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1. Introduction  

Huntington’s Disease (HD) is a dominantly inherited neurodegenerative disease affecting 
cognitive, emotional and motor systems. While alterations in the huntingtin gene (HTT) 
have been identified as causative for nearly two decades, an effective treatment has yet to be 
developed. Prior studies have shown that mutant huntingtin (mHTT), via its polyglutamine-
expanded repeats, can affect cellular function in many ways, such as alteration of gene 
transcription, one of the best-characterized pathobiological events leading to HD. 
Microarray studies in mouse models of HD and in postmortem brain samples from HD 
patients report a decrease in transcriptional levels of hundreds of genes, most of them 
selectively expressed in the striatum, the affected brain region in HD. mHTT has been 
shown to inhibit the interactions of several transcription factors and to repress the 
transcription of genes necessary for neuronal function and survival, such as Brain Derived 
Neurotrophin (BDNF) or the co-activator Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC1-alpha). 

The main question that arises is how the changes in transcriptional expression are triggered. 

Several studies from multiple laboratories focus only on one transcription factor as causative 

of the disease, but a comprehensive view of all the described events is missing and drug 

treatments able to correct the transcriptional dysregulation in this incurable disease are 

warranted. Global transcriptional modulators, like Histone deacetylase (HDAC) inhibitors, 

have been seen as a potential therapy for this disease. On the other hand, transcription can 

be regulated modulating the activity of histone demethylases, histone acetyl transferases, 

microRNAs and new approaches have been developed recently. An alternative way to 

modulate transcription in HD resides in the inhibition of transglutaminase 2 (TGase 2). The 

multifunctional enzyme TGase 2 is hyperactivated in several neurodegenerative diseases 

and acute injuries leading to neuronal death and its pharmacological or genetic deletion 

leads to partial rescue in mouse models of HD. Our study (McConoughey et al., 2010), along 

with more recent publications (Munsie et al., 2011), unravels the important role of nuclear 

TGase 2 in HD and defines that in the presence of mHTT, TGase 2 is recruited to chromatin, 

where it binds to histone H3 and participates in transcriptional silencing of genes that 
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control mitochondrial biogenesis, chromatin structure, protein folding and DNA repair. In 

our results TGase 2 inhibition regulates the gene expression of PGC1-alpha, a transcriptional 

coactivator, and cytochrome c, a transcription factor, both important in mitochondrial 

biogenesis. TGase 2 inhibition can normalize 40% of the dysregulated gene expression in a 

HD cell model and for this reason TGase 2 may act as a broader transcriptional modulator. 

TGase 2 might negatively modulate transcription of neuroprotective genes, inhibiting the 

interaction between transcription factors and their co-activators and thereby repressing gene 

expression designed to compensate, for instance, for mitochondrial dysfunction in HD. 

Specific TGase 2 inhibitors, along with other therapies targeting transcriptional 

dysregulation, may offer a beneficial effect to this incurable disease. 

2. Genes dysregulated in HD 

Transcriptional profiles of several in vivo and in vitro models of HD revealed a notable 

dysregulation of coding and non-coding RNAs expression (Tang et al., 2011). The cause of 

this impairment is linked to an alteration (loss or gain) of mHTT functions. mHTT is 

susceptible to protein cleavage by caspase-6 and its N-terminal fragments shuttle 

prevalently into the nuclear compartments where they form inclusions. Several transcription 

factors and enzymes involved in chromatin regulation were shown to interact with mHTT 

or to be present in intranuclear aggregates. The loss of these proteins contributes to global 

transcriptional dysregulation, typical of this neurodegenerative disease (Zhai et al., 2005). A 

series of very elegant papers published at the beginning of the millennium described the 

dysregulation of transcription factors and co-activators or co-repressors and their most well 

characterized downstream genes in HD, such as: the transcription factor CREB (cAMP 

Responsive Element-Binding), the co-activator CBP (CREB-Binding Protein), the co-

repressor NREST (Neuronal Specific Responsive Element 1 (RE1) Silencing Transcription 

factor) and the DNA binding Specific Protein 1 (Sp1). 

