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1. Introduction 

This chapter looks at the concept of gravitational quantisation and the intriguing possibility 
that it may enable understanding one of the most mysterious problems in astrophysics: the 
nature and origin of dark matter. The concept of gravitational quantisation is relatively new, 
and from the traditional quantum mechanical viewpoint it raises questions about the 
applicability of quantum mechanics to gravitational fields, and also questions about the 
applicability of quantum mechanics on macroscopic scales, because the quantisation states 
of gravitational fields are sometimes large. Quantum physics was after all, originally 
developed to describe the behaviour of electrons in atoms and quickly became the 
recognised way to accurately model the physics of atomic-sized systems. Although it was an 
obvious extension that the structure of nuclei, which were even smaller, could also be well 
described using a wave-mechanical approach, for many years this was the limited domain 
in which quantum theory operated. Nevertheless the success of applying quantum physics 
to nuclear phenomena showed (1) that quantum theory was appropriate to potentials other 
than electrical (in this case the strong nuclear force) and (2) that it provided a correct 
description of nature over a range of scales (< ~2 fm for nuclear structure compared to > ~50 
pm for atoms). The success in modelling nuclear phenomena did not necessarily mean 
however that quantum theory was suitable for describing nature over all scales and that it 
applied to all other types of potentials. For example, the existence of a region where 
quantum physics breaks down and classical physics takes over still remains a debated issue, 
but if such a region exists, at what scale does it happen? And secondly, for what other 
potentials or pseudo-potentials might quantum theory be valid and how would this validity 
be demonstrated? 

With respect to the first question, we argue that there are at present no experiments that 
invalidate quantum theory at any scale, and that quantum-based predictions of classical or 
macroscopic measurements are expected to equally agree with those of classical 
calculations, provided careful attention is paid to effects such as decoherence (Zurek, 1981, 
1982, Chou et al., 2011, Lamine et el., 2011, Jaekel et al., 2006, Schlosshauer, 2007). Indeed 
isolating a consistent value for the scale of the so-called mesoscopic region between the 
quantum and classical domain, above which classical theory would dominate, has proved 
elusive and experiments have continued to demonstrate the applicability of quantum 
physics at macroscopic scales. However, as the many newly-observed macroscopic quantum 
phenomena demonstrate, this does not preclude the possibility that quantum theory may 
lead to additional novel macroscopic phenomena that have no classical analogue. Examples 
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include experiments involving superconductivity and superconducting interference devices, 
and the experiments with entangled photons, atoms and molecules (Nakamura et al., 1999, 
Ketterle, 2002, Van der Wal et al., 2000, Zbinden et al., 2001, Schmitt-Manderbach et al., 
2007). 

With respect to the second point, recent experiments have also observed quantum effects in 
potentials and pseudo potentials other than electromagnetic or nuclear. In seminal work by 
Nesvizhevsky et al., 2002, quantised states of the gravitational field were observed in the 
laboratory. These remarkable experiments demonstrate for the first time that particles form 
gravitational eigenstates in gravitational potential wells, and hence that particles in 
gravitational potentials conform to the laws of quantum physics in the same way that 
electrons do in the electrical potentials around nuclei (despite any apparent but ongoing 
inconsistency between quantum mechanics and general relativity). If relatively pure 
gravitational quantum eigenstates can form in a laboratory situation then the question arises 
as to whether such eigenstates might exist naturally elsewhere in the universe, and if so, 
what their theoretical properties might be. 

Research in the area of quantum gravity has been active for some time (for general reviews 
see DeWitt and Esposito, 2007, Rovelli, 2008 and Woodard, 2009). It should be noted that the 
aim in this chapter is not to develop a theory of quantum gravity. Quantum gravity seeks to 
produce a unified theory of quantum physics and general relativity under all conditions, 
particularly in regions of strong gravity where classical Newtonian approaches break down. 
Such a theory does not yet exist and is not needed in the current context, where a 
Newtonian formulation of gravitational quantum theory is used. The purpose here is to 
examine properties of the predicted quantum based eigenstates that exist predominantly in 
the weak gravity regions of (possibly deep) gravitational wells and to study the behaviour 
of particles in these regions using the traditional quantum eigenspectral decomposition of 
the particle wavefunctions in terms of their energy eigenstate basis vectors. That is, we do 
not include eigenstates that might have significant amplitude fractions in regions of strong 
gravity such as near black holes (and such states should not be needed as they form a small 
fraction of the eigenspectral decomposition for particles in weak gravity regions), and we 
assume that those states that are included in the decomposition may be approximated by 
ignoring any small fraction of their eigenstate function that does encroach on such regions. 
It will turn out that the use of a quantum gravitational approach introduces novel properties 
to particles that enable dark matter to arise as a natural consequence of cosmic evolution 
without the need for new particles or physics beyond traditional quantum theory. 
Coincidentally we will see that not only can gravitational quantisation potentially solve the 
dark matter problem, but also that it compels the introduction of a new paradigm for the 
macroscopic description of particles and their interaction properties. 

The first evidence that dark matter might exist appeared over 70 years ago with Zwicky’s 
observations of high rotation velocities of galaxies in the Virgo cluster which pointed to 
excess unseen mass (Zwicky, 1937). About 30 years later (Rubin, 1970) showed that the 
orbital speeds of stars and gas within galaxies did not fall off with radial position in a 
Keplarian manner as expected, but maintained a constant velocity as far out as could be 
measured. These galactic rotation curves seemed to clearly show that galaxies also 
contained mass beyond that that would be expected from their visible component. 
Significantly this “missing” mass is not a small fraction of the visible component. Instead it 
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dominates, making over 80% of the expected 27% matter content of the universe, and much 
more than this in some galaxies. Because these controversial observations seemed 
inexplicable and had such radical implications for the understanding of the universe they 
were initially treated with scepticism. Evidence has continued however to point to a 
universe whose dominant matter content remains a mystery. Strong evidence supporting 
this hypothesis also comes from observations of gravitational lensing and also those from 
the Wilkinson Microwave Anisotropy Probe (WMAP). These ‘dark’ particles are essentially 
invisible: as far as observations reveal, they do not radiate energy, are transparent to 
electromagnetic radiation and weakly interacting with ordinary (baryonic) particles.  

Cosmologists’ currently favoured solution is the cold dark matter theory (CDM) or the more 
recent modification that includes dark energy, lambda cold dark matter (LCDM) (Primack, 
2001). The theory is based then on the hypothetical existence of an as yet undiscovered 
weakly interacting elementary particle. Although no such particle is predicted from the 
standard model of particle physics, there are extensions to the standard model such as 
supersymmetry (Feng, 2010) that potentially have theoretically predicted particles that 
might function as long-lived weakly interacting particles. Given that such a particle exists, 
numerical simulations of LCDM have been developed, and these have been very successful 
in predicting the very large scale structure of the universe (see Croft and Estathiou, 1993, 
Colberg et al., 1997). In these simulations the structure of the universe grows by 
gravitational coalescence of dark matter particles to initially form small agglomerations that 
then combine in a process of hierarchical merging (Knebe, 1998, Diemand and Moore, 2009) 
to form the clusters and large galaxies seen today. Numerical simulations initially using 
particle masses of 41~ 10 kg (because of computational constraints) and later smaller masses 
both give similar and excellent prediction of large scale universal structure. 

