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1. Introduction 

Historically, the Central Nervous System (CNS) was considered as an immune privileged 

site (Billingham and Boswell, 1953), being viewed as a territory physiologically out of the 

competence of immune cells. This notion has developed on initial studies showing that: (i) 

CNS unrelated antigens (i.e. foreign grafts, bacteria, viruses) evade an immune recognition 

when delivered to the brain parenchyma (Galea et al., 2007); (ii) no infiltrating immune cells 

nor antigen presenting cells (APCs, i.e. dendritic cells, DCs, see Table 1) can be detected in 

the CNS parenchyma in physiological conditions (Engelhardt and Ransohoff, 2005); (iii) 

CNS cells do not constitutively express major histocompatibility complex (MHC)I and 

MHCII molecules (Fabry et al., 1994); (iv) neural cells express apoptosis inductors for 

immune cells (Bechmann et al., 1999); (v) the CNS does not possess lymphatic vessels 

(Engelhardt and Ransohoff, 2005). The segregation between nervous and immune cells 

appeared tightly preserved by the anatomical separations offered by the Blood Brain Barrier 

(BBB) and the blood-cerebrospinal fluid barrier (Choi and Benveniste, 2004). Over time, on 

the basis of the association between immune inflammation and neurodegeneration, the 

concept of immune privilege further acquired the connotation of a defence mechanism 

against the detrimental effects of immune activation within the CNS. 

However, during the last ten years evidence for an extensive and continuous bi-directional 

communication between the CNS and the immune system has accumulated, changing the 

traditional view of the CNS as an immune privileged site into an immune specialised site 

(Engelhardt and Ransohoff, 2005). Under physiological conditions, the CNS strictly controls 

circulating immune cell entry across its barriers by allowing a regulated exchange of factors 

between the nervous tissue and immune elements. Such exchange provides an incessant 

scavenging for self (host) and pathological antigens occurring in the CNS 

(immunosurveillance) and is at the basis of the newly recognised functions of immune cells 

in neural stem cell (NSC) activity, hippocampal neurogenesis, learning and stress-mediated 

responses (see below). In case of pathology, when the BBB is damaged or altered and 

immune attractive signals are released within the CNS, lymphocytes and macrophages 
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penetrate into the CNS parenchyma. This invasion has now lost the former exclusively 

detrimental flavour in view of newly unveiled effects supportive for neuroprotection and 

reparative responses (Schwartz et al., 2009). 

Studies on the interplay between the immune system and NSCs/progenitors in both health 

and disease have particularly contributed to this conceptual revolution in neuroimmunology. 

These studies are the actual focus of this chapter. We shall present them after having 

overviewed the main players and mechanisms involved in the CNS-immune system crosstalk. 

1.1 Routes and modes of immunosurveillance in the healthy CNS 

Main players in immunosurveillance are microglia cells residing within the CNS 

parenchyma, circulating monocytes and lymphocytes that mostly remain located at the 

outer anatomical borders of the CNS (Table 1, Schwartz and Shechter, 2010). These borders 

are defined by several structures: the outermost dural membrane, the arachnoid membrane 

and the innermost pial membrane. The subarachnoid space settles between the arachnoid 

and pial membrane and it is filled with the cerebrospinal fluid (CSF), which is continuously 

produced by the choroid plexus epithelium in the ventricular system. It circulates from the 

ventricle to the subarachnoid space and it is reabsorbed by the arachnoid villi that extend in 

the venous sinuses. The nervous artery supply follows the CNS surface in the subarachnoid 

space. As vessels enter the CNS parenchyma, they are surrounded by a perivascular space, 

the Virchow-Robin space, connected to the subarachnoid space. Moreover, the BBB 

separates the blood from the CNS parenchyma and is formed by highly specialized 

endothelial cells surrounded by basement membranes and astroglial end feet.  

In the healthy CNS, immune reactivity is strictly controlled by limiting the presentation of 
neuroantigens outside the CNS and by tightly regulating the trafficking of immunocompetent 
cells. The BBB avoids leaking of neuroantigens into the systemic circulation, while within the 
nervous tissue microglia cells continuously survey the parenchyma with highly dynamic 
processes and protrusions that may clear accumulated metabolites and cell debris, thereby 
regulating microenvironmental homeostasis (Nimmerjahn et al., 2005). This microglial 
function is proposed to be directly influenced by T cell-derived soluble factors, at least at 
specific CNS sites (see section 2.1; Ziv et al., 2006a). T cells normally do not enter the healthy 
nervous tissue, but can reach the CSF together with monocytes (about 3000 leukocytes per ml 
can be found in the CSF of healthy individuals) from both vessels of the choroid plexi and 
post-capillary venules surrounded by the Virchow-Robin space. Soluble proteins and cells 
constitutively move from the CNS parenchyma into the CSF through the choroid plexi and 
ependymal cells and are transported up to peripheral lymph nodes, where they are presented 
to naïve CD4+ T lymphocytes (afferent arm of immunosurveillance) to achieve their first 
activation (see Table 1). In the efferent route of this loop, activated CD4+ T cells get to the CNS 
via the blood stream, and there, moving into the CSF, flow back to the systemic circulation 
(Ransohoff et al., 2003). The CSF is the site of secondary activation of CD4+ T cells that there 
encounter monocytes presenting neuroantigens and contribute to immunosurveillance 
without being encephalitogenic. 

Very few if any leukocytes can directly access the healthy CNS parenchyma by crossing the 
BBB and the endothelial basal lamina. Of note, the few T cells entering the parenchyma have 
undergone the first activation with neuroantigens, while resting lymphocytes fail to penetrate 
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even after stimulation with inflammatory cues (Ransohoff et al., 2003). The involvement of 
lymphocyte populations other than CD4+ T (CD8+ T, B cells and NKs) in CNS 
immunosurveillance has so far been considered poorly relevant, as they comprise neglectable 
fractions in the healthy CNS/CSF (Ransohoff et al., 2003). During pathology the scenario 
depicted so far can undergo dramatic changes that compromise the CNS specialised status. 
Dangerous antigens can be sensed locally within the CNS or directly drained to the periphery 
to stimulate further recruitment of immune cells. The accompanying massive release of 
cytokines and chemokines by immune and neural cells mediates the initiation of an immune 
reaction aimed at promoting CNS defence and restoring tissue homeostasis. 