2.1 CREB 

CREB is a transcription factor known to mediate stimulus-dependent expression of genes 

critical for plasticity, growth, and survival of neurons (Lonze &Ginty, 2002). The earliest 

observation that CREB signalling is compromised in HD came from Ross and 

collaborators in 2001 where the expression of different lengths of mHTT in N2A cells 

induced aggregation of the co-activator CBP and downregulation of CRE-mediated 

signalling (Nucifora et al., 2001). In the same year, Wyttenbach et al. confirmed this 

important observation in PC12 cells, where inducible mHTT expression impairs, 

primarily, the cAMP-regulated response (Wyttenbach et al., 2001). Subsequent works on 

the same line demonstrated the early CREB-signalling dysregulation in immortalized 

striatal cell lines (Gines et al., 2003) and in R6/2 mice (Sugars et al., 2004). Its reduced 

signalling became a promising target for therapeutic intervention; from a pharmacological 

point, specific phosphodiesterases inhibitors, like rolipam and TP10, were tested to 

maintain CREB in its active form (phosphorylated) and preserved neuronal viability 

(DeMarch et al., 2007; Giampa et al., 2006; Giampa et al., 2009). As a genetic approach, 

CREB overexpression was sufficient to rescue polyglutamine-dependent lethality in 

Drosophila (Iijima-Ando et al., 2005). 
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CREB regulates many genes and controls the transcription of the coactivator PGC1-alpha. 

Recent data from our group and others indicate that PGC1-alpha is necessary and sufficient 

to overcome mitochondrial toxicity in rodent models of HD and in other neurodegenerative 

diseases (Cui et al., 2006; Lin et al., 2004; McConoughey et al., 2010; St-Pierre et al., 2006; 

Weydt et al., 2006). PGC1-alpha can be regulated by and interact with transcription factors 

such as CREB, NRF-1, FOXO, MEF-2 and PPARγ to recruit the basal transcriptional 

machinery to genes involved in mitochondrial biogenesis, mitochondrial function and 

antioxidant defence (Figure 1). Additional functions of PGC1-alpha have been recently 

described, such as its role in cholesterol biosynthesis and myelination (Xiang et al., 2011), 

essential for neuronal functionality. 

 

Fig. 1. The transcription of PGC1-alpha is regulated by metabolic stress. When PGC1-alpha 

is expressed and phosphorylated by AMPK, translocates to the nucleus and regulates the 

transcription of several genes involved in mitochondrial biogenesis and oxidative 

phosphorylation. These events lead to the activation of mitochondrial anti-oxidant 

adaptation and the increased transcription of several genes such as cytochrome c. mHTT has 

been shown to block the transcription of PGC1-alpha gene, recruiting CBP in intranuclear 

aggregates and blocking PolII activation. 
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2.2 CBP 

CBP, best know as CREB co-activator, modulates the activation of many transcription 
factors (Goldman et al., 1997) by facilitating the recruitment of the transcriptional 
machinery. CBP has a key role in the nervous system; its mutations or deletions are 
associated to the Rubinstein-Taybi syndrome. In 2001 Steffan and colleagues showed that 
CBP and p300/CBP-associated factor (P/CAF) interact directly with mHTT blocking their 
acetyltransferase function (Figure 1). Additionally, CBP activity is reduced by its presence in 
polyglutamine aggregates (Nucifora et al., 2001) or by its increased proteasomal degradation 
(Cong et al., 2005; Jiang et al., 2003; Sadri-Vakili et al., 2007). Of note, CBP regulates the 
transcription of genes involved in the urea cycle, compromised in the liver of HD patients 
(Chiang et al., 2007) and this dysfunction contributes to the development of the disease.  

2.3 REST/NREST 

The Brain-Derived Neurotrophic Factor (BDNF) is an essential neurothrophin for the 
Central Nervous System. Its decreased levels have been well documented in HD human 
tissues and in mouse models. Its transcriptional regulation has been thoroughly described 
by Cattaneo and colleagues and it offers a different example of how mHTT can accomplish 
its detrimental effects. BDNF transcription can be switch off by a corepressor called REST. 
Usually REST interacts with wild type huntingtin and resides in the cytosol. mHTT fails to 
bind REST, which translocates to the nucleus and binds the Repressor-Element 1 (RE1) 
blocking BDNF gene transcription (Zuccato et al., 2001; Zuccato et al., 2003). Strategies to 
limit the repressive REST/NREST complex with pharmacological modulators, such as 2-
aminothiazole derivatives (Leone et al., 2008) or decoys (Soldati et al., 2011) are now under 
investigation. Furthermore, REST modulates many microRNAs (miRs) and long non-coding 
RNAs, important in neuronal functions and dysregulated in HD (Bithell et al., 2009; Buckley 
et al., 2010; Johnson &Buckley, 2009; Johnson et al., 2008). One of them, miR-9, is 
downregulated by mHTT and fails to repress REST itself, contributing to the enhancement 
of its repressive activity (Packer et al., 2008).  