Despite the successes of LCDM cosmology on large scales, it faces some very serious 
challenges on the galactic scale and below (Kroupa et al., 2010). The problems have been so 
difficult that some cosmologists have questioned the validity of the entire LCDM theory. 
The numerical simulations of CDM produce steep cusp-like density profiles at low galactic 
halo radii, an overabundance of satellite galaxies and problems with the predicted angular 
momentum (ibid.). Additionally, the observation of fully formed galaxies like the Milky 
Way at very early times in cosmic history presents a formation mechanism problem since it 
is difficult to understand how this could have happened via hierarchical merging, a 
cornerstone of LCDM cosmology for understanding galaxy formation, in the limited time 
available (ibid.). 

There have been several proposed alternate theories to the idea that the dark matter 
observations arise as the result of hidden mass. One group of these alternative solutions is 
based on the notion that the equations describing gravity on large scales may need to be 
modified. The idea, originally due to Milgrom (1983) - Modified Newtonian Dynamics or 
MOND has now many variations that include relativity and generalisations of quantum 
gravity. These theories all have the effect of modifying gravity in such a way as to explain 
the galactic rotation curves and thus also remove the need for the explanation of the dark 
matter observations in terms of unseen excess mass. However evidence that the “dark 
matter” observations are truly the result of the existence of extra unseen matter continues to 
grow and it has become increasingly difficult to explain dark matter in terms of modified 
gravity. One group of relatively recent observations compelling for the bona-fide existence 
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of dark matter are those of galactic cluster collisions such as the famous Bullet cluster, 1E 
0657-56. In the Bullet cluster evidence is seen of the separation of dark matter from the 
visible components as a result of the collision. The dominant mass component, the dark 
matter, along with the individual galaxies within the cluster have passed through one 
another largely unaffected, but the gas components have interacted and are seen between 
the two now separated dark matter/galactic cluster components (Clowe et al., 2006). 

The suggestion that gravitational quantisation might play a direct role in the solution to the 
dark matter problem was first made by Ernest (2001) and later using a fundamentally 
different approach by Chavda and Chavda (2002). In the former case (the approach in this 
chapter) Ernest considered the effects that the eigenspectral array describing the 
wavefunctions of traditional particles has on their interaction properties, while Chavda and 
Chavda consider the bound quantum eigenstate of two micro black holes and suggest that 
due to their binding, the constituent black holes of such a system will not lose mass in the 
expected manner (i.e from Hawking radiation). In this way micro black holes formed in the 
early universe could be still present today rather than having evaporated at earlier times 
and hence function as an alternative dark matter candidate like the neutralino. 

2. Naturally occurring gravitational eigenstates: Quantum wavefunctions with 
limited eigenspectral range and the connection with dark matter 

2.1 Conditions for naturally occurring gravitational eigenstates 

Predicting the behaviour of particles in gravitational fields using quantum mechanics is in 
principle simple. One applies the non-relativistic Schrodinger equation to a Newtonian 
potential to yield its eigenstates and energies. Once the eigenstates are known, the temporal 
evolution of any particle in that potential is determined from the temporal evolution of the 
eigenspectral array that describes the initial wavefunction, essentially what is classically the 
initial conditions of the particle. Several authors have developed theoretical and numerical 
solutions to these types of equations under various conditions (Bernstein et al., 1998, Doran 
et al., 2005, Vachaspati, 2005, Gossel et al., 2010) and used them to make predictions about 
various physical phenomena ranging from astrophysical processes such as rates of accretion 
onto black holes, to understanding the behaviour of a gravitational Bose-Einstein 
condensate. 

Very little work has been done however to investigate the potential existence or theoretical 
properties of gravitational eigenstates and their consequences for astrophysics (Ernest 2009a, 
2009b). The simplest gravitational eigenstate system would feasibly consist of two neutral, 
spin-zero elementary-type particles in a bound state. The problem for such a system is that 
the binding energy is unrealistically small. For example, if the masses were ~ͳͲିଶ଻ kg, the 
most highly bound state, with principle quantum number ݊ = ͳ has a binding energy of ~−ͳͲି଺ଽ eV which is minuscule compared to typical universally pervading energies, for 
example, cosmic microwave background photons (~ʹ × ͳͲିସ eV) or the observed dark 
energy component of ~ͳ GeV m-3 (Tegmark et al., 2004). 

The easiest way to increase the binding energy is to increase one or more of the two 
masses of this two component system. By pushing the component masses to ‘grains’ of ~ͳͲିଵଷ kg each, the energy of the ݊ = ͳ state becomes a healthy -10 eV. But there are 
things to consider than just the binding energy. Given typical densities of ͳͲଷ −
www.intechopen.com
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mathematical approach involves two single point potentials and clearly requires that the 
‘physical extent’ of the masses should not encroach into any significant fraction of the 
space occupied by the eigenfunction, otherwise the effective potential between the two 
changes, and the description in terms of a simple Schrödinger equation breaks down. For ݊ = ͳ, the scale of the -10 eV energy eigenstate above is ~ͳͲିଵଽ	m so that this condition is 
clearly not satisfied. For higher n states, the position of the wavefunction is shifted to 
larger radii, which alleviates this difficulty, but the binding energy of the eigenstate 
approaches zero. One way to circumvent these difficulties is to consider a small 
elementary type particle (say of mass 271.7 10  kg) bound in the central potential well of 
a much larger mass and consider only large values of n, and particularly the high angular 
momentum states where ~l n  (see Table 1) 
 

Central mass  
M (kg) 

n  value at 

eigenstate  
energy ~1 eV 

Eigenstate 
 ‘size’ for  

~l n  (m) 

Physical radius of central  
mass (m) assuming  

density 3 3~ 5 10  kg m  

1010  27.6 10  93.5 10  17.6 10  

2010  127.6 10  13.5 10  51.6 10  

246 10 (MEarth) 174.6 10  62.1 10  66.4 10  

3010 (MSun) 227.6 10  113.5 10  83.5 10  

4010  327.6 10  213.5 10  117.6 10  

Table 1. Eigenstate ‘size’ versus central mass size for a fixed binding energy (1 eV ~ 5000 K) 
and ‘orbit mass’ 271.7 10  kg. 

With a central point mass potential well, for a given fixed binding energy ܧ௡, the quantum 
number n is proportional to the central mass M . (see solutions to equation (1) below). 
Additionally, for the high angular momentum states ( ~l n ), the average effective eigenstate 
radius and thickness are proportional to M  and 1/2M  respectively, while the physical size 
of the central mass grows only as 1/3M . Thus although the value of n required to form an 
eigenstate which ‘clears’ the physical extent of the central mass increases as the central mass 
is increased, the critical value of n required to do this corresponds to a more highly bound 
structure the larger M is. Thus by increasing the central mass sufficiently it is possible to 
obtain a well-bound structure and maintain an eigenstate which does not encroach on the 
physical extent of the central mass. This behaviour is illustrated in Table 1. What constitutes 
‘well-bound’ is arguable, but for a binding energy of 1eV and an ‘orbit mass’ of ~ͳͲିଶ଻kg, 
Table 1 shows that the required central mass needs to be of the order or greater than the 
mass of the Earth. Certainly for the solar mass (~ͳͲଷ଴	kg) and above the condition is easily 
achieved and the analysis can be carried out using a single particle simple Newtonian-type 
Schrodinger equation. 