1.2 Innate and adaptive immune responses in the diseased CNS 

To effectively exert its defensive functions, the immune system has developed two different 
reaction modes: a relatively fast and generic action against external agents (innate response), 
and a specific and targeted action that requires plasticity and memory (adaptive or acquired 
immunity). Innate and adaptive responses operate in strict collaboration and undergo 
distinct levels of activation depending on the type of pathology. The innate response is the 
first line of CNS defence, preceding and stimulating the adaptive reaction (Nguyen, 2002), 
and relies on microglia cells and on astrocytes. Both cell types constitutively express 
phagocytic and scavenger receptors (pattern-recognition receptors, PPRs) capable of 
distinguishing self (host) from non-self (i.e. pathogens, toxic agents and molecules released 
by damaged/dying cells). Peripheral macrophages/monocytes can also participate in this 
initial activation when lesions such as traumatic or vascular injury induce BBB breakdown 
and allow direct CNS parenchyma-blood interactions. Amongst PPRs are Toll-like receptors 
(TLRs, Table 1) that activate phagocytosis and, via the nuclear transcription factor NFkB 
pathway, promote the production of pro-inflammatory signals, including cytokines 
(Interleukin1┚, IL1┚; Tumor Necrosis Factor-┙, TNF┙; IL6) and chemokines (Becher et al., 
2000; Farina et al., 2007), modulating the nervous tissue response to damage (Buffo et al., 
2010) and triggering adaptive immunity (Becher et al., 2000). Notably, several CNS intrinsic 
mechanisms operate to avoid uncontrolled or hyperactive innate responses: (i) neurons, 
endothelial and ependymal cells express neuroimmune regulatory proteins (NIRegs) to 
protect CNS cells from the phagocytic activity of macrophages and microglia and attenuate 
inflammatory cytokine secretion by lymphocytes (Griffiths et al., 2007); (ii) gliotic astrocytes 
limit blood leukocyte infiltration (Voskuhl et al., 2009). 

Initiation of an adaptive immune response requires time after the initial appearance of 
pathogenic signals, and implies the participation of numerous cell types and signalling 
molecules. Adaptive immunity can be either cell-mediated (major effectors are T cells), or 
humoral (with the involvement of B cells, see Table 1). Although humoral immune 
responses are most important for the organism’s defence, their role in the regulation of 
neural stem cells and parenchymal progenitor activity is so far unknown. Thus, we shall 
leave them aside and focus on cell-mediated immune responses. 

During CNS damage (e.g. traumatic and neurovascular injuries such as stroke) the integrity 
of the BBB is primarily disrupted, leading to increased and often deregulated 
communication between the CNS and the immune system, including the entry of immune 
cells. In other cases, however, an increased exchange of cellular elements and signals 
between the two systems occurs while the gross anatomy of the BBB is preserved, thereby 
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implying more subtle functional alterations (Kaur and Ling, 2008). In some cases, such as the 
initial phase of Multiple Sclerosis (MS), deregulated autoimmune cellular elements find 
their way into the CNS where they trigger an acute inflammatory reaction to myelin 
components that can progress into a chronic phase of neurodegeneration. In general, after a 
CNS insult, resident microglia, astrocytes and DCs that can migrate from the perivascular 
space into the CNS parenchyma if the BBB is disrupted, present antigens to CD4+ and CD8+ 
T cells in association with co-stimulatory molecules. After priming with APCs, both T cell 
types become activated and proliferate: CD8+ T cells exert their cytotoxic activity inducing 
the apoptosis of antigen-bounded MHCI expressing cells, whereas CD4+ T cells produce 
pro- or anti-inflammatory cytokines, depending on their subtypes (Th1, Th2, see Table 1, 
Becher et al., 2000). Th1 cells release pro-inflammatory molecules that sustain and potentiate 
microglial activation in a feed-forward loop, and stimulate MHCII expression on astrocytes 
and endothelial cells (see Table 1). In turn, chemokines and cytokines from microglia and 
activated astrocytes such as interferon-┛ (INF┛) and TNF┙ can both attract and activate 
immune cells (Carpentier et al., 2005). Conversely, Th2 cells exert anti-inflammatory effects 
through the production of IL4 and IL10, reducing macrophage and microglia activation (see 
Table 1). The balance between Th1/Th2 phenotypes is finely tuned by cytokines themselves 
(Goverman, 2009), and requires a tight regulation to avoid detrimental hyperinflammation: 
for instance, IL12 produced by activated microglia promotes Th1 type, while astrocytes are 
known to counteract this phenomenon (Becker et al., 2000). 

A further modulatory mechanism of T cell activity involves a specific subclass of T cells, the 

CD4+ CD25+ Foxp3 T regulatory cells (Tregs, see Table1, Walsh and Kipnis, 2010). Tregs act 

by suppressing autoimmunity (T cells directed against self-antigens) and terminating 

immune responses. They exert their inhibitory action mostly through Transforming Growth 

Factor-┚ (TGF┚) signalling and IL10 production, which suppresses auto-reactive T cells 

(Vignali et al., 2008).  

Further mechanisms participate in terminating immune reactions: (i) activated T cells 
themselves express receptors (i.e. CTLA-4) that reduce their proliferation and production of 
cytokines after interaction with microglia; (ii) T cells after cytokine exposure upregulate 
receptors that induce their apoptosis (i.e. CD95); (iii) IL2 potentiates CD95-mediated apoptosis. 
Thus, immune responses are self-limited and decline with time after antigenic stimulation, 
leaving functionally quiescent memory lymphocytes as indicators of previous antigen 
exposure (Parijis and Albas, 1998). Acute immune response and inflammation may therefore 
be soon resolved, and the damage circumscribed by astroglial scarring and microglia cells with 
poor replacement of lost cells and transected axons (Bush et al., 1999; Donnelly and Popovich, 
2007). Yet, an involvement of abnormal autoimmunity or the persistence of pro-inflammatory 
stimuli can protract the inflammatory/immuno response into a chronic status and exacerbate 
the destructive effects of immune activation (McFarland and Martin, 2007). 

Despite the described mechanisms of immune response have evolved primarily as a defence 
from infectious agents, they take place in all types of CNS injuries. In the following sections 
we will not deal with infectious diseases, but instead focus on traumatic, vascular, 
autoimmune damage and chronic neurodegeneration, where loss or malfunctioning of 
cellular elements is followed by activation and recruitment of NSCs and parenchymal 
progenitors, engaged for the most in replacing lost myelin rather then neurons, and in the 
production of scarring astrocytes (see below). 
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 Features Functions Molecular Signals References 
Microglia  Invade the CNS 

parenchyma during 
late embryogenesis 
and perinatal stage 

 Myeloid cells 
 APC upon 

activation 

 Immunosurveillance 
 Innate immunity 
 Cytokine secretion (IL1, 

IL6, IL12, TNF┙) 
 Phagocytic and 

cytotoxic activity 
 T cell stimulation and 

apoptosis (Fas ligand 
mediated) 

 Neurogenesis control 

 Upregulation 
MHCI and II 
and CD40, 
CD86 to activate 
T cells 

 TLR expression 
 Upregulation of 

complement 
receptor (CR1, 
CR3, CR4) 

Yang et al., 
2010 
Aloisi et al., 
2000 

Astrocyte  Most abundant glial 
cells in the CNS 

 Neuroectodermal 
origin 

 Brain homeostasis 
 BBB formation 
 Scar formation 
 APC function induced 

by Th1 cytokines 
 Cytokine production 

(TNF┙, IL6, IL12, IL1) 
 Polarization of T cell 

cytokine responses 
 B cell survival and 

differentiation 
 Microglia activation 
 Neurogenesis 

 Upregulation 
MHCII, TLRs 
(TLRs1-6, 
TLR9), ICAM1 
and VCAM1, 
chemokines 
(CCL2, CCL5) 

 Expression of 
BAFF (B cell 
activating 
factor) 

 Neurotrophic 
factor release 
(BDNF, NGF, 
IGF1, LIF) 