2.4 Sp1 

Sp1 is a member of an extended family of DNA-binding proteins that has three zinc finger 
motifs and binds to GC-rich DNA (Bouwman &Philipsen, 2002). Although classically 
thought to regulate the constitutive expression of numerous housekeeping genes, Sp1 
transcriptional activities have been found to change in association with differentiation and 
proliferation and to regulate gene expression in association with these as well as other 
functions. In HD, the evidence that Sp1 dependent transcription is inhibited is extensive. 
mHTT interacts specifically with glutamine rich activation domains in Sp1 (Dunah et al., 
2002) and blocks its direct binding to DNA. This aberrant interaction nullifies the ability of 
Sp1 to induce transcription of important genes including those encoding neurotransmitter 
receptors, downregulated in HD patients and rodents models (Cha et al., 1998). Sp1 
overexpression (Dunah et al., 2002) or Sp1 acetylation (Ryu et al., 2003a) provide protection 
in HD. Interestingly, two anthracycline antibiotics, mithramycin and chromomycin, were 
shown to bind DNA inhibiting Sp1 activity and they provided the higher rate of survival 
reported to date in R6/2 mice (Ferrante et al., 2004; Stack et al., 2007). Unfortunately, the 
clinical trial on mithramycin was interrupted for low tolerability in humans. A recent paper 
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from our group described promising analogs and showed the ability of these antibiotics to 
induce a promoter-specific displacement of Sp1, favouring the pro-survival effects of this 
transcription factor and inhibiting its pro-death activities (Sleiman et al., 2011).  

 

Fig. 2. mHTT recruits Sp1 and the transcription machinery in intranuclear inclusions, 

downregulating the expression of Sp1-dependent genes (A). At the same time, mHTT fails 

to interact and inhibit NREST repressive activity in the nucleus, leading to an aberrant 

inhibition of BDNF transcription (B). 

3. Global histone modifications and transcriptional modulation 

Within the eukaryotic nucleus, DNA is packaged into chromatin domain. The basic subunit 

of chromatin is the nucleosome, which is composed of DNA coiled around an octamer of 

histone proteins, two molecules each of histone H2A, H2B, H3 and H4. Histone H1 

associates with chromatin outside the nucleosome. The amino-terminal tail of each histone is 

evolutionarily conserved and it is the target of numerous post-translational modifications 

(PTM). PTM of histones are major players in transcriptional control. These modifications 

include acetylation, methylation, phosphorylation, ADP-ribosylation, mono-ubiquitylation, 

citrullination, sumoylation and polyamination. The specific pattern of histone modification, 
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identified as histone code, is used by proteins involved in chromatin organization to 

establish a transcriptionally silent or active state. 

mHTT impacts transcription not only trough the direct binding on DNA (Benn et al., 2008) 

or transcription factors (e.g. CREB, FOXO) (Zhai et al., 2005) but also inducing a global 

modification of histone proteins. On one side, mHTT recruits histone acetyl transferases 

(HATs), such as CBP, in intranuclear aggregates and reduces their ability to acetylate 

histones; on the other side, mHTT facilitates polycomb repressive complex 2 (PRC2), which 

methylates histone H3 in lysine 27 and mediates transcriptional repression (Seong et al., 

2010). 

3.1 Histone acetylation and HDACs 

Among the myriad of modifications that are normally occurring at the histone tails, 

acetylation is the most common. Histone acetylation and deacetylation are regulated by a 

delicate interplay between Histone Acetyl Transferases (HATs) and Deacetylases 

(HDACs). In a simplistic view, histone acetylation is usually associated with increase in 

gene transcription; conversely, histone deacetylation represses transcription. Several 

works described a global inhibition of acetylation in HD mouse models, human samples 

and cell lines, due to the propensity of mHTT to recruit HATs such as CBP (Steffan et al., 

2000) in intracellular inclusions. HAT activity and global histone acetylation were 

significantly decreased in several models of HD (Igarashi et al., 2003; Sadri-Vakili et al., 

2007). Difficulties in upregulating the acetyl transferase activity moved the attention on 

the other enzymes involved in the acetylation homeostasis: HDACs. HDAC inhibitors 

have been tested in various HD models to restore transcription, although their expression 

and activity are not altered by mHTT (Hockly et al., 2003) (Table 1). The first evidence that 

HDAC inhibitors would have been promising therapeutic agents in HD came from Leslie 