2.2 Connection with dark matter 

What connection does dark matter have with gravitational eigenstates? Quantum mechanics 
is simply an alternative way to model nature, most useful on small scales. But we do expect 
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that quantum physics should equally well model all classical macroscopic phenomena, 
predicting essentially identical results, a belief echoed in the correspondence principle. Yet 
quantum theory has already yielded many novel macroscopic non-classical phenomena, so 
could a quantum mechanical description of the motion of elementary particles in a galactic 
potential also yield new insights? Remarkably, a quantum description of gravitationally 
bound particles does indeed predict new and intriguing effects. The reason comes from the 
predictions that quantum theory makes about variations in the interaction cross sections of 
particles based on their eigenspectra, which can exhibit unique properties in the case of 
macroscopic gravity. 

2.2.1 Cross sections and eigenspectra 

The concept of describing interactions in terms of a cross section has been one of the most 
fundamental and useful in physics. Simply put, cross sections measure the effective area 
that one particle (the ‘target’ particle) presents to another (the ‘bullet’) when interacting. 
Additionally, it is a measure of the rate at which a reaction occurs. In the laboratory, 
measurements of cross sections are made using a localised ‘beam’ of bullets, measuring the 
rate at which they ‘hit’ the target, and performing an analysis generally based on the 
assumption of a uniform incoming ‘plane wave’ of particles. But whilst it may seem 
reasonable, there is an implicit assumption in this about the nature of wavefunctions 
representing the particles. There is also often an assumption that a measured cross section is 
somehow independent of all but the most evident characteristics of the wavefunctions 
representing the particles involved in the measurement. 

Some aspects of the wavefunction that affect the cross section are obvious. For example 
classically the ‘chance’ (and hence rate) at which two particles placed in a box will interact 
depends on the size of the box. This is trivially allowed for in the experiment by including 
the ‘beam intensity’ in the analysis. Likewise no one finds it surprising that cross sections 
depend on temperature because it is clear we are changing the fundamental nature of the 
interaction. Importantly though, this represents a specific example of how the 
wavefunction characteristics, in this case the eigenspectral wavelengths, affect the 
relevant overlap integrals that determine the rate of reaction and the cross section. But 
there are also subtleties of the wavefunctional form that can lead to dramatic changes in 
the resulting cross section of a particular interaction. In short, the measured cross section 
for any interaction is intimately linked to the eigenspectral array of the wavefunctions 
representing the particles involved. If the eigenspectral array from which the particle 
wavefunction is composed contains a significant fraction of states that are weakly 
interacting (aka ‘dark eigenstates’), then the measured cross section for that interaction 
will be much reduced. 

2.2.2 Dark eigenstates of the eigenspectral ensemble of a large gravity well 

The remarkable thing about the eigenspectral ensemble of a large gravitational structure 
such as a galactic halo is that, in addition to the vast array of states which would normally 
make up the quantum description of any localised ‘visible’ particle, it also contains vast 
numbers of gravitational eigenstates that are weakly interacting or ‘dark’. These dark states 
are the highly excited, high angular momentum (high ( , )n l ) states of Figure 1 (those closest 
to the left hand curve of the ( , )n l  diagram, that is the dotted curve 1p  where we have  
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Fig. 1. Schematic ( , )n l diagram showing the high n, l, m -valued stationary states, drawn to 
emphasize the values of the parameter p n l   (dotted curves). Each solid circle on the 
diagram represents 2 1l  , z-projection (m-valued) substates. 

introduced the notation p n l  ) and are somewhat analogous to the Rydberg states in 
atoms, but have much long lifetimes, extreme stability and are much more robust because of 
the physical scale of the potential. A wavefunction whose eigenspectral array on the (n,l) 
diagram determines it as existing as a relatively localised particle in classical phase space 
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predisposes it to having similar interaction cross sections to those determined in standard 
laboratory measurements.  

We stress this point in another way: The localisation of a particle in phase space is 

determined by a wavefunction that not only yields the localisation, but also an average 

position and momentum in that space. There are however many other eigenspectral 

distributions that could yield the same average momentum and position in phase space but 

that would describe particles with very different cross sections. It is possible in principle to 

form an eigenspectral array with a similar average phase space location as a localised 

particle, but which is composed predominantly of dark gravitational quantum states. 

Although particles might possess a similar average momentum and position as their visible 

counterparts, but they will be weakly acting, invisible and unable to reach equilibrium with 

visible localised matter via traditional thermalizing interaction processes. Particles with such 

distributions can form the basis of dark matter. 

Predominantly dark gravitational eigenspectral arrays represent an attractive solution for 

the dark matter problem because (1) they can potentially arise naturally in the universe as a 

direct prediction of quantum mechanics and (2) they can be used to explain the nature and 

origin of dark matter without the need for any new physics or new particles. As will be seen 

later, ‘dark-gravitational-eigenstate’ dark matter appears to possess properties that fit with 

many observations of dark matter behaviour, including an inability to gravitationally 

collapse or coalesce, a transparency to light and other parts of the electromagnetic spectrum, 

and does not suffer from the same problems associated with other CDM WIMP candidates. 

Eigenstructure halos formed from vast arrays of particles with predominantly high-l, dark 

eigenspectra enable the success of LCDM cosmology on large scales to be retained while 

yielding properties that remove the difficulties faced by LCDM on the galactic 

cluster/galaxy scale and below. 

3. Schrödinger-type solutions to gravitational potentials 

3.1 Solution of the simple central point potential 

More complex arrangements of gravitational binding than that discussed in 2.1 are possible, 
for example agglomerations of elementary neutral particles bound in a ‘collective’ 

gravitational potential well in a similar manner to the structure of nuclear material. We 
begin here however with the Schrödinger approach to the central point potential and make 

refinements on this. The analysis for this has been done elsewhere and we give a brief 
summary here. (For more detail see Ernest, 2009a.) The gravitational form of Schrodinger’s 

equation for a two particle system is written as 

 
2

2 0 0

2

Gm M
i

r t

 



   




  (1) 

where M0 and m0 are the masses of the large central and small ‘orbit’ point particles respectively, 
  is the reduced mass and the other symbols have their normal meanings. Separation of 

variables leads to the eigenenergies nE  and normalised eigenfunctions , , ( , ),n l mu tr  which are 

given by 2 2 2 2 2
0 0 2nE G m M n    and    , , , ,( , ) ,n l m n l l mu t R r Y  r , where n , l  and m  are 
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the standard quantum numbers.  , ,l mY   are the spherical harmonics. The limits of the 

angular eigenfunction components for large m and l are not significant for the present 
discussion and have been dealt with previously (Ernest, 2009a). The radial component

       2 1
, 0 0 1 02 exp 2

l l
n l nl n lR r N r nb r nb L r nb

    is written in terms of Laguerre polynomials 

           
1

22 1
1 0 0

0

2 ! 1 2 1 ! 2 1 ! !
n l

kk ll
n l

k

L r nb n l r nb n l k l k k
 


 


         where 

2
0 0 0b G m M   is a scale factor analogous to the atomic case, and 

      1 23 2
02 1 ! 2 !nlN nb n l n n l     is a normalising constant. The radial eigenfunctions 

are very significant in developing the present theory and we concentrate on these from now 
on. The states are shown in Figure 1 where, for a central point-mass potential as in this 

diagram, the set of all l  and m values is degenerate for any given value of n .  