Carpentier et 
al., 2005 
Farina et al., 
2007 

CD4+ T  Helper T cells (Th) 
 Antigen recognition 

bound to MHCII 
through T cell 
Receptor (TCR) 

 Th1 pro-
inflammatory 
phenotype (INF┛, 
TNF┙ production) 

 Th2 anti-
inflammatory 
phenotype (IL4 and 
IL10 production) 

 Adaptive cell-mediated 
immune response 

 Autoimmunity 
 Activation of B cells 

 BDNF 
production 

 IL2 production 
for T cell 
survival 

Goverman, 
2009 
Dittel, 2008 

CD8+ T  Cytotoxic T cells 
 Antigen recognition 

bound to MHCI 
through TCR 

 Cytolysis (perforin 
mediated) 

 CNS autoimmunity 

 Cytokine 
production 
(INF┛ and 
TNF┙, IL10, 
IL17) 

Goverman, 
2009 

Treg  CD4 positive 
 Foxp3 positive 

(forkhead box P3) 
that controls their 
development and 
function and it is 
induced by TGF┚ 

 CD25 expression 
(IL2R) 

 Avoidance of  
autoimmune disease 
and tumoral 
autoimmunity 
(peripheral tolerance) 

 Suppression by cytokine 
inhibition, cytolysis, by 
metabolic disruption, by 
targeting DCs 

 Release of 
TGF┚, IL10, 
IL35, Granzime 
B, Adenoside 
nucleoside, 
cAMP 

 

Vignali et al., 
2008; 
Walsh and 
Kipnis, 2010 
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 Features Functions Molecular Signals References 

 Control CD8+ T cell 
invasion 

Th17  Pro-inflammatory 
lineage 

 Autoimmune 
disease 

 Cytokine production 
(TGF┚, IL6, IL23) 

 Suppression Treg 
differentiation (IL21 
mediated) 

 Activation of 
the STAT3 
pathway 

 Activation of 
ROR┙/ROR┛ 

Fabry et al., 
2008 

B cells  Rarely detected in 
the healthy CSF 

 Four different 
developmental 
states (mature B 
cells, memory B 
cells, plasmablast, 
plasma cells) 

 Humoral immune 
response 

 T cell activation 
 Ig production 
 APCs 
 Ig CNS autoantigen 

production that induce 
complement activation, 
MBP proteolysis, 
macrophages 
stimulation 

 Upregulation of 
CXCR12/13 and 
CCR1,2,4 

 Cytokine 
production (IL6, 
IL10, IL12, 
TGF┚) 

 Neurotrophic 
factor release 
(NGF and 
BDNF) 

Meinl et al., 
2006 

DCs  APCs 
 Lymphoid and 

myeloid origin 
 Localized in the 

meninges and 
chroid plexi in the 
healthy brain 

 During 
inflammation, 
autoimmune 
diseases and 
neurodegeneration 
they reach the CNS 
parenchyma 

 Immunosurveillance 
 T cell stimulation, 

tolerance induction, T 
cell polarization, 
phagocytosis, cytokine 
secretion (IL1b, IL6, 
IL10, IL12, TNF┙, INF┛) 

 MHC class II, 
costimulatory 
proteins (CD40, 
CD80, CD86), 
chemokine 
receptor (CCR7) 

McMahon et 
al., 2006 

Toll like 
Receptors 
(TLR) 

 Expressed on APCs 
including microglia 
and DCs 

 Surface recognition 
of PAMPs 

 Expression on 
resting and activated 
microglia and 
astrocytes (TLR3 on 
astrocytes, TLR2 and 
TLR4 on microglia) 

 Extracellular portion 
with multiple 
leucine-rich repeats 

 Recognition of 
exogenous components 
of the bacterial 
membrane and flagella, 
bacterial DNA and viral 
dsRNA 

 Neurogenesis 

 NFkB activation 
 Cytokine and 

chemokine 
production 

Farina et al., 
2007 
Rolls et al., 
2007 

 

Table 1. Immunoplayers.  

Main cellular types and molecular signals that regulate the interplay between the immune 

system and the CNS. This process involves the participation of CNS resident cells (microglia 

and astrocytes), immune system cells and numerous molecular signals. 
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2. Immune-based regulation of adult Neural Stem Cell activities and 
neurogenesis 

In the adult brain NSCs displaying astrocytic features reside in two anatomically defined 
germinal niches, namely the subventricular zone (SVZ) of the lateral wall of the lateral 
ventricles and the subgranular zone of the hippocampus (SGZ). Adult NSCs of the SVZ (also 
termed Type-B cells) retain the capability to asymmetrically divide, giving rise to actively 
proliferating intermediate neural progenitors defined as transit amplifying cells or Type-C 
cells. These latter cells symmetrically divide to produce neuroblasts (Type-A cells) that 
migrate through the Rostral Migratory Stream (RMS) into the olfactory bulb, where they 
eventually differentiate in interneurons. In vivo type-B cells can also generate 
oligodendroglial cells of the corpus callosum and fimbria fornix, although to a lesser extent 
compared to neurons (Kriegstein and Alvarez-Buylla, 2009). NSCs residing within the 
hippocampal SGZ divide asymmetrically to give rise to neuroblasts that locally differentiate 
into mature granular neurons (Kriegstein and Alvarez-Buylla, 2009). Numerous studies 
indicate that continuous neurogenesis in the olfactory bulb and hippocampus is 
instrumental for memory acquisition, learning and mood regulation (Zhao et al., 2008), 
while both physiological (i.e. life experiences, such as learning, physical activity, 
environmental or olfactory enrichment, stress) and pathological (i.e. brain insults or 
pathologies, local or systemic inflammation) stimuli affect NSCs and their derivatives.  

Surprisingly, a number of recent studies have provided evidence that local and systemic 
immune-mediated mechanisms, including both innate and adaptive factors, exert a key role 
in modulating neuro/oligodendrogenic events within the germinal niches in healthy and 
pathological conditions. Such immune-based regulation takes place at many levels, 
including (i) proliferation of NSCs and intermediate progenitors; (ii) neuronal vs. glial 
specification of NSC-derivatives; (iii) migratory ability of the new-born elements; and (iv) 
their survival, maturation and integration in the adult brain parenchyma. Since the identity 
of immune system players and the level of their recruitment/activation/production are 
dramatically different in distinct brain conditions (i.e. healthy vs. acutely injured vs. 
chronically diseased), immune modulation displays complex and context-dependent effects 
on the functioning and survival of NSCs and their derivatives (see below). For the sake of 
simplicity and brevity, in the following text we will refer to germinal functions as 
“neuro/oligodendrogenesis” or “neuro/oligodendrogenic activity”, while the specific 
effects of immune elements on the diverse germinal components and activities will be 
dissected in Table 2 (see also Figure 1). 