Thompson and collaborators in 2001, where butyrate and suberoylanilide hydroxamic 

acid (SAHA) reduced lethality in two Drosophila models of polyglutamine disease (Steffan 

et al., 2001). Sodium butyrate ameliorated HD symptoms in R6/2 mice and increased 

histones and Sp1 acetylation (Ferrante et al., 2003). Phenylbutyrate increased the lifespan 

of N171-82Q mice (Gardian et al., 2005) and it has been reported as safe and tolerable in 

humans (Hogarth et al., 2007). Other protective HDAC inhibitors are: SAHA, tested in 

R6/2 mice (Hockly et al., 2003); trichostatin A (TSA) is effective in immortalized cell lines 

(Dompierre et al., 2007; Oliveira et al., 2006); the inhibitor 4b effective in R6/2(300Q) 

transgenic mice (Thomas et al., 2008); valproate alone or in combination with lithium in 

N171-82Q mice (Zadori et al., 2009; Chiu et al., 2011). Clinical trials for valproate showed 

some beneficial effects (Saft et al., 2006; Grove et al., 2000). Finally, a role for the NAD+-

dependent HDACs is emerging (Pallos et al., 2008; Hathorn et al., 2011) in relation to 

cholesterol synthesis in the HD brain (Luthi-Carter et al., 2010). Trials to assess the safety, 

tolerability and pharmacokinetics of sirtuins inhibitors are on going (SEN0014196) (Gray, 

2010).  

There is an emerging believe that global HDAC inhibition may exert partial toxicity due to 

the suppression of pro-survival isoforms. Genetic deletion of single isoforms have been 

performed revealing that HDAC4 may be the only causative in HD. Specific HDAC4 

inhibitors are now under investigation (Munoz-Sanjuan &Bates, 2011). 
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3.1.1 Protein acetylation in HD 

Acetylation is important not only on histone tails but on several proteins and transcription 

factors to recruit specific transcriptional regulatory complexes (Xu et al., 2007) or to mediate 

signalling. Sp1 acetylation, for instance, is necessary to activate the adaptive response to 

oxidative stress in vitro and in vivo (Ryu et al., 2003b) and alpha-tubulin acetylation increases 

BDNF trafficking and release in neurons (Dompierre et al., 2007). It has been recently 

reported that ribosomal DNA transcription is also impaired in HD due to decreased 

acetylation of the upstream binding factor-1 (UBF-1) (Lee et al., 2011); similarly, decreased 

levels of acetylation in p53 (lysine 382) correlate with the accumulation of DNA damage in 

HD (Illuzzi et al., 2011). Nevertheless, HTT itself is usually acetylated and degraded by 

autophagy; mHTT conformation impedes acetylation at lysine 444 and mediates its 

accumulation in intracellular inclusions (Jeong et al., 2009). 

HDAC inhibitor HD Model References 

SAHA Drosophila Steffan, 2001 

Sodium butyrate Fibroblast from HD patients Kegel, Meloni et al. 2002 

Sodium butyrate R6/2 HD mouse model Ferrante, Kubilus et al. 2003 

SAHA R6/2 HD mouse model Hockly, Richon et al. 2003 

Phenylbutyrate N171-82Q HD mouse model Gardian, Browne et al. 2005 

HDAC3 shRNA 

Caenorhabditis elegans 

expressing a human huntingtin 

fragment with an expanded 

polyglutamine tract (Htn-Q150)

Bates, Victor et al. 2006 

Trichostatin A 

(TSA)/ Sodium 

butyrate 

STHdh cell line Oliveira, Chen et al. 2006 

TSA and HDAC6 

shRNA 
Primary neurons Dompierre, Godin et al. 2007 

Phenyl butyrate and 

sodium butyrate 

STHdh cell line and R6/2 mouse 

model 
Sadri-Vakili, Bouzou et al. 2007 

Phenylbutyrate Humans/Clinical Trial Hogarth, Lovrecic et al. 2007 

HDAC1 and Sirt2 

knock down 

Drosophila (UAS-Httex1p Q93 

flies) 
Pallos, Bodai et al. 2008 

Pimelic 

diphenylamide 

HDAC inhibitor, 

HDACi 4b 

R6/2 mouse model Thomas, Coppola et al. 2008 

Nicodinamide to 

block Sirtuins 
R6/1 mouse model 

Hathorn, Snyder-Keller et al. 