In Figure 1 the l-m-degenerate n levels are shown in proportion schematically to their state 

energy 21 /n  but it should be noted that their average radial positions behave in the 

opposite way: approximately 2n . For the high-l, high-n states the average radial position is 

accurately written as 2
0nr n b . The radial eigenfunction extent max minr r  spreads out as a 

square root dependence on the value of p, approximately centred on 2
0n b . The position of 

the eigenfunctions is important because a sufficient density of occupied states can in 
principle modify the potential so it is no longer that of a central point-mass. The deviation 
from a point potential can be approximately allowed for by incorporating 0b  as a variable 

dependent on the enclosed variable mass ( )M r . Each ( )M r  gives an eigenvalue series of 

energies 1

1

( )M
nE  , 2

2

( )M
nE , 3

3

( )M
nE … and the appropriate n chosen from each series 1{ }n , 

2{ }n , 3{ }n , … using the value of ( )M r  determined from its functional form. This method 

works but it is not the optimal approach. 

3.2 Solutions for halo mass distributions and logarithmic potentials 

Solutions to the gravitational central-point-potential Schrodinger equation given above can 
be shown to contain some states that possess the fundamental properties required for dark 
matter. The galaxy and clusters however are not point potentials but have extended mass 
distributions. As mentioned earlier, the radial velocity profiles of galaxies for example show 
constant velocities with radius as far out as can measured rather than the expected 
Keplarian decline. This implies a radial density profile that varies as 21 / r . The force is then 
proportional to the enclosed mass enclosedM which is therefore given by 

2 20 0 0 0 0
2 2 2 20 0

0

( ')4 ' ' 4 ' '
'

r renclosedGm M Gm Gm Gm Mk
F r r dr r dr

R rr r r r
        

where 0 0/k M R   is the density proportion constant and 0R  is the hypothetical radius of 

the halo whose total mass out to 0R  is now 0M . Since F V   we have that 

0

0

2
0 0 0( ) / /

R r

R
V r GM r dr GM R r dr


       and 
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 

 

0 0
0

0 0 0
0

0

( )

e
ln

Gm M
V r r R

r

Gm M R
r R

R r

  

    
 

 (2) 

where again m0 is the ‘orbit mass and e the natural logarithm base. This hybrid 1 /r -
logarithmic potential differs from the equivalent point-mass, 1 /r  point potential 
substantially at low r  although in principle the characteristics of the high-l, n quantum 
states of 1 /r  potentials that make them suitable as fundamental components of dark 
matter eigenspectral arrays will have equivalent states in the eigenstate ensembles of the 
real logarithmic halo potentials. In the central point-mass potential case it was possible 
(Ernest 2009a, 2009b) to obtain approximations for the energies and wavefunction forms of 
the eigenstates which can be used to obtain quantitative values for interaction rates etc. It is 
clearly important to be able to develop approximations for similar states in the real 
logarithmic potentials of the galactic halo case which we now do below.  

For wavefunctions inside the halo, the logarithmic potential Schrödinger equation becomes 

 
2

2 0 0 0

0

ln
2

Gm M R
i

R r t

 


       


  (3) 

which, on separation of variables, gives the equation for the  radial component  , ( )n lu r  of 
the wavefunction as 

 
22

, 0 0 0
, ,2

0

( )
ln ( ) 0

2

n l
n l n l

u r Gm M R
E u r

R rr
           


 (4) 

The Schrödinger equation is known to be analytically solvable for 1 /r  and 2r  potentials 

but equations with logarithmic potentials require approximation techniques. The equation 
can be recast into a standard form as  

 
 2 22

, 0 0 0
, ,2 2

0 0 0

( ) 1e
ln ( ) 0

2 2

n l
n l n l

d u r l lGm M R
E u r

m R rdr m r

            


 (5) 

where l is the angular momentum quantum number. A few attempts have been made to 
solve this equation. Ciftci et al. (2003) developed approximate solutions for various power-
law and logarithmic potentials based on extensions of the Laguerre solutions applicable to 
1 /r  potentials. Their procedure however, when applied to the present case, involves 
summations (over n) with prohibitively large numbers of terms of Laguerre polynomial 
coefficients. 

The technique used here involves first finding the eigenenergies of the states that 
correspond to the highest angular momentum for any given n value, that is, all the states 
that have 1p   (i.e. 1l n  ) for each n. These eigenstates have a thin single peaked radial 
form. For maxm m l    the states are ring-like or circular. The energy may be deduced 
semi-classically noting that all the probability density lies at essentially the same radius rn, 
giving the state ‘potential’ energy as 0 0 0 0( ) / ln( e / )U n nE r GM m R R r  . The number of polar 
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oscillations is maxl n , giving 2 nr n  , and momentum 0 nm v n r   using the de Broglie 
relation. The equivalent “kinetic” energy is then 0 0 02KE Gm M R  and the net energy of the 
state is therefore 

 0 0 0
, 1 , 1

0

e
( ) ( ) lnn p n n l n n

n

Gm M R
E r E r

R r
  

 
     

 
 (6) 

As the quantum number m decreases, the state form spreads gradually in the  polar 
direction yielding thin annular shells, ultimately creating a closed spherical shell for 0m  . 
These states simply represent variations in the polar-azimuthal orientation and so (6) 
corresponds to the energy of all m sublevels of the l value. The energy of the lower m-states 
is the same as for the maximum value of m, both by symmetry and because classically lower 
m-values behave simply as mixtures of tilted circular states of equivalent energy. 

For the circular states the velocity v can also be written as a (halo-constant) 0 0( )v GM R  , 

by equating the centripetal and gravitational force based on the enclosed mass. Combined 

with 0 nm v n r  , this allows nr  to be expressed in terms of n and leads to an expression for 

the energy level levels , 1n pE   for the circular ( 1p  ) states (compared with 

2 2 2 2 2
, all 0 2n pE G m M n   in the centralised point-mass case). nr  and , 1n pE   are given by  
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, 1 , 1 2 2
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r n
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

 
     

 





 (7) 

where the ,n lE  are the energy eigenvalues which will in general depend on both n and l. 

Each of these states is itself the lowest energy eigenvalue in a set of eigenvalues all of which 

have the same value of l, say 'l l  and increasing values of n and p, that is 1, 2, 3 ...p  . The 

energies are 1 ' 1, ', 1n l l l pE E     , 2 ' 2, ', 2n l l l pE E     , 3 ' 3, ', 3n l l l pE E      … with 1E  given by 

equation (7).  

The quantity  2 21 /2l l mr  in equation (5) may be thought of as the ‘centrifugal potential’ 

and for each value of l we define the effective potential energy as 
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l lGm M
V r l r R

r m r

     
 


   




 (8) 

plots of which are shown in Figure 2. 