2.1 Immune regulation of adult germinal niche functioning under physiological 
conditions 

Among all immune elements, microglial cells are reportedly crucial modulators of 
neurogenic niche activities in both the healthy and injured adult CNS.  They populate both 
adult SVZ and SGZ, where they localize in close proximity to NSCs. Interestingly, germinal 
microglia displays phenotypes and behaviours (i.e. higher levels of activation, proliferation 
and phagocytic activity; Goings et al., 2006; Ziv et al., 2006a; Sierra et al., 2010) distinct from 
both their resting counterparts in the non-neurogenic CNS parenchyma, and fully activated 
and phagocytic microglia detected upon injury or in inflammatory conditions. In vitro 
experiments suggest that such basal germinal activated (BGA) phenotype is maintained 
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through interactions with components of the niche environment, including matrix molecules 

(e.g. Tenascin-R; Liao et al., 2008), low levels of inflammatory molecules (e.g. IL4 and IFN), 
and elements of adaptive immunity (see below; Ziv et al., 2006a). Notably, various studies 
report a positive correlation between the persistence of the BGA microglial state and basal 
levels of neurogenesis and oligodendrogenesis both in vivo and in vitro (see also Table 2), 
with blockade of any microglial activation by minocycline resulting in decreased numbers of 
newborn neurons (Carpentier and Palmer, 2009 and references therein). In vitro studies 
suggest that, although microglial cells are abundantly distributed within the germinal 
niches in the adult CNS, direct contacts between microglia and NSCs/precursors/ 
neuroblasts may not be required for facilitating neurogenesis (Aarum et al., 2003; Walton et 
al., 2006).  Notably, microglia cells residing within the germinal niches constitutively secrete a 
plethora of soluble mediators, including growth factors (e.g. Brain Derived Neurotrophic 
Factor BDNF and Insulin-like Growth Factor IGF1; Liao et al., 2008; Ziv et al., 2006a) and low 

levels of inflammatory molecules (e.g. TGF, TNF, IL1; Battista et al., 2006; Liao et al., 2008; 
Carpentier and Palmer, 2009; Yirmiya and Goshen, 2011). Both categories of mediators are 
importantly implicated in neurogenesis, as attested by the negative outcomes on constitutive 
NSC functioning of genetically- or pharmacologically-driven ablation of growth factor- or 
inflammatory cytokine-mediated signalling pathways (see also Table 2; Ziv et al., 2006a; 
Butovsky et al., 2006; Carpentier and Palmer, 2009 and references therein). Moreover, 
microglia-derived inflammatory molecules can directly influence basal NSC/progenitor 

functions, as these cells express a set of cytokine receptors, including those for IFN (Li et al., 

2010), TNF (Carpentier and Palmer, 2009), IL1 (Yirmiya and Goshen, 2011) and IL6 (Monje 
et al., 2003). Moreover, pioneer studies reported that adult NSCs basally display a set of 
features typical of immune cells, including the expression of MHC-related molecules, TLRs 
and complement receptors, whose activation may allow NSCs themselves to (i) act as antigen-
presenting cells; (ii) directly sense alterations in tissue integrity and immune system activity 
upon injury; and (iii) plastically modulate their own neuro/oligodendrogenic activity in 
response to environmental alterations (see Table 2; Popa et al., 2011; Rolls et al., 2007; 
Moriyama et al., 2011; Rahpeymai et al., 2006). 

Further novelty in the field has been provided by the unexpected discovery that, in 
addition to resident microglia and derived soluble factors, T cells contribute to maintain 
the neurogenic homeostasis in the adult CNS. By using nude or SCID (severe combined 
immune deficiency) mice, lacking respectively either only mature T cells or both T and B 
cell populations, Michal Schwartz and colleagues in 2006 demonstrated that T cell 
deficiency is correlated with impaired NSC/progenitor proliferation and neuronal 
differentiation of new born derivatives in both SGZ and SVZ, accompanied by a defective 
spatial learning ability (Ziv et al., 2006a). Such effect on SGZ progenitor cells is 
specifically exerted by T helper lymphocytes, as repopulation with CD4+, but not CD8+ 
or B cells, rescues defective neurogenesis (Wolf et al., 2009). Notably, antigenic specificity 
to CNS autoantigens and the consequent lymphocyte homing to the CNS appear required 
for the expression of these T cell supportive effects on neurogenesis. Consistently, 
transgenic (tg) mice in which the majority of the T cell population is directed to an 
irrelevant antigen (i.e. ovalbumin) show impaired hippocampal neurogenesis, while, 
conversely, tg mice in which the majority of the T cells is directed to a CNS-specific 
antigen, such as certain peptides of the myelin basic protein (MBP), display increased 
hippocampal neurogenesis (Ziv et al., 2006a). Interestingly, data collected so far allow to 
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propose a model in which the homeostatic role of T cells on germinal niche functions 
includes both a direct action on NSCs and their derivatives via release of BDNF, and an 
indirect effect mediated by modulation of the microglial BGA state and increased BDNF 
production induced in surrounding neurons (Ziv et al., 2006a; Hohlfeld et al., 2006). In 
line with this scenario, minocycline treatment results in a reduced hippocampal 
neurogenesis even in tg mice where T cells are directed to MBP antigens, while BDNF 
levels are reduced in immune deficient mice and elevated in tg mice enriched with T cells 
directed to MBP antigens (Ziv et al., 2006a; Wolf et al., 2009). 

The participation of immune cells in the regulation of hippocampal NSCs/progenitors is 

further supported by experiments showing that while wild type mice respond to enriched 

housing conditions (including social, sensory and motor stimulation) by increased 

neurogenesis, SCID animals do not show any change in NSC activity (Ziv et al., 2006a).  

Notably, in the same experimental condition it has been reported the appearance of T cells 

in the hippocampal hilus and an increased number of SGZ microglial cells upregulating 

MHCII molecules and IGF1 (Ziv et al., 2006a). Since this microglia phenotype is typically 

promoted by Th2-derived IL4 (Butovsky et al., 2005), it can be speculated that these changes 

are stimulated by defined T cell activities occurring as a consequence of the organism-

environment interactions. In addition, based on the capability of microglia stimulated by 

either IL4 or low levels of INF (which is known to be produced by T cells) to promote 

neurogenesis and oligodendrogenesis in hippocampal progenitor cell/microglia co-cultures, 

(Butovsky et al., 2006), one may claim that the observed microglia changes contribute to the 

occurring increased neurogenesis. Stress and elevated levels of circulating glucocorticoid 

hormones can also affect the BGA microglial state (Song and Wang, 2011). Accordingly, the 

surgical removal of the adrenal gland and the consequent suppression of glucocorticoid 

production result in a moderately higher activation of microglial cells, whose density 

increase again correlates with a higher number of dividing cells and of newly generated 

neurons in the SGZ. Such microglial activation is accompanied by the upregulation of 

inflammatory cytokines, such as TGF (Battista et al., 2006). Taken together, these data 

indicate that T lymphocytes and microglia cells take part in the homeostatic regulation of 

adult neurogenesis, comprising the mediation of part of the pro-and anti-neurogenic effects 

of experience/emotional stimuli.  

Another study confirmed the contribution of immune cells to the plastic regulation of adult 

neurogenesis. Wolf and colleagues in 2009 showed that when the effect of voluntary wheel 

running on neurogenesis is assessed in CD4 knock-out mice or in mice treated with anti-

CD4 neutralizing antibodies, both wild type and CD4-depleted/deficient mice respond by 

increased hippocampal proliferation (although starting from different basal levels), while 

such expected effect is absent only in mice devoid of functional T, B and NK cells. This latter 

finding suggests that while CD4+ T cells are the major player in controlling constitutive 

neurogenesis, the entire pool of adaptive immune cells may contribute to induce a response 

to neurogenic stimuli. Only one study so far excluded a role for T cells and microglia 

activation in activity-induced increase of adult hippocampal neurogenesis (Olah et al., 2009). 