2011 

SIRT2 

Drosophila (UAS-Httex1p Q93 

flies) and primary cultures 

trasduced with mHTT 

Luthi-Carter, Taylor et al. 2010 

Table 1. HDAC inhibitors tested in different models of HD. 
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3.2 Beyond acetylation: Methylation, ubiquitylation, polyamination 

Decreased acetylation is associated usually with an increase of histone methylation at 

specific arginine and lysine residues (e.g. H3K9me, H3K27me). Histone methylation, in fact, 

has a similar dynamic regulation than histone acetylation and it is controlled by histone 

demethylases and histone methyltransferases. Levels of trimethylated histone H3 Lysine 9 

are upregulated in HD human and mouse tissues by the dysregulated transcription of a 

Lysine methyl transferase, ESET (Ryu et al., 2006). Accordingly, partial deletion of CBP 

induces ESET transcription (Lee et al., 2008), suggesting that it is important to preserve the 

homeostatic equilibrium of the enzymes that regulate chromatin. The decrease of CBP 

involves reduced acetylation and shifts the equilibrium towards methylation. 

Despite the simplistic concept of transcriptional repression mediated by a decrease of acetyl 

transferases activity and a consequent increase of global histone methylation, other histone 

modifications can lead to the same repressive result. Due to a disrupted interaction between 

mHTT and Bmi-1, part of the ubiquitin ligase complex, histone H2A monoubiquitylation is 

aberrantly increased in genes downregulated in HD. Consequently, monoubiquitylation of 

histone H2A promotes methylation in histone H3, lysine 9, a repressive mark (Kim et al., 

2008). Conversely, the genes that are not altered by mHTT present normal levels of 

monoubiquitylated H2A and increased levels of monoubiquitylated H2B that induces 

methylation in histone H3 lysine 4, an active mark. In light of these important results, it is 

plausible to hypothesizes that new therapeutic avenues will be embraced by the HD 

scientific community in order to understand better how to modulate histone methylation in 

relation to dysregulation.  

An emerging field in epigenetic modulation involves small cationic metabolites called 
polyamines. Polyamines are organic compounds with two or more primary amino groups able 
to regulated gene expression. They interact with DNA, RNA and control cell proliferation and 
growth. Their avidity for DNA on a charge base makes them ideally suited to regulate its 
conformation. Attaching them to proteins provides an elegant way to manipulate charge 
concentrations locally and alter DNA binding affinity (highly negatively charged due to 
phosphate backbone) to assume a compact (silenced) conformation. Recent papers showed 
that polyamines or polyamines analogs inhibit Lysine Specific Demethylase 1 (LSD1), a FAD-
dependent histone demethylases, able to demethylate mono and dimethyl lysine 4 of histone 
H3, active marks of transcription (Huang et al., 2007; Shi et al., 2004) and they can block 
HDACs activity sitting in their catalytic pocket (Varghese et al., 2005). In a number of in vitro 
studies, polyamines can be crosslinked to glutamine tails of histones by transglutaminase 2 
(TGase 2). Indeed, Ballestar identified polyamination of histone H3 in glutamine 5 and 19 and 
polyamination of histone H2B in glutamine 22 and correlated these modification with a change 
in the nucleosome structure (Ballestar et al., 1996; Ballestar et al., 2001).  

3.2.1 Transglutaminase 2 and HD: Protein crosslinking or protein polyamination? 

Transcriptional proteins that are inhibited in HD contain glutamine rich activation domains 
(Sp1, CBP, TAF4). Glutamines in proteins are substrates for a class of enzymes called 
transglutaminases (TGase 2) (Jeon et al., 2003). In humans, eight distinct TGases, encoded by 
different genes and referred to as TGase 1-7 and coagulation factor XIIIa have been 
previously identified. All members of the class have common catalytic activity and protein 
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structure. The activity of each of these enzymes leads either to the formation of covalent 
bonds within or between polypeptide chains (γ-glutamyl-lysine; GGEL; Figure 3A) or the 
incorporation of polyamines into substrate proteins. This generates one of two possible 
types of products of TGase 2-polyamination: the N-(γ-glutamyl)polyamine and bis-(γ-
glutamyl)polyamine (Figure 3B). In a recent study (Jeitner et al., 2008), increased levels of (γ-
glutamyl)polyamines were seen in the CSF of HD patients suggesting a link between TGase 
2 activity and polyamination in HD. 

 

Fig. 3. TGase 2 catalyzes cross-links between glutamine and lysines in proteins leading to 
gamma-glutamyl-lysine covalent bonds (A) or the incorporation of polyamines into 
substrate proteins (B). 