The maximum energy depths dE  of the well minima and their corresponding radial 
positions are given by  
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Fig. 2. Effective halo potentials for various l. 42
0 6.0 10 kg,M    27

0 1.6 10 kg,m    
21

0 3.0 10 m;R    curves, top to bottom, correspond to  321, 5, 10, 20, 50, 100 10l    
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 (9) 

and 
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( 1)
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l l R
r

Gm M


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
 (10) 

Within each well (characterised by its l-value) the lowest the energy state (labelled say by 
0  ) is a 1p   eigenstate and corresponds to the n-value 1n l  . For n states not too 

much greater than l we use a simple harmonic Taylor series approximation around the 
minimum, which is analytically solvable to obtain a set of energy eigenvalues and 
eigenfunctions for any 1n l    provided n is not too far above l. (For typical galactic halo 
parameters the harmonic approximation gives better than 1% accuracy to the potential over 
the region of the well encompassed by eigenstates with p from 1 to 2010  - see Figure 3).  

The harmonic form of the Schrödinger equation is  

 
22

2 2
02

0

( ) 1
( ) ( ) 0

2 2
v

d u r
m r u r E u r

m dr


    


 (11) 
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Fig. 3. Taylor approximations to the 333.0 10l   effective halo potential. 42
0 6.0 10 kg,M  

27
0 1.6 10 kg,m    21

0 3.0 10 m,R     Curve: (a) exact potential, (b) 3 term approximation 

(harmonic potential), (c) 5 term approximation, (d) 10 term approximation. 

and putting ' dr r r   leads to an equation of the form of equation (11) equivalent to (5) as 
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provided that 
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and 
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 (14) 

The eigenvalue and eigenfunction solutions to (11) are those for the standard harmonic 
oscillator, given by 
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 (15) 

where ( )H   are the Hermite polynomials and 0( ) /dr r m    . Combining equations 

(14) and (15), noting that   is related directly to the p-value for the state by 

1 1p n l       and taking care to distinguish between quantum parameters that refer to 

the well compared to the states within that well, we can write a general formula for the 

eigenvalues of any high angular momentum (low-p) state of a logarithmic centrifugal well in 

terms of the quantum numbers n and l as 
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, 2

0

e2(2 2 1)
ln

2 ( 1) ( 1)
n l

Gm M Gm M Rn l
E

R l l l l
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            

 (16) 

A schematic state diagram similar to that for the central point-mass state ensemble is shown 
in Figure 4, with a superimposed schematic for the harmonic approximation to the 

centrifugal well for an angular momentum quantum number l. The levels ( = 0, 1, 2 …) of 
the centrifugal well schematic correspond to the increasing values of p and n and constant l, 

beginning with the state 1n l  , 1p  . The lines of constant-n are no longer horizontal 

because of the additional dependence of the energy on l. It is of interest to compare the 
energy level differences between two adjacent l-values with two adjacent n-values since this 
gives a measure of the degree to which the presence of a logarithmic potential affects the 
otherwise degenerate l-states of the classic central point-mass potential. Equation (16)  
shows that for any given l, the state energy increases linearly with n as anticipated  
from the discussion of the circular states discussed earlier in this section. Indeed as l  

approaches n, equation (16) approaches equation (7), as expected. Putting ( 1)l l l    

and noting that l is close to n, partial differentiation of equation (16) with respect to n  

and l gives the energy spacing per unit change in n and l as: , 0 0 02n lE n Gm M lR     

and 2
, 0 0 0( 2 )n lE l Gm M n l l R      respectively. For ~l n , ( 2 ) ~ ( 2 1)n l l  , hence 

, , ,( 2 1) 2 0.3n l n l n lE l E n E n           so that the energy spacing for adjacent l-states 

in the extended 21 r  density distribution is a substantial fraction of the energy spacing of 

adjacent n-states, as illustrated in Figure 4, and in contrast to the angular momentum 

degeneracy observed for the eigenstates in the central point-potential. Also since ,n lE l   is 

always negative, state energy increases as l decreases (at least for the 20~ 10  p-values that 

are within the range of validity of the harmonic approximation) so that the low angular 
momentum states are less well bound than the high angular momentum ones for any given 

n. For the typical halo parameters 21
0 0 2.0 10 kg/m,M R   27

0 1.67 10 kgm   , and taking 

21 331.0 10 m ( ~ 6 10 )r l    as a typical outer halo position, the energy spacing for adjacent 

n states is 32~ 4.8 10 eV,  and for l states is 32~ 1.6 10 eV . If the same procedure used here 

is applied to a standard central point-mass potential then the spacing between the harmonic  
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Fig. 4. Schematic ( , )n l  state diagram for the logarithmic potential (radial mass density 

21 /r ) showing the high n, l-valued stationary states. A typical effective centrifugal l-well 

of momentum ( 1)l l    is shown superimposed on the state diagram to illustrate how the 

higher energy states ( 1 2) , 0,1,2...E       corresponding to (p =  + 1, l = l, n = l +  + 

1) are calculated for each l-well. Each solid circle on the diagram represents 2 1l  , z-

projection (m) substates. 
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levels gives essentially the same result as that obtained directly from equation (1) which is 
again a check on the validity of the approach. That is the energy of a particular vibrational 
level in one l-harmonic well becomes equal to the energy of one level above or below in 

the adjacent, 1l   well, making the energy levels for different l, same n degenerate as 

expected. 

It is also possible to write down the eigenfunctions of the high angular momentum 
eigenstates in a logarithmic potential. It is necessary to generalise the normalisation constant 

 1 4
0 2 !m     in equation (15). Writing the second of equations (15) as 

2( ) ( )exp( 2)u r N H      where  1 4
0 2 !N m     , and r    , where 

 1 4
2 ( 1) dl l r    and  1 4

2 ( 1)l l   , we modify the procedure of Schiff (1968) to find 

N . The integral for calculating the normalising constant is given by 
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


  (17) 

Now 1r   and is approximately constant and equal to dr  over the significant range of 

the integrand and it can therefore be taken outside the integral to give 
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
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Furthermore the integral   2
( )u r d r  



  is essentially the same as   2

0
u r dr  


  

since it is merely a displacement of the harmonic function from 0r   to dr r  so (17) may 

be written as 
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Using the Hermite generating function relation  
2 2

0
( ) !s s r i

i
e H r s i

  


 , expanding the 

exponential as a power series and equating series coefficients, enables the integral in 

equation (18) as 1 2 2 !   (see Schiff, 1968 for details) and gives the normalising constant N 

as  
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  (20) 

Thus the eigenfunctions , ( )l pu r  (or , ( )n lu r ) may be written in terms of the well parameters

dr  and l, as 
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  (21) 

where dr  is defined as in equation (10). 

4. High angular momentum states: Longevity, darkness, transparency, 
stability and weak interaction with low l-states 

High angular momentum, high-n gravitational eigenstates make excellent dark matter 
candidates. Any particle, even traditional baryons or electrons, placed into these states or 
into wavefunctions whose eigenspectral composition is rich in high-n,l states will be dark, 
weakly interacting and unable to gravitationally collapse in the traditional classical sense. 
Why is this? 