Whether differences in experimental paradigms applied (voluntary physical activity vs. 

enriched environment) or in animal models used (mice vs. rats) account for such different 

results remains to be assessed.  
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To sum up, data collected so far provide evidence that in non-pathological conditions both 

resident microglia and T cells have a prominent role in maintaining and plastically 

modulating the basal levels of neurogenesis within the adult CNS (see Figure 1). Microglia 

residing within the neurogenic niches displays a germinal-specific basally activated 

phenotype, characterized by the expression of defined pro-neurogenic inflammatory 

mediators (e.g. TGF, TNF, IL1) and growth factors (e.g. BDNF and IGF1). The 

maintenance of such BGA microglial phenotype depends on the interaction with local 

elements and with CNS-directed T cells, and positively correlates with the neurogenic 

activity of adult germinal niches. 

2.2 Immune system regulation of germinal niche functioning after injury 

The discovery of the retention of NSCs within the mature CNS has inspired two decades 

of intense investigations aimed at assessing whether such endogenous source of new 

neurons and oligodendrocytes could be exploited for the repopulation of lost neuronal 

populations and the restoration of damaged myelin sheaths. However, it is now well 

established that adult germinal niche activity has a very limited ability to mediate a long-

lasting cell replacement and to support a complete repair of the injured CNS 

cytoarchitecture and functions. Many studies have shown that early after acute insults 

(e.g. stroke, trauma, single epileptic attacks, acute phase of relapsing-remitting 

experimental autoimmune encephalomyelitis EAE) endogenous neurogenesis and 

oligodendrogenesis are stimulated. However, in most cases reactive neurogenesis is 

eventually abortive, since the majority of the newly generated neurons are not recruited to 

the lesion site but remain within the germinal areas, nor are integrated into the 

parenchyma, and ultimately undergo cell death (Carpentier and Palmer, 2009). Moreover, 

in chronic pathologies (e.g. neurodegenerative diseases, recurrent seizures, chronic 

progressive EAE) and stress conditions (e.g. mouse isolation), neurogenesis and 

oligodendrogenesis appear impaired (Carpentier and Palmer, 2009; Pluchino et al., 2008; 

Rasmussen et al., 2011). Studies using ablation of single immune cell populations or 

molecular pathways have revealed that upon injury immune system elements exert a dual 

role, contributing to both the early neuro/oligodendrogenic reaction and the subsequent 

establishment of a milieu non-permissive for NSC activities. Major players in such 

regulation are again microglia and T cells (see below).  

Early after acute damage, cell debris, nucleotides released from dying cells and reactive 

glial cells, and extracellular matrix protein fragments serve as ligands for the TLRs 

expressed by microglia residing within the germinal niches, and trigger its full activation, 

with subsequent release of high levels of pro-inflammatory cytokines (i.e. TNF, INF, IL6 

and IL1) and growth factors (e.g. IGF1; Ekdahl, 2009 and references therein; Deierborg et 

al., 2010). Various studies reported that such early microglial activation is per se needed to 

induce the post-injury increase of neurogenesis. In fact, minocycline inhibition of 

activated microglial cells exposed to injury (i.e. stroke) abolishes the increase in NSC 

proliferation both in vivo and in vitro (Kim et al., 2010; Deierborg et al., 2010). 

Consistently, genetically- or pharmacologically-driven ablation of IL1- or TNF-

mediated signalling pathways negatively affects neurogenesis after seizures and stroke 

(Spulber et al., 2008; Carpentier and Palmer, 2009 and references therein), indicating that, 
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in addition to growth factors, these microglial-derived mediators contribute to post-injury 

reactive neurogenesis. Notably, similar to the healthy conditions, defined subpopulations 

of T cells contribute to modulate germinal niche functioning at early stages after injury. 

Removal of the whole CD4+ T cell population results in increased precursor/neuroblast 

generation few days after stroke, while depletion of the only Treg lymphocytes 

suppresses neurogenesis and reduces functional recovery (Saino et al., 2010). In contrast, 

promotion of Treg homing to the ischemic brain enhances NSC and neuroblast survival 

(Ishibashi et al., 2009). At variance with non-pathological conditions, post-injury T cell 

effects appear to modulate pro-inflammatory cytokine secretion by activated endothelial 

cells rather than being mediated by microglial functions (Saino et al., 2010; Ishibashi et al., 

2009).  

When persistent and uncontrolled microglial activation occurs, the same molecular players 

appear to switch their acute stimulating function into detrimental effect on germinal niche 

activity. For instance, when minocycline is administered in the chronic phase of CNS 

injuries or diseases, such treatment results in increased generation of neurons and 

oligodendrocytes (Carpentier and Palmer, 2009; Yirmiya and Goshen, 2011 and references 

therein; Rasmussen et al., 2011). Whether such phenomenon is due to a beneficial-to-

detrimental switch in the microglial phenotype is still highly debated. It remains also 

unresolved whether changes in the intrinsic responsiveness to immuno/inflammatory 

mediators of NSCs and their derivatives may account for these harmful effects. Although 

data are not completely consistent (Ekdahl, 2009), transcriptional profiling of isolated SVZ 

microglia cells reveals that microglia exhibits disease phase-specific gene expression 

signatures (Starossom et al., 2011). Moreover, in vitro evidence suggests that while early-

activated microglia displays pro-neurogenic features, it acquires a non-supportive 

phenotype at delayed time point after injury (Deierborg et al., 2010). Moreover, 

inflammatory cytokines can act through different receptors, thereby triggering distinct 

effects. This is the case of TNF that can activate both the TNF receptor 1 (TNFR1), 

mediating cytotoxic functions on NSCs and neuroblasts, and the TNFR2, activating pro-

neurogenic pathways (Carpentier and Palmer, 2009). These data suggest that upon chronic 

damage both microglia and NSC can contribute to reduced neuro/oligodendrogenesis, by 

acquiring phenotypes non-supportive for germinal niche functioning and newborn cell 

survival. 

In summary, early microglia activation is required to induce post-injury increase in NSC 

proliferation and neurogenesis. However, when microglial activation and inflammatory 

molecule secretion persist for long time, as in chronically injured CNS, adult neurogenesis 

and oligodendrogenesis are suppressed. At variance with what reported in physiological 

conditions, at early stages after injury CD4+ T cell activity negatively affects 

precursor/neuroblast generation through microglia-indipendent mechanisms. However, 

under the same conditions, the Treg subpopulation appear to exert beneficial effects on 

neurogenesis and functional recovery (see Figure 1). 