Investigations of TGase 2 in HD date back to 1993. Since then, a number of studies have 
documented increases in TGase 2 activity in a host of tissues, including in nuclei of human 
HD brains (Karpuj et al., 1999; Lesort et al., 1999). In the 80s, transglutaminase was first 
suspected to participate in HD pathogenesis via its ability to promote aggregates of 
polyglutamine (PolyQ) peptides and polyQ-huntingtin. Subsequently, Finkbeiner and 
colleagues suggested that aggregates were beneficial rather than pathogenic in HD (Arrasate 
et al., 2004). These findings suggested that TGase 2 inhibition prevented HD pathology by 
mechanisms independent of huntingtin aggregation. In the last ten years, several studies 
described the effect of TGase 2 inhibition in HD. Cystamine, a broad TGase 2 inhibitor, has 
been shown to be protective in R6/2 mice (Dedeoglu et al., 2002; Karpuj et al., 2002; Wang et 
al., 2005) and in YAC128 mice (Van Raamsdonk et al., 2005), both established models of the 
disease. Karpuj et al. in 2002 correlated the beneficial effects of TGase 2 inhibition with the 
transcriptional upregulation of a DNAJ-type heat shock protein, but did not offer any 
specific data on how TGase 2 might regulate DNAJ message levels in HD. The general 
model garnered support through a subsequent study by Borrel-Pages (Borrell-Pages et al., 
2006) that showed that the levels of the DNAJ-containing protein HSJ1B are reduced in HD 
samples and that pharmacological inhibition of TGase 2 could restore message and protein 
levels in this context. The findings showed that TGase 2-mediated reduction in HSJ1B is critical 
for HD pathogenesis via its ability to delay brain-derived neurotrophic factor BDNF trafficking 
and release. Again, the findings were consistent with an effect of TGase 2 on message and 
protein levels, but did not offer a model of how TGase 2 might exert these effects. The 
crossbreeding between the TGase 2-/- and R6/1 or R6/2 mice resulted in reduced neuronal 
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death, improved motor performance and increased survival (Mastroberardino et al., 2002, 
Bailey &Johnson, 2006). These positive results were not as encouraging as the HD community 
expected but it is important to consider that TGase 2 is ubiquitously expressed and among its 
several functions, it also has a role in normal development (Bailey et al., 2004). Deletion of 
TGase 2 induces compensation by the other seven transglutaminases that probably masked the 
real beneficial effect of TGase 2 inhibition. 

We have proposed a novel TGase 2 function and demonstrated that TGase 2 inhibition 
normalized transcription in HD (McConoughey et al., 2010). In cells expressing mHTT, 
TGase 2 is recruited at the promoters or genomic regions of repressed genes. Microarray 
analysis indicates that TGase 2 inhibition via a selective inhibitor corrects transcriptional 
dysregulation in HD more efficiently than canonical TGase 2 inhibitors (cystamine) or 
HDAC inhibitors (TSA). However, TGase 2 inhibition does not affect histone acetylation 
(H4), suggesting a parallel and additive mechanism for histone regulation by HDAC 
inhibitors and TGase 2 inhibitors. Our results suggest that TGase 2 inhibition is a significant 
driver of transcriptional dysregulation in HD and should further stimulate efforts to 
understand how it exerts this function.  

 

Fig. 4. Proposed mechanism of action for TGase 2 in HD. In the presence of mHTT, TGase2 
is hyperactived and it can bind to the promoter of genes such as cytochrome c and PGC1-
alpha repressing transcription. The use of specific TGase 2 inhibitors displace TGase 2 from 
these promoters and block synaptic dysfunction and consequent cell death. 

4. Conclusion  

Targeting transcriptional dysregulation is one of the most promising avenues for this 
untreatable disease. The continuous understanding of how transcriptional regulation occurs 
in vivo along with the development of more specific modulators of chromatin remodelling 
enzymes will lead hopefully to a cure for HD in the early future. In the last ten years, since 
the involvement of transcriptional dysfunction has been reported in the field, huge efforts 
have been invested by researchers, founding agencies, private foundations and patients, all 
over the world. Broad HDAC inhibitors, specific HDAC inhibitors, CREB activators, SP1 
modulators, TGase 2 inhibitors have been tested so far in mouse models and clinical trials. 
Unfortunately, the results in humans are not as promising as observed in mouse models, 
suggesting that a deeper understanding of the molecular mechanisms leading to 
neurodegeneration and the design of combined therapies are still required. 
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