Quantum theory provides standard ways to calculate the interaction properties of 
eigenstates such as spontaneous and stimulated emission and absorption rates, particle 
interaction cross-sections etc. These rates depend, among other things, on the overlap 
integral (matrix element) for the interaction, which itself depends on the initial and final 
states and on the interaction Hamiltonian, generally expressed as a combination of spatial 
and momentum (differential) operators. In the case of radiative dipole decay for example 

the rate ,i fA  is given by (Ernest, 2009b): 
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 (22) 

where e is the electronic charge, the 0  electrical permittivity, iff e i  r  the absolute 

value of the dipole matrix element for spontaneous decay for the transition i to f, if  the 

transition angular frequency, and the other symbols have their usual meanings. 

iff e i  r  is given (Ernest, 2009b) as normal by 
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where ,ifx ify   and ifz  are standard Cartesian components, expressible in terms of 

angular and radial overlap integrals , , , , , ,, , ,x y z rI I I I       over the initial, i, and final, f, 

spherical harmonic , ( , )m lY    and radial component , ( )n lu r  eigenfunctions: 
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 (24) 

Ernest (2009b) calculated state to state dipole decay times ,1 / i fA  based on a central point-

mass potential. Using the logarithmic potential developed here, decay times remain very 

similar. Times are affected by the choice of the density parameter 0 0M R  but if the same 

enclosed mass is used the energy spacing between levels is only marginally different. For 
example the differences in energy spacing (occurring as a result of differences in the shape 
of the well for the two different potentials) between two adjacent 1p   states with 0p   

(such as A B  on Figure 4) for logarithmic (real halo) versus point-mass potentials 

produce differences in decay times of less than 5% for the same enclosed mass at typical 
galactic halo radii. As a result particles occupying these states (or predominant mixtures of 
them) in the logarithmic potentials corresponding to actual galactic halos do not emit 
radiation, are stable over cosmic lifetimes and do not undergo gravitational collapse. We 
restate this important result: 

 The lifetimes of the high angular momentum states are far greater than the age of the 
universe and the states are stable and do not emit radiation. 

Similar arguments apply to 0p   transitions originating on the ‘deeper’ 2,3, 4...p   states 
(such as C D  on Figure 4), provided that p is a negligible fraction of n. These lifetimes 
remain long even when the number of available decay channels is taken into account 
(selection rules require that 1l    and 0, 1m   ). This was discussed extensively by 
Ernest (2009b) and is related to the effects that eigenfunction orthogonality, large radial 
position and differences in spatial oscillation frequency (SOF) have on the overlap integral. 
(Where transitions are involved that ‘cross’ lines of constant p on the state diagram, it can be 
shown (Ernest, 2009b) that the overlap integrals become exceedingly small.) We do not 
repeat the arguments in detail here but note that the results can be applied in the same way 
with essentially the same conclusions to the states of the logarithmic potential wells.  

The extreme longevity of the low-p states has implications for the rates of stimulated 

emission and absorption. The probability per unit time ifP  of stimulated emission or 

absorption of radiation from a state i to a state f is given by 
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where ( )if   is the radiation energy density per unit angular frequency and ( )ifI   is the 
corresponding beam intensity per unit angular frequency. Assuming the upper and lower 
degeneracies are similar one can calculate the absorption and scattering times for photons as 
they pass through a typical halo. The details of this calculation are derived explicitly in Ernest 
(2009b). The calculation derived there shows that photons in virtually all known regions of the 
electromagnetic spectrum will pass through the halo without scattering via low-p eigenstates, 
so that halos composed of such states will be completely transparent and not subject to the 
usual processes of Compton or Raleigh scattering as are traditional localised ‘free’ particles 
represented by visible eigenspectral ensembles. Again these calculations extend immediately 
to the eigenstates of the logarithmic potentials with essentially the same results. We therefore 
also explicitly note that: 

 A halo consisting of ordinary particles composed predominantly of low-p eigenspectral 
components will be transparent to virtually all regions of the electromagnetic spectrum.  

Interactions of low-p eigenstates with other particles involve different Hamiltonian 
operators and are not subject to the same stringent selection rules as with photon 
interactions, particularly for three body ‘collisions’. We therefore expect that low-p 
eigenstates will not be as ‘dark’ for particles as they are for photons. It turns out however 
that it is still difficult for state transfer across lines of constant p, particularly when p is small. 
The reasons behind this relate to several properties of the low-p states. These include their 
limited radial range, the limited number of, and wavelength of, their spatial oscillations, and 
the effect of differences in the SOF between the initial and final quantum states. These 
aspects were discussed by Ernest (2009b). It was seen in figure 9 of that paper that there is a 
relationship between the relative spatial oscillation frequency (RSOF) of the initial and final 
states and the size of the overlap integral. If one state has 1p   then the value of 

  log log rI  is linearly related to  log RSOF . Recent work has shown that a similar 
relationship exists for 2p   states and should hold in general provided p is a negligible 
fraction of n. This relationship means that if either of the states has a low-p value, the size of 
the overlap integral diminishes rapidly with any difference in p-values, that is the degree of 
‘p-crossing’. Furthermore because the interaction Hamiltonian does not have a significant 
effect on the spatial oscillation frequencies of the states, it means that similar relationships 
should exist for other types of interactions such as those involving particles. This is a direct 
consequence of the orthogonality and limited radial extent of the low-p eigenstates.  

Figure 5 shows a general summary of the different ways in which ‘visible’ matter (that is 
photons and traditional particles in thermalized, broad-range mixtures of halo eigenstates) 
with low-p states is limited by effects such as spatial oscillation frequency and spatial 
overlap. In case (a) we have small changes in both p and n, and transitions are possible, but 
the size of the change is so small that changes in energy or momentum of the perturbing 
entity, and state dispersion effects over cosmic history, are negligible. In case (b) again the 
change in p is small, i.e. no significant ‘p-crossing’ and the initial and final spatial oscillation 
frequencies are similar (RSOF~1). Transitions are also theoretically possible in this case but 
here n  is made large enough to enable observable changes in the momentum and/or 
energy of the perturbing entity. However exclusively in the low-p regime, the n  required 
for such measurable angular momentum or energy changes requires eigenstate functions 
that are spatially distinct making 0rI   irrespective of the Hamiltonian involved. In case (c) 
the initial and final states are no longer spatially distinct (i.e. forced to overlap by  
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Fig. 5. Schematic ( , )n l state diagram showing how characteristics of low-p initial (u(r)i) 

states, and final (u(r)f) states lead to weak interaction: 

case (a) small change in p  similar SOF; transitions possible, 0RI   but , ( ) ~ 0E mv   

case (b) small change in p  similar SOF; , 1n l     , ( ) 0E mv   , but initial final 

states spatially distinct  ~ 0rI  

case (c) large change in p  large differences in SOF; , 1n l     , ( ) 0E mv   , but 

large relative SOF  ~ 0rI  

the choice of the final state) but still maintain large differences in l  and n . This however 
requires significant ‘p-crossing’ and, in a similar way to figure 9 of Ernest (2009b), we expect 
the resulting differences in spatial oscillation frequency to result in 0RI  , irrespective of 
the interaction Hamiltonian involved. Again we note that: 

 A halo consisting of ordinary particles composed predominantly of low-p eigenspectral 
components will be weakly interacting with particles and therefore have difficulty in 
thermalising and hence redistributing its eigenspectral distribution to that of traditional 
localised, Maxwellian eigenspectral compositions. 
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For interactions between identical particles there is the possibility that exchange degeneracy 
enables particles in very different p   states to still interact because of ‘SOF swapping’. This 
can be seen by writing down the symmetric/antisymmetric form of the two-particle 
(eigenstate+perturbing particle) overlap integral. The SOF of the initial and final eigenstates 
could theoretically work together with the SOF of the eigenspectral components of the initial 
and final perturbing particle states to allow a p -crossing transition even when the SOF of 
the initial eigenstate is very different from the final. Optical thickness follows from such a 
particle interaction because low- p  eigenspectral components may then be transferred to 
more strongly interacting components. This possibility enables the prospect of limited 
interchange of baryons in dark states with traditional ‘Maxwellian’ matter during cosmic 
history. Potentially it offers a solution to the significant astrophysical problems of a 
continued source of star forming material in galaxies, the disk-halo conspiracy (mass 
distribution follows radial luminosity), the production of ionised gas from precessional 
galactic jets as observed in M42 at temperatures consistent with those expected from outer 
halo interactions, and the hot interacting gas in the Bullet cluster collision. 

5. A formation scenario 

A short account of the possible qualitative model of the formation of dark halos was given 

by Ernest (2006) and we summarise that approach here. There is still considerable work to 

be done in developing and testing the validity of the approach but the qualitative scenario 

does provide a general basis for how formation would need to proceed. Given the 

properties of particles in dark gravitational eigenstates, it is reasonable to expect that once 

particles have eigenspectral distributions that are dark, that, aside from for the types of 

particle interactions discussed above, they could largely remain in these distributions over 

cosmic times. Clearly the processes involved are dynamic and on-going, and the proportion 

of particles with dark eigenspectral distributions depends on the rates at which distributions 

are transferred back and forward between dark and visible states during cosmic history. 

Detailed calculations of these processes are potentially very difficult because not only do the 

transition rates depend on their closeness to the 1p   diagonal, but the dynamic 

redistribution of matter concurrently changes the shape of the potential well and hence the 

overlap integrals involved in the rate calculations. 

In the formation scenario proposed, each massive dark ‘eigenstructure’ halo is occupied by 
baryons and electrons in a self-assembled massive gravitational potential, each of which is 
initially seeded by the potential well of a supermassive black hole formed at the last, e+/e- 
phase transition at ~ 0.75t s in the early universe. Such black holes were themselves 
originally one of the first candidates proposed as a solution to the dark matter problem, but 
it was shown that their abundance could only provide up to 10-7 of the closure density (Hall 
and Hsu, 1990). However in the present scenario we note that if a PBH is sufficiently large it 
can continue to accrete baryonic matter. Under normal circumstances this is countered by 
photon pressure via baryon-photon oscillation, but this process is critically dependent on 
the cross section for Compton scattering which is significantly reduced if the eigenspectral 
distribution of the captured baryons is biased toward dark states. In the present scenario 
therefore, the black holes formed at the last phase transition act as the seed potentials to 
capture baryons and electrons that then transfer to dark eigenspectral distributions thereby 
insulating them from the baryon-photon oscillation process and enabling them to add to the 
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captured baryonic dark halo, concurrently increasing the density contrast and well 
potential, and enhancing further matter capture in a continuing cycle. 

It is well known that primordial black holes (PBH) can form from over-density regions at 
the various phase transitions in the early universe (Carr, 1975, Jedamzik and Niemeyer, 
1999). It is expected that such black holes will form with masses up to the horizon mass MH 
at the time of the phase transition. The PBHs required for eigenstructure seeding need to be 
massive and we are interested in the black holes formed at the e+/e- phase transition at 

~ 0.75t s. Numerical calculations by Hawke and Stewart (2002) suggest a lower limit to 
MPBH as 4

H10 M฀  while Carr gives an approximate upper limit on PBH mass as 

 

1
2

2

eff
PBH S~ 1

100MeV 10.75

gT
M M

    
   

  
 (26) 

where T is the temperature at the phase transition (~1 MeV at ~ 0.75t s), geff is the number of 
degrees of freedom (43/4 at the last phase transition) and SM  is the solar mass. This suggests 
a maximum black hole mass 4

S10 M฀  while Afshordi et al (2003) consider up to 6
S10 M .  

The capture of baryonic matter is in a sense similar to the capture of electrons by ions to 
form atoms and a simple version of the Saha equation 
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suggests that particles might undergo a form of ‘gravitational recombination’ provided that 
the energy level concerned is deeper than the corresponding energy related to the 
temperature at the time involved. This fixes a particular radius within the seed well at 
which the condition iE f kT  (where ~ 2 10f  ) is satisfied. Ernest (2006) considered seed 
masses of between 410  and  6

S10 M , and derived an equation for the temporal 
development of a so-called thermal radius thr  at which this condition was satisfied: 
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1 2
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
  


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where 1k  is a constant relating to relevant parameters such as the effective enclosed mass, 
temperature etc., and the solution a function of 0( )thr t , the initial size of the thermal radius 
(Ernest 2006). If the matter is effectively captured inside thr  then, as the surrounding 
universe expands and the temperature drops, the contrast density increases and thr  
increases with time. Depending on the chosen value of f, results show that provided 

4
S S~ 5 10M M  or greater, thr  can increase rapidly (until equation 27 breaks down due to 

the presence of adjacent halos) and can accommodate a halo mass of 4210  kg, generally 
before the completion of nucleosynthesis. Whether or not particles can effectively transfer to 
dark states within this time is still an open question because the model is still to be 
developed in detail and requires calculation of deep-state stimulated transition rates (the 
prevailing transition process in this strongly radiation-dominated era). It does suggest 
however that it might be possible to maintain consistency with measured nucleosynthesis 
ratios and still maintain baryonic densities applicable to the total matter content of the 
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universe: i.e. dark plus visible matter, either (1) because the baryons have transferred to 
weakly interacting states before nucleosynthesis completion or (2) because of the extreme 
inhomogeneity introduced by the eigenstructure halos. (Mass captured in the halos is 
sequentially removed from the more rapidly expanding, necessarily under-density, mid-
halo regions as expansion proceeds.) Interestingly however, from Carr’s black hole number 
density-mass spectrum equation, it can be calculated that the value thr  takes for the 
separation of such adjacent halos at the formation time translates, after universal expansion, 
into the order of magnitude for the number density of present day galaxies (Ernest, 2006). 

In a traditional p e   recombining plasma once the temperature has dropped well below 
the ionisation level, virtually all electrons and protons have formed into atoms, so we 
might initially expect that today all the baryons and electrons of the universe would have 
gravitationally combined into halo eigenstructures and possibly also collapsed into dark 
eigenstates. There would then be no visible matter in the universe, particularly in the 
present scenario where halos grow until they overlap. During the formation process 
however, as discussed above there are weak, relatively ‘field-free’ corner regions in 
between adjacent halos and some baryons and electrons would have remained as 
thermalised distributions in these regions. The probability of any individual particle 
transferring to a dark state is necessarily small and so we expect that some as yet 
unknown fraction of matter in the halo itself as well as the matter in these field-free corner 
regions will form the basis of the visible matter we observe today. An interesting 
consequence from this is the prediction of the visible to total matter ratio. If we assume 
that halos fill space like oranges in a box and imagine that growth stops when the halo 
edges meet with the remaining matter left over in the corners then the ratio of this left 
over matter to the total matter should give us a ratio of the visible to total matter. 
Bertschinger (1985) has looked at the capture of baryonic matter by a central potential and 
has shown that such capture can result in self-similar density profiles which are 
reasonably consistent with the logarithmic potential, 21 r  profiles observed today. 
Assuming such a density profile, we get a ratio for visible to total matter of 0.23 for loose 
random packing and 0.186 for close random packing. This can be compared with the 
WMAP result which measures the visible to total matter ratio of the universe via baryon-
photon oscillation as 0.18 (Tegmark etal., 2004). 

It was estimated that initially the eigenstructure radius would have be formed from the 

horizon size 83 10 m฀  to 1310 m฀ . It is expected that various processes would act on the 

eigenstates after baryonic capture. These would be required to expand the halos to their 

presently observed sizes. We imagine the matter at radius 1310 mr ฀  in a Maxwellian 

distribution which we approximate by a single momentum 3 Bp mk T  (where Bk  is 

Boltzmann’s constant). Given an isotropic distribution of particles then particles enter the 

,n l  diagram at a position that corresponds to their angular momentum. For the temperature 

conditions at initial formation this suggests the majority of particles will have values of 

~ 3 /Bl r mk T   up to 228 10l ฀  for 83 10 mr ฀  , ( 10~ 10 KT ) and 265 10l ฀  for 

1310 mr ฀  ( 8~ 4 10 KT  ).  

We want to estimate the rate at which such particles might be promoted up or down via 

stimulated radiation processes. The stimulated transition rate is given by equation 24 which 
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depends on the overlap integral if  and on the energy density per unit angular frequency 

 if   at the transition frequency which relates to the temperature at the formation time. 

For 10~ 10 KT  this peaks at 21~ 4 10   Hz, but this frequency corresponds to large 

changes in p values ( 1l   ) that do not have favourable if  values when the initial value 

of ( )ip p  is low. Hence there is an optimum value of n  that will yield the maximum 

transfer rate. For smaller changes in p the value of if  is higher (for 1ip   where 1p   

necessarily, there is virtually 100% in-phase overlap in the dipole matrix element and 

if er  ) but  if   is  much smaller. Nevertheless at these high temperatures there is a 

peak rate 34 1~ 10  s  that occurs for 1p   transitions originating on 1, 1i in p  . Likewise 

similar 1p   transitions originating on the deeper states where 1ip   will show similar 

rates. Additionally however if the states are very deep, the rapid decrease in if  with 

increase in p  (Ernest, 2009b) does not occur, and promotion demotion rates may be even 

greater. Thus although it was seen that the state dispersion due to radiation such as that 

from the CMB does not appreciably alter the relative eigenstate position on the state 

diagram for present day halos, in the early times of formation the rates are such that these 

halos could have been easily expanded. It is relatively easy to track the rates during cosmic 

history and indications are that radiation expansion of halos may have occurred up to as late 

in cosmic history as the beginning of the period of reionization. Although accurate 

calculations require detailed knowledge of the energy level spacings which have only 

recently been determined for logarithmic potentials. Further work is being carried out in 

this area.  

6. Observations and predictions 

It is difficult for any model of dark matter to predict observable phenomena because by the 
nature of dark matter it is not very observable! Perhaps the biggest departure of the present 
approach from traditional cosmic concordance is the early formation of massive 
eigenstructures. Whilst within the present theory traditional LCDM is left intact on the 
largest scales (indeed we know that eigenstructures themselves will function effectively in 
describing large scale structure as the original numerical modelling was carried out with 
similar mass ‘particles’). One would anticipate that such a change would leave some imprint 
on for example the CMB. The halo separation at decoupling corresponds to fluctuations in 
the anisotropy spectrum at 410l ฀ . Unfortunately at such high l values the finite time for 
atomic recombination has most likely smoothed out peaks due to the individual halos. One 
might see evidence in the Lyman-α forest, but since it is anticipated that every 
eigenstructure forms into a galaxy, this is really just noting the observed effects that galactic 
halos already have on the Lyman-  forest.  

One possible observation might reveal the eigenstate nature of dark matter. We know that in 
the 21 r  density profiles the total energy of an eigenstate minus its potential energy is 
effectively a measure of its kinetic energy. This kinetic energy is constant with radius and 
determined only by eigenstate particle mass and the ratio 0 0M R . Furthermore we know 
that although these high-l eigenstates are very dark with respect to photon interactions, their 
interactions with other particles may not be so ineffective, because of relaxed selection rules. 
It is possible that dark baryons slowly ‘leak’ into the visible regime over time via collisions 
and interactions with particles and other eigenstates. If particle/dark-eigenstate collisions 
do occur then the eigenspectral distribution will shift to a lower-l, visible composition. It is 
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suggested this is one of the primary origins of the hot x-ray gas seen in halos, and the radio 
and other emission from black hole jets as they precess in the halo and the hot x-ray 
emission seen in cluster collisions such as the famous “Bullet cluster”.  

Firstly we note that the halo x-ray emission is at an approximately constant temperature across 
the radius of the halo, consistent with the radial dependence of the effective kinetic energy of 
eigenstates. The equivalent kinetic energy of these eigenstates averaged over the electron and 
proton component is most simply calculated from 0 0( ) 4K p eE GM m m R   which for the 
Milky Way corresponds to a temperature 62 /3 1.3 10 KK BE k   . The Milky Way exhibits a 
range of x-ray energies but the best estimates of the diffuse halo gas temperature are 

61.3 1.5 10 K  (Kappes et al., 2003). If the hypothesis of energy transfer from dark to visible 
states is correct, one might expect to see, over a range of different halos, a linear correlation 
between two quantities 0 0M R  and the x-ray temperature, both of which should be 
measurable, the first by lensing and the second by x-ray satellites. In some halos a variation in 
velocity profiles with radius is observed and there might be a correlation between the halo 
temperature and the local the equivalent eigenstate kinetic energy as a function of radius 
within a single halo. It is also significant that some observed x-ray intensities mimic halo dark 
matter density profiles (ibid.) the generality of which could be tested. 

7. Conclusion 

Quantum theory predicts the existence of well-bound, dark gravitational eigenstates in 

potential wells like those associated with galactic or cluster halos. By allowing the 

possibility that these states could be incorporated into the eigenspectra of what would 

normally be visible elementary particles, it enables them to function as dark matter 

candidates. This then enables the nature and origin of dark matter to be understood without 

the need for new particles or new physics. Gravitational eigenstates have already been 

experimentally observed in the laboratory and there is no reason to deny their existence in 

large potential wells. Many of the properties of dark matter then arise as a natural 

consequence of (i) the functional properties of the wavefunctions corresponding to the dark 

eigenstates or (ii) the envisaged formation scenario. 

Perhaps the most exciting aspect of gravitational eigenstates though will be realised if these 

states do turn out to be responsible for dark matter, for in doing this they will provide us 

not only with a solution to a long standing problem in astrophysics but also with a more 

generalised way to describe and understand the nature of matter on macroscopic scales. 
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