Although still controversial, these data support the idea that anti-inflammatory treatments 

should be finely and temporarily calibrated in order to be beneficial for 

neuro/oligodendrogenesis and promote CNS regeneration following injury. 
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Fig. 1. Immune-based regulation of adult germinal niche activities in intact and pathological 
conditions. Curved arrows indicate proliferation; straight arrows indicate differentiation 
along cell lineages. 
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In the adult brain NSCs residing in the SVZ and SGZ asymmetrically divide and give rise to 
actively proliferating neuroblasts that eventually differentiate in mature neurons into the 
olfactory bulb or in the dentate gyrus. Within the adult germinal niches, oligodendrocytes 
and astrocytes are also produced, though to a much lesser extent. Depending on their state 
of activation, immune system elements can positively (+) or negatively (-) affect the 
generation of new neurons or glial cells within the mature CNS. Immune-mediated 
mechanisms include microglia- and T cell-derived soluble factors, and influence (i) NSC and 
neuroblast proliferation, (ii) neuronal vs. glial specification, (iii) survival and maturation of 
the newborn elements, thereby exerting an important role in modulating the germinal niche 
activities in both healthy and pathological conditions.  

Immunoplayer Proliferation Specification Survival 
Neuroblast 

differentiation 
Oligodendro 

genesis 

Immune 
cells 

     

Microglia      

in physiological 
conditions 

+ 
(NSCs/ 

precursors) 
n.r. n.r. + + 

early after acute 
injury 

+ 
(NSCs/ 

precursors) 

+ neurogenesis 
+ oligodendro- 

genesis 
n.r. n.r. + 

in  chronic 
pathology/ 
uncontrolled 
immuno-
activation 

- 
(NSCs/ 

precursors) 
- neurogenesis 

- 
(neurobl.) 

 
n.r. 

- 
 

CD4+ T cells      

in physiological 
conditions 

+ 
(NSCs/ 

precursors/ 
neurobl.) 

+ neurogenesis 
 

+ 
(neurobl.) 

+ n.r. 

early after injury 

- 
(NSCs/ 

precursors/ 
neurobl.) 

n.r. 

- 
(precursor/ 

neurobl.) 
 

n.r. n.r. 

T regs n.r. n.r. 
+ 

(neurobl.) 
n.r. n.r. 

Inflammatory 
cytokines 

     

TGF n.r. + neurogenesis n.r. +  

IL4 n.r. n.r. n.r. + + 

IL1 

- 
(in vitro; NSCs/ 

precursors); 
+ 

(in vivo; NSCs/ 
precursors) 

n.r. n.r. n.r. n.r. 

IL6 

- 
(NSCs/ 

precursors/ 
neurobl.) 

+ astroglio- 
genesis 

- neurogenesis 

- 
 

n.r. n.r. 
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Immunoplayer Proliferation Specification Survival 
Neuroblast 

differentiation 
Oligodendro 

genesis 

TNF 

- 
(>200ng/ml; 
precursors); 

+ 

(1 ng/ml; 
NSCs/ 

precursors/ 
neurobl.) 

n.r. 

- 
(10-100 
ng/ml; 

NSC/ 
precursors); 

+ 
(1ng/ml; 
NSCs/ 

precursors/ 
neurobl.) 

+ 

(1ng/ml); 
 

No effect 

(10ng/ml) 

n.r. 

IFN 
- 

(NSCs/ 
precursors) 

+ neurogenesis 
- oligodendro- 

genesis 

(in vivo); 
- astroglio-

genesis 
(in vitro); 

- neurogenesis 
- oligodendro- 

genesis 

+ astroglio-
genesis 

(neurosphere 
assay) 

- 
(neurobl.) 

 
 

+ 
(20 ng/ml) 

 

- 
 
 

Receptors on 
NSCs and 
derivatives 

     

TLR2 n.r. + neurogenesis n.r. + n.r. 

TLR4 
- 

(NSCs) 
n.r. 

+ 
(neurobl.) 

+ n.r. 

CR2 
complement 
receptor 

- 
(NSCs/ 

precursors/ 
neurobl.) 

n.r. n.r. n.r. n.r. 

C3aR 
complement 
receptor 

n.r. n.r. n.r. + n.r. 

RAE-1 (MHCI –
related) 

+ 
(NSCs/ 

precursors) 
n.r. n.r. n.r. n.r. 

Table 2. Major immune factors regulating the adult germinal niche activity. 

Data were obtained from studies in which genetically- or pharmacologically-driven ablation 

of single cell populations or molecular pathways allows to unveil a causal relationship 

between the activity of a defined cell type or molecule and a specific effect on NSC or 

derivatives. References can be found in the text. Note that the effects of inflammatory 

cytokines are often context- or dose-dependent. Abbreviations: NSCs, Neural Stem Cells; 

neurobl., neuroblasts; +, increased;  -, decreased; n.r., not reported. 
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3. Immune system regulation of parenchymal neural progenitors 

Studies over the last decades have revealed that glia cells residing in the nervous 
parenchyma outside the neurogenic areas can display progenitor functions (Boda and Buffo, 
2010), in addition to absolving supportive roles for neurons and contributing to information 
processing (Kettenmann and Verkhratsky, 2008; Bakiri et al., 2009). Typically, cells 
expressing the proteoglycan NG2 comprise the vast majority of cycling elements outside the 
germinal areas (Horner et al., 2000; Dawson et al., 2003) and respond to a variety of lesion 
conditions by an increased cytogenic activity and hypertrophy (Keirstead et al., 1998; 
Reynolds et al., 2002; Hampton et al., 2004). Conversely, mature parenchymal astrocytes 
remain quiescent in the healthy CNS, but can re-enter the cell cycle and assume features of 
progenitor cells upon injury (Buffo et al., 2008, 2010). Numerous approaches including 
proliferation studies, expression analysis, grafting experiments and Cre-lox based fate-
mapping investigations (revised in Trotter et al., 2010; Richardson et al., 2011) have 
consolidated the view of NG2 positive cells as endogenous reservoir of mature and 
myelinating oligodendrocytes during development, adulthood and in most pathological 
conditions. Therefore, these cells are generally termed oligodendrocyte precursor cells 
(OPCs), despite the names ‘polydendrocytes’ or ‘synanthiocytes’ have been recently 
adopted in view of their morphology and contiguity to neurons. A controversial issue, 
dawned by seminal experiments showing that OPCs in vitro can revert to a stem cell-like 
state and differentiate along all the three neural lineages (Kondo and Raff, 2000), is whether 
in vivo these cells can undergo low levels of neurogenesis and generate glial cells other than 
oligodendrocytes at specific CNS sites or in specific conditions. Data on this issue are 
conflicting, although the prevailing view agrees that some astrogliogenesis (and generation 
of Schwann cells in the spinal cord) can occur in defined injury conditions and 
developmental ages (embryonic astrogliogenesis). Production of new neurons has also been 
reported, but remains to be further confirmed (see Boda and Buffo, 2010; Richardson et al., 
2011; Fröhlich et al., 2011 for review). Recent studies on CNS lesions have also attributed 
precursor properties to reactive astrocytes and spinal cord ependymal cells. During 
anisomorphic gliosis, parenchymal astrocytes dedifferentiate and acquire progenitor 
features, which are not expressed in vivo, likely inhibited by a plethora of injury-evoked 
restrictive signals such as inflammatory molecules, but can be disclosed ex vivo (Buffo et al., 
2008; 2010).  Spinal cord ependymal cells appear instead able to undergo astrogliogenesis 
and oligodendrogenesis upon injury directly in vivo (Barnabè-Heider et al., 2010).  

3.1 Protective and destructive effects of immune activation in the nervous tissue 

As presented above (see also Table 2), poor survival of progenitor cells as well as restriction 

of their differentiation potentials to astrogliogenesis, blockade of maturational programs 

and induction of cell death have been long ascribed to immuno-mediated inflammatory 

signals released at sites of lesions. This purely negative view of immunity and inflammation 

has also extended to parenchymal progenitor functioning, based on the established 

detrimental inflammatory burden of immune (e.g. MS), traumatic, neurovascular and 

neurodegenerative (Alzheimer’s Disease, Parkinson disease, Amyotrophic Lateral Sclerosis) 

pathologies. However, recent studies have highlighted a positive contribution of immunity 

to repair of neural damage. Thus, while nothing is known on whether and how both local 

microglia and peripheral immune cells physiologically modulate the proliferation and 
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differentiation rates of OPCs and/or affect the progenitor potentials of other glial cells, it is 

increasingly clear that the concept of immune activation as purely harmful to CNS repair is 

too simplistic. Accordingly, well-defined features, levels and timing of immune activity 

appear to promote neuroprotection and post-injury plasticity in the forms of axon regrowth, 

replacement of degenerated cells and functional recovery.  

This emerging view suggests that supportive functions for tissue repair and functional 
recovery can be exerted by defined populations or functional states of 
macrophages/microglia and T cells. For instance, infiltrating blood-derived macrophages 
have been shown to promote recovery at sub-acute stages in rodents with spinal cord injury 
(Rapalino et al., 1998; Shechter et al., 2009). This action appears related to the production of 
immunomodulatory (anti-inflammatory IL10) and neurotrophic molecules (BDNF), which is 
triggered by exposure to self-antigens or by the actions of T cells responding to 
neuroantigens (‘protective autoimmunity’, Schechter et al., 2009; see also Schwartz and 
Yoles, 2006; Schwartz and Shechter, 2010). A similar modulatory function would be exerted 
by T cells on local microglia that, upon proper stimulation, can become beneficial to the 
nervous tissue (Butovsky et al., 2005, 2006; Shaked et al., 2005). According to this view, 
autoimmune T cells sensibilised against CNS antigens (and in particular myelin 
components) (Moalem et al., 1999;  Hauben et al., 2000; Kipnis et al., 2002; Fisher et al., 2001; 
Beers et al., 2008) have been proposed to play a crucial role in the recovery from acute CNS 
insults. These cells would enhance cellular and molecular mechanisms responsible of 
cleaning up the injured area and creating a milieu favourable to tissue remodelling and 
function restoration. Yet, in autoimmune neuropathologies such as EAE Tregs have been 
primarily implicated in neuroprotection and inflammation control (Liu et al., 2006; Huang et 
al., 2009; Reddy et al., 2004), where they would partly contribute to limiting the 
overactivation of cytotoxic autoimmune cells. A similar function for Tregs in non-
autoimmune CNS damage has been confirmed by a further study on a stroke model (Liesz 
et al., 2009). The important novelty of these findings resides on the identification of 
physiological reparative mechanisms mediated by innate and adaptive immunity that, in 
the natural state may remain too weak or abortive to express their full neuroprotective and 
reparative potential, and could therefore be implemented for therapeutic purposes 
(Schwartz and Yoles, 2006; Walsh and Kipnis, 2011). In other words, with distinct timings 
and modalities, defined immune cell populations can be proposed as an endogenous 
therapeutic target to restrain or modulate self-checking mechanisms on the part of beneficial 
immunity activated spontaneously in response to CNS injury (Walsh and Kipnis, 2011). 
However, any immediate extension of this view to all types of CNS injury, including chronic 
neurodegenerative diseases, requires further confirmations and disclosure of the specific 
mechanisms of immune cell actions in distinct disease conditions (Walsh and Kipnis, 2011).  

3.2 Immune-mediated control of parenchymal progenitor functioning 

Whereas the above presented findings referred to nervous tissue protection and recovery 

from damage in general terms, in this section we will take a closer look on how and when 

innate and adaptive cells and inflammatory cues influence the activity and survival of OPCs 

and parenchymal progenitors. Oligodendrocyte produce myelin sheaths that allow fast 

conduction of electrical signals along axons. These cells undergo primary degeneration due 

to genetic causes (leukodistrophies) and are highly vulnerable to noxious signals produced 
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during traumatic and ischemic events and inflammatory/autoimmune pathologies. In many 

instances their replacement with subsequent remyelination of temporary demyelinated 

axons occurs spontaneously. However, if oligodendrocyte death is particularly extended or 

in defined damage conditions such as traumatic compressive injuries, stroke and MS, this 

process remains incomplete or blocked. Neo-oligodendrogenesis and remyelination are not 

operated by spared mature oligodendrocytes but by OPCs. To attain remyelination, these 

progenitors have to become activated, undergo hyperthrophic changes, activate fast 

proliferation, migrate to the site of demyelination, start a complex differentiation process 

including the establishment of contacts with the denudated axons, expression of myelin 

genes, generation of the myelin membranes that wrap the axons and form the sheath. It is 

unquestionably true that OPCs respond to a variety of insults other than demyelination. 

Amongst these, compelling evidence supports a role for inflammatory/immune 

components in OPC proliferation, recruitment and differentiation. 

In a mouse model of traumatic injury, Rhodes and colleagues have established that, 
amongst early factors capable to induce immediate reactivity in OPC in the form of NG2 
upregulation, hypertrophy and increase in OPC cell number, are blood-derived 
macrophages in a defined activation state including the release of the inflammatory 
cytokines TNF┙, IL1┙, TGF┚, INF┛ (Rhodes et al., 2006). Furthermore, specific 
macrophage/microglia activation phenotypes have been proposed to differentially affect OPC 
proliferation and regenerative capabilities through the selective activation of specific 
microglia/macrophage TLRs (Lehenardt et al., 2002; Glezer et al., 2006; Schonberg et al., 2007; 
Taylor et al., 2010). Despite data presented in distinct studies are not completely consistent 
(perhaps due to different experimental conditions), the consensus view is that defined 
microglia/macrophage activation states, correlated with specific pattern of cytokine 
production, act by either triggering or hampering OPC proliferation and differentiation. For 
instance, IL4-stimulated microglia has been shown to promote oligodendrogenesis from local 
progenitors in an autoimmune demyelination models, whereas INF┛-stimulated microglia had 
no or very limited effects (Butovsky et al., 2005). The role of innate immunity in OPC 
functioning in damage has further been substantiated by studies on non-immunity-mediated 
toxin-induced models of focal demyelination. In these models, genetic-based depletion or 
pharmacological inhibition of macrophages leads to an impairment of remyelination (Kotter et 
al., 2001, 2005), indicating a defective OPC response in an injury condition that normally leads 
to complete regeneration of myelinating oligodendrocytes by local reactive OPCs (Woodruff 
and Franklin, 1999). In the same experimental lesion, enhancing TLR4 mediated microglia 
activation by LPS infusion increases OPC reactivity, promotes a more efficient removal of 
myelin debris and triggers a faster appearance of remyelination markers (Glezer et al., 2006). It 
is clear that one key aspect of the innate immunity contribution to the full expression of the 
OPC regenerative potential is the removal of myelin debris. In vitro and in vivo data support 
the notion that myelin components dampen OPC differentiation (Miller, 1999). In line with 
these findings, anti-inflammatory drugs attenuating microglia/macrophage activity can affect 
OPC responses by delaying their differentiation in experimental demyelination (Li et al., 2005; 
Chari et al., 2005). 

