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1. Introduction

The quantum theory of fields on curved space-times, which is of actual interest in astrophysics
and cosmology, is faced with serious difficulties arising from the fact that some global
properties of the theory on flat space-times become local when the background is curved.
The principal impediment on curved manifolds is the absence of the Poincaré symmetry
which gives rise to the principal invariants of special relativity (i.e. the mass and spin) and
assures the stability of the vacuum state. This drawback encouraged many authors to avoid
the principal steps of the quantum theory based on canonical quantization looking for new
effective methods able to be used in theories on curved manifolds. Thus a particular attention
was payed to the construction of the two-point functions of the axiomatic quantum field
theory (Allen & Jacobson, 1986) or to some specific local effects as, for example, the Unruh’s
one (Unruh, 1976). However, in this manner some delicate problems related to the fields with
spin may remain obscure.

For this reason we believe that turning back to the traditional method of canonical
quantization we may open new perspectives in developing the quantum field theory on
curved space-times. According to the standard interpretation of the quantum mechanics, our
basic assumption is that the quantum states are prepared by a global classical apparatus which
includes the natural and local frames. This means that the quantum observables must be
defined globally as being conserved operators which commute with that of the field equation.
Therefore, the quantum modes have to be determined as common eigenfