–1632 

Giliberto, L.; Perrotta, G.; Pallara, P.; Weller, JL.; Fraser, PD.; Bramley, PM.; Fiore, A.; 
Tavazza, M. & Giuliano, G. (2005). Manipulation of the blue light photoreceptor 
cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit 
antioxidant content. Plant Physiol., Vol.137, No.1, (January 2005), pp.199-208. 

Giorio, G.; Stigliani, AL. & D’ambrosio, C. (2008). Phytoene synthase genes in tomato 
(Solanum lycopersicum L.) – new data on the structures, the deduced amino acid 
sequences and the expression patterns. FEBS J., Vol.275, No.3, (February 2008), 
pp.527–535. 

Giovannoni, JJ. (2004). Genetic regulation of fruit development and ripening. Plant Cell, 
Vol.16, Suppl.1, (June 2004), pp.S170-S180.  

Giuliano, G.; Bartley, GE. & Scolnik, PA. (1993). Regulation of carotenoid biosynthesis 
during tomato development. Plant Cell, Vol.5, No.4, (April 1993), pp.379-387. 

Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 
Vol.57, (June 2006), pp.761-780. 

Guo, H.; Duong, H.; Ma, N. & Lin, C. (1999). The Arabidopsis blue light receptor 
cryptochrome 2 is a nuclear protein regulated by a blue light-dependent 
posttranscriptional mechanism. Plant J, Vol.19, No.3, (August 1999), pp.279-287. 

Hirschberg, J. (2001). Carotenoids biosynthesis in flowering plants. Curr Opin Plant Biol, 
Vol.4, No.3, (June 2001), pp.210-218. 

Holm, M.; Ma, LG.; Qu, LJ. & Deng, XW. (2002). Two interacting bZIP proteins are direct 
targets of COP1-mediated control of light dependent gene expression in 
Arabidopsis. Genes Dev.  , Vol.16, No.10, (May 2002), pp.1247–59. 

Howitt, CA.; & Pogson, BJ. (2006). Carotenoid accumulation and function in seeds and non-
green tissues. Plant Cell Environ., Vol.29, No.3, (March 2006), pp.435-445. 

Hugueney P, Badillo A, Chen HC, Klein A, Hirschberg J, Camara B, Kuntz M. (1995). 
Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic 
pathway in Capsicum annuum chromoplasts. Plant J, Vol.8, No.3, (September 
1995), pp. 417-424. 

Huq, E.; Al-sady, B. & Quail, PH. (2003). Nuclear translocation of the photoreceptor 
phytochrome B is necessary for its biological function in seedling 
photomorphogenesis. Plant J, Vol.35, No.5, (September 2003), pp.660–664. 

Isaacson, T.; Ohad, I.; Beyer, P. & Hirschberg, J. (2004). Analysis in vitro of the enzyme 
CRTISO establishes a poly-cis-carotenoid pathway in plants. Plant Physiol., Vol.136, 
No.4, (December 2004), pp.4246-4255. 

Joët, T.; Genty, B.; Josse, EM.; Kuntz, M.; Cuornac, L. & Peltier, G. (2002). Involvement of a 
plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of 
the Arabidopsis thaliana enzyme in tobacco. J Biol Chem, Vol.277, No.35, (August 
2002), pp.31623-31630. 

www.intechopen.com



 
Carotenoids and Photosynthesis - Regulation of Carotenoid Biosyntesis by Photoreceptors 

 

93 

Joyard, J.; Ferro, M.; Masselon, C.; Seigneurin-Berny, D.; Salvi, D.; Garin, J. & Rolland, N. 
(2009) Chloroplast Proteomics and the Compartmentation of Plastidial Isoprenoid 
Biosynthetic Pathways. Molec Plant, Vol. 2, No. 6, (November 2009), pp. 1154-80  

Jung, IC.; Yang, JY.; Seo, HS. & Chua, NH. (2005). HFRA is target by COP1 E3 ligase for 
post-transcriptional proteolysis during phytochrome A signaling. Genes Develop, 
Vol.19, No.5, (March 2005), pp.593-602. 

Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiura, M.; Hyodo, H. & Yano, M. (2004). 
Accumulation of carotenoids and expression of carotenoid biosynthetic genes 
during maturation in citrus fruit. Plant Physiol., Vol.134, No.2, (February 2004),  

Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. (2006). Carotenoid cleavage 
dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum 
petals. Plant Physiol, Vol 142, No.3, (November 2006), pp. 1193 -201. 

Krinsky, NI.; Wang, XD.; Tang, G. & Russell, RM. (1994). Cleavage of ┚-carotene to retinoid. 
In book: in: Retinoids: From Basic Science to Clinical Applications (Livrea, MA & 
Vidali, G, Eds.) pp. 21-28, Birkhaüser, Basel , Alemania. ISBN 3-7643-2812-6 

La Rocca N, Rascio N, Oster U, Rüdiger W. (2007). Inhibition of lycopene cyclase results in 
accumulation of chlorophyll precursors.  Planta, Vol.255, No.4, (March 2007), 
pp.1019-29. 

Lange, BM. & Ghassemian, M. (2003). Genome organization in Arabidopsis thaliana: a 
survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol 
Biol, Vol.51, No.6, (April 2003), pp.925-948. 

Leivar P., & Quail, PH. (2011) PIFs: pivotal components in a cellular signaling hub. Trends 
Plant Sci, Vol.16, No.1, (January 2011), pp.19-28.  

Leivar, P.; Tepperman, J.M.; Monte, E.; Calderon, R.H.; Liu, T.L.; Quail, P.H. (2009) 
Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of 
PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings. 
Plant Cell, Vol.21, No.11, (November 2009), pp.3535-53. 

Li, F.; Vallabhaneni, R. & Wurtzel, L. (2008). PSY3, a new member of the phytoene synthase 
gene family conserved in the poaceae and regulator of abiotic stress-induced root 
carotenogenesis. Plant Physiol, Vol.146, No.3, (March 2008), pp.1333-45. 

Lin, C. & Shalitin, D. (2003). Cryptochrome structure and signal transduction. Annu Rev 
Plant Biol, Vol.54, (June 2003), pp.469-96. 

Liu, Y.; Roof, S.; Ye, Z., Barry, C.; van Tuinen, A.; Vrebalov, J.; Bowler, C. & Giovannoni, J. 
(2004). Manipulation of light signal transduction as a means of modifying fruit 
nutritional quality in tomato. Proc Natl Acad Sci USA, Vol.101, No.26, (June 2004), 
pp.9897-9902 

Lois, L.; Rodriguez, C.; Gallego, F.; Campos, N. & Boronat, A. (2000). Carotenoid 
biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-
xylulose 5-phosphate synthase. Plant J, Vol.22, No.6, (June 2000), pp.503-513. 

Meier, S.; Tzfadia, O.; Vallabhaneni, R.; Gehring, C. & Wurtzel, ET. (2011). A transcriptional 
analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes 
during development and osmotic stress responses in Arabidopsis thaliana. BMC 
Syst Biol, Vol. 5, No.77, (May 2011), pp. 1-19. 

Merzlyak, MN. & Solovchenko, AE. (2002). Photostability of pigments in ripening apple 
fruit: a possible photoprotective role of carotenoids during plant senescence. Plant 
Sci, Vol.163, No.4, (October 2002), pp.881-888. 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

94

Monte, E.; Alonso, JM.; Ecker, JR.; Zhang, Y.; Li, X.; Young, J.; Austin-Phillips, S. & Quail, 
PH. (2003). Isolation and characterization of phyC mutants in Arabidopsis reveals 
complex crosstalk between phytochrome signaling pathways. Plant Cell, Vol.15, 
No.9, (September 2003), pp.1962-80. 

Moon, J.; Zhu, L.; Shen, H., & Huq, E. (2008) PIF1 directly and indirectly regulates 
chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl 
Acad Sci U S A, Vol.105, No.27, (Lujy 2008), pp.9433-38. 

Mustilli, A.; Fenzi, F.; Ciliento, R.; Alfano, F. & Bowler, C. (1999). Phenotype of tomato high 
pigment-2 mutants is caused for a mutation in the tomato homolog of Deetiolated1. 
Plant Cell, Vol.11, No.2, (February 1999), pp.145-157. 

Nagatani, A. (2004). Light-regulated nuclear localization of phytochromes. Curr Opin Plant 
Biol, Vol.7, No.6, (December 2004), pp.708-711. 

Nesterenko, S. & Sink, KC. (2003). Carotenoid profiles of potato breeding lines and selected 
cultivars. HortScience, Vol.38, No.6, (October 2003), pp.1173-77. 

Osterlund, MT.; Hardtke, CS.; Wei, N. & Deng, XW. (2000). Targeted destabilization of HY5 
during light-regulated development of Arabidopsis. Nature, Vol.405, No.6785, (May 
2000), pp.462–466. 

Panfili, G.; Fratianni, A. & Irano, M. (2004). Improved normal-phase high-performance 
liquid chromatography procedure for the determination of carotenoids in cereals. J 
Agric Food Chem, Vol.52, No.21, (October 2004), pp.6373-6377. 

Pecker, I.; Gubbay R.; Cunningham, FX. & Hirshberg, J. (1996). Cloning and characterization 
of the cDNA for lycopene beta-cyclase from tomato reveal a decrease in its 
expression during tomato ripening. Plant Mol Biol, Vol.30, No.4, (February 1996), 
pp.806-819. 

Rao, AV. & Rao, LG.. (2007). Carotenoids and human health. Pharmacological Res, Vol.55, 
No., (March 2007), pp.207-216. 

Römer, S & Fraser, PD. (2005). Recent advances in carotenoid biosynthesis, regulation and 
manipulation. Planta, Vol.221, No., (June 2005), pp.305-308. 

Ronen, G.; Cohen, M.; Zamir, D. & Hirshberg, J. (1999). Regulation of carotenoid 
biosynthesis during tomato fruit development: expression of gene for lycopene 
epsilon cyclase is down regulated during ripening and is elevated in the mutant 
delta. Plant J, Vol.17, No.4, (February 1999), pp.341-351.  

Ruckle, ME.; DeMarco, SM. Larkin RM. (2007). Plastid Signals Remodel Light Signaling 
Networks and Are Essential for Efficient Chloroplast Biogenesis in Arabidopsis. 
The Plant Cell, Vol.19, (December 2007), pp.3944-60. 

Schepens, I.; Duek, P. & Fankhauser, C. (2004). Phytochrome-mediated light signaling in 
Arabidopsis. Curr Opin Plant Biol, Vol.7, No.5, (October 2004), pp.564–569. 

Schofield, A. & Paliyath, G. (2005). Modulation of carotenoid biosynthesis during tomato 
fruit ripening through phytochrome regulation of phytoene synthase activity. Plant 
Physiol Biochem, Vol.43, No.12, (December 2005), pp.1052-1060. 

Schmid, VH. (2008). Light-harvesting complexes of vascular plants. Cell Mol Life Sci, Vol.65, 
No.22, (November 2008), pp.3619-3639 

Seo, HS.; Yang, JY.; Ishikawa, M.; Bolle, C.; Ballesteros, ML. & Chua NH. (2003). LAF1 
ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. 
Nature, Vol.423, No.423, (June 2003), pp.995–999. 

www.intechopen.com



 
Carotenoids and Photosynthesis - Regulation of Carotenoid Biosyntesis by Photoreceptors 

 

95 

Seo, HS.; Watanabe, E.; Tokutomi, S.; Nagatani, A. & Chua, NH. (2004). Photoreceptor 
ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev, 
Vol.18, No.6, (March 2004), pp.617-622.  

Shalitin, D.; Yang, H.; Mockler, TC.; Maymon, M.; Guo, H.; Guitelam, GC. & Lin, C. (2002). 
Regulation of Arabidopsis cryptochrome 2 by blue light-dependent 
phosphorylation. Nature, Vol.417, No.6890, (June 2002), pp.763–767. 

Shalitin, D.; Yu, X.; Maymon, M.; Mockler, T. & Lin, C. (2003). Blue light-dependent in vivo 
and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell, Vol.15, 
No.10, (October 2003), pp.2421–2429. 

Sharrock, R. & Clack, T. (2004). Heterodimerization of type II phytochromes in Arabidopsis. 
Proc Natl Acad Sci USA, Vol.101, No.31, (August 2004), pp.11500-11505. 

Shewmaker, CK.; Sheehy, JA.; Daley, M.; Colburn, S. & Ke, DY. (1999). Seed-specific 
overexpresion of phytoene synthase: increase in carotenoids and other metabolic 
effects. Plant J, Vol.20, No.4, (November 1999), pp.401-412.  

Shin, J.; Kim, K.; Kang, H.; Zulfugarov, IS.; Bae, G.; Lee, CH.; Lee, D. & Choi, G. (2009) 
Phytochromes promote seedling light responses by inhibiting four negatively-
acting phytochrome-interacting factors. Proc NatlAcad Sci U S A, Vol.106, No.18, 
(May 2009), pp.7660-65. 

Simkin, AJ.; Zhu, C.; Kuntz, M. & Sandmann, G. (2003). Light-dark regulation of carotenoid 
biosynthesis en pepper (Capsicum annuum) leaves. J Plant Physiol, Vol.160, No.5, 
(May 2003), pp.439-443. 

Stange, C.; Fuentes, P.; Handford, M. & Pizarro, L. (2008). Daucus carota as a novel model to 
evaluate the effect of light on carotenogenic gene expression. Biol Res, Vol.41, No.3, 
(April 2008), pp.289-301. 

Steinbrenner, J. & Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the 
green alga Haematococcus pluvialis: regulation by photosynthetic redox control. 
Plant Mol Biol 52, Vol., No.2, (May 2003), pp.343-356. 

Talbott, L.; Nikolova, G.; Ortíz, A.; Shmayevich, I. & Zeiger, E. (2002). Green light reversal of 
blue-light-stimulated stomatal opening is found in a diversity of plant species. Am J 
Bot, Vol.89, No.2, (February 2002), pp.366-368. 

Telfer, A. (2005). Too much light? How beta-carotene protects the photosystem II reaction 
centre. Photochem Photobiol Sci, Vol.4, No.12, (December 2005), pp.950-956. 

Toledo-Ortiz, G.; Huq, E. & Rodrígurz-Concepción, M. (2010). Direct regulation of phytoene 
synthase gene expression and carotenoid biosynthesis by Phytochrome-Interacting 
Factors. Vol.107, No.25, (June 2010), pp. 11626-11631. 

Vishnevetsky, M.; Ovadis, M. & Vainstein, A. (1999). Carotenoid sequestration in plants: the 
role of carotenoid associated proteins. Trends Plant Sci, Vol.4, No.6, (June 1999), pp. 
232-235. 

von Lintig J. (2010). Colors with functions: elucidating the biochemical and molecular basis 
of carotenoid metabolism. Annu Rev Nutr, Vol.30, (August 2010), pp. 35-56.  

Von Lintig, J.; Welsch, R.; Bonk, M.; Giuliano, G.; Batschauer, A. & Kleinig, H. (1997). Light-
dependent regulation of carotenoid biosynthesis occurs at the level of phytoene 
synthase expression and is mediated by phytochrome in Sinapsis alba and 
Arabidopsis thaliana seedlings. Plant J, Vol.12, No.3, (September 1977), pp. 625-634. 

Walter, MH.; Floss, D. & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal 
metabolites and aroma volatiles. Planta,  Vol.232, No.1, (April 2010), pp 1-17. 

www.intechopen.com



 
Advances in Photosynthesis – Fundamental Aspects 

 

96

Wang, H.; Ma LG.; Li, JM.; Zhao, HY. & Deng, XW. (2001). Direct interaction of Arabidopsis 
cryptochromes with COP1 in light control development. Science, Vol.294, No.5540, 
(August 2001), pp.154–158. 

Welsch, R.; Beyer, P.; Hugueney, P.; Kleinig, H. & von Lintig, J. (2000). Regulation and 
activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during 
photomorphogenesis. Planta, Vol.211, No.6, (November 2000), pp.846-854.  

Welsch, R.; Medina, J.; Giuliano, G.; Beyer, P. & von Lintig, J. (2003). Structural and 
functional characterization of the phytoene synthase promoter from Arabidopsis 
thaliana. Planta, Vol.216, No.3, (January 2003), pp.523-534. 

Woitsch, S. & Römer, S. (2003). Expression of xanthophyll biosynthetic genes during light-
dependent chloroplast differentiation. Plant Physiol, Vol.132, No.3, (July 2003), 
pp.1508-1517. 

Yadav, V.; Kundu, S.; Chattopadhyay, D.; Negi, P.; Wei, N.; Deng, XW. & Chattopadhyay, S. 
(2002). Light regulated modulation of Z-box containing promoters by 
photoreceptors and downstream regulatory components, COP1 and HY5, in 
Arabidopsis. Plant J, Vol.31, No.6, (September 2002), pp.741-753. 

Yanawaga, J.; Sullivan, JA.; Komatsu, S.; Gusmaroli, G.; Suzuki, G.; Yin, J.; Ishibashi, T.; 
Saijo, Y. ; Rubio, V.; Kimura, S.; Wang, J. & Deng, XW. (2004). Arabidopsis COP10 
forms a complex with DDB1 and DET1 in vivo and enhances the activity of 
ubiquitin conjugating enzymes. Genes Dev, Vol.18, No.17, (September 2004), 
pp.2172–2181. 

Yang, HQ.; Tang, RH. & Cashmore, AR. (2001). The signalling mechanism of Arabidopsis 
CRY1 involves direct interaction with COP1. Plant Cell, Vol.13, No.12, (December 
2001), pp.2573–2587. 

Ye, X.; Al-Babili, S.; Klot, A.; Zhang, J.; Lucca, P.; Beyer, P. & Potrycus, I. (2000). Engineering 
the provitamin A (┚-carotene) biosynthetic pathway into (carotenoid-free) rice 
endosperm. Science, Vol.287, No.5451, (January 2000), pp.303-305. 

Zhu, C.; Yamamura, S.; Koiwa, H.; Nishihara, M. & Sandmann, G. (2002). cDNA cloning and 
expression of carotenogenic genes during flower development in Gentiana lutea. 
Plant Mol Biol, Vol.48, No.3, (February 2002), pp.277-285.   

Zhu, C.; Yamamura, S.; Nishihara, M.; Koiwa, H. & Sandmann, G. (2003). cDNAs for the 
synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation 
during flower development. Biochem et Biophys Acta, Vol.1625, No.3, (February 
2003), pp.305-308. 

www.intechopen.com



Advances in Photosynthesis - Fundamental Aspects

Edited by Dr Mohammad Najafpour

ISBN 978-953-307-928-8

Hard cover, 588 pages

Publisher InTech

Published online 15, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Photosynthesis is one of the most important reactions on Earth. It is a scientific field that is the topic of many

research groups. This book is aimed at providing the fundamental aspects of photosynthesis, and the results

collected from different research groups. There are three sections in this book: light and photosynthesis, the

path of carbon in photosynthesis, and special topics in photosynthesis. In each section important topics in the

subject are discussed and (or) reviewed by experts in each book chapter.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Claudia Stange and Carlos Flores (2012). Carotenoids and Photosynthesis - Regulation of Carotenoid

Biosyntesis by Photoreceptors, Advances in Photosynthesis - Fundamental Aspects, Dr Mohammad Najafpour

(Ed.), ISBN: 978-953-307-928-8, InTech, Available from: http://www.intechopen.com/books/advances-in-

photosynthesis-fundamental-aspects/carotenoids-and-photosynthesis-regulation-of-carotenoid-biosyntesis-by-

photoreceptors



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