A similar role in the modulation of OPC reaction to demyelination has been attributed to T 

cells (both CD4+ and CD8+) indicating that also adaptive immunity is required for the 

correct OPC regenerative response (Bieber et al., 2003). Indeed, lack or depletion of either 
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CD4+ or CD8+ is associated with reduced remyelination in focal demyelination. 

Interestingly, the disease-delaying drug Glatiramer acetate (GA) adopted for therapy in MS, 

may promote remyelination by potentiating a specific T cell mediated effects. Indeed, it has 

been shown in vitro that GA increases the production of Th2 cells, IGF1, and that the 

conditioned medium from GA-reactive T cells promotes the formation of OPCs from 

embryonic brain-derived forebrain cell culture. These findings are confirmed in vivo, where 

GA increases the OPC number and the extent of remyelinaton in toxin-mediated focal 

demyelination (Skihar et al., 2009).  

Moving from cells to molecular signals, a wide range of pro-inflammatory cytokines (e.g. 

IL1 and TNF, along with lymphotoxin- receptor and MHCII) have been implicated as 
mediators of remyelination in non-autoimmune remyelination, implying that they 
promote the reactivity and the reparative behaviour of OPCs (revised in Franklin and 
ffrench-Costant, 2008). Another cytokine, INF┛, has instead been shown to inhibit 
remyelination (Franklin and ffrench-Costant, 2008). In turn, upon INF┛ stimulation glial 
precursors with features of OPCs have been shown to produce a variety of 
immunomodulators, trophic factors, microglia attractive factors, and activate the 
expression of specific TLRs (Cassiani-Ingoni et al., 2006), indicating that OPC participate 
in active and bidirectional interplay with immune cells. Finally, cytokines have also been 
proposed as capable to instruct alternative OPC fates: in vitro exposure to INF┛ diverted 
glial progenitor from oligodendrogenesis to astrogliogenesis. Despite this finding is 

consistent with the capability of INF to block remyelination, astrogliogenesis from OPCs 
in vivo remains debated (see above). 

Moving to injury models distinct from demyelination, spinal cord contusions offer an 

example of a traumatic injury where intense OPC proliferation is not accompanied by 

complete glial repopulation of the lesioned area. In this specific immuno-inflammatory 

condition, activated microglia/macrophages have been shown to secrete inhibitory factors 

(i.e. TNF, and extracellular matrix modifiers) hampering survival and growth of OPC ex 

vivo, and impeding their migration into the lesioned demyelinated area (Wu et al., 2010). 

Opposite effects of activated microglia on tissue repair in different lesion models may 

indeed be explained by different timing of recruitment of T cells in this process ensuing 

distinct microglia activation states (following  Schwartz and Yoles, 2006). 

Immuno-inflammatory levels have also been suggested to affect the neurogenic potential of 
parenchymal precursors, independent on their identity. Low levels of inflammation or 
specific immuno/inflammatory states have been proposed to allow the disclosure of 
neurogenic potentialities. In the cerebral cortex, selective cortical neuron damage mediated 
by apoptotic events and very low levels of inflammatory/immune activation has been 
associated with the appearance of glial cells with radial progenitor traits and rare immature 
neurons, suggesting that injury-induced de-differentiatiation of resident astrocytes to a 
radial glia state may subserve local neurogenesis (Leavitt et al., 1999; Chen et al., 2004). Also 
mild ischemic damage has been reported to allow neurogenesis from parenchymal sources: 
viral-based tracing revealed that layer I cortical progenitors can give birth to a low number 
of GABAergic cortical interneurons (Ohira et al., 2010). 

A further support to the contention that local immune response strongly influences the 

behaviour of local precursors was provided by the observation in a model of spinal cord 
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lesion that combined modulation of T cell activation by myelin-derived peptide 

vaccination and transplantation of immunomodulatory adult NSCs correlated with the 

appearance of neurogenic attempts from local progenitors accompanied by modulation of 

parenchymal T cell response and microglia activation, and, increased BDNF and noggin 

expression (Ziv et al., 2006b). Pioneering studies have also started investigating the 

influence of T cells on astrocytes, showing that T-cell derived signals modify the astrocytic 

metabolic state in vitro. Namely, glutamate released by T cells promotes the acquisition of 

a neuroprotective phenotype and potentiates their capability to clear glutamate (Garg et 

al., 2008). Astroglial dysfunctions appear instead induced by LPS-activated microglia in 

vivo, resulting in defect of the BBB and subsequent myelin damage (Sharma et al., 2010). 

Astrocytes are obviously intensely involved in any kind of response to noxious stimuli, 

given their essential functions in the maintenance of tissue homeostatis, scavenging of 

toxic molecules, production of trophic support to neurons and oligodendrocytes, and 

cytogenic glial scarring to prevent the spreading of potential secondary damage to the 

healthy tissue (Buffo et al., 2010). The astrocytic reaction is directly or indirectly induced 

by various inflammatory cytokines and, in turn, reactive astrocytes produce pro-

inflammatory molecules that modulate their own activation state and that of immune cells 

(Buffo et al., 2010; Kostianovsky et al., 2008). Whether and how inflammatory/immune 

factors specifically affect the progenitor potential of reactive astroglia is not known. What 

is well accepted is that extended damage is associated with high levels of inflammation 

and immune activation that are generally unfavourable to the disclosure of progenitor 

properties and regeneration (see also above). Accordingly, controlled microlesions to the 

CNS and associated low levels of inflammatory/immuno activation were reported to 

induce immature/progenitor phenotypes associated with rare neurogenic events as well 

as the establishment of a microenvironment more prone to support axon growth (Leavitt 

et al., 1999; Chen et al., 2004). It remains to be established whether specific components or 

modalities of innate/adaptive immune activation can boost such pro-reparative changes 

in resident astroglia in case of extended damage. On the whole, these data indicate that 

the expression of the reparative potentials of parenchymal progenitors can be supported 

by immune mechanisms directed at both removing debris and toxic molecules, and 

performing immunomodulation to avoid the overactivation of the immune response. 

4. Concluding remarks 

Recent discoveries have profoundly changed the perception of CNS–immune interactions. 

In particular, the novel roles of immune cells in the maintenance and plastic regulation of 

adult NSC functions have revealed an unexpected exchange of signals between the 

nervous and immune systems, opening the possibility that immune malfunction may 

have relevance in so far unsuspected CNS diseases. Furthermore, a decade of 

investigations has dissected components of the immune response to CNS injury that 

potentiate or dampen CNS reparative activities. While more research is needed to disclose 

the influence of immune factors on the properties of parenchymal sources of progenitor 

cells, on the whole immune cells can be proposed as an endogenous therapeutic target to 

modulate immune mechanisms on the part beneficial to foster CNS repair and function 

restoration. 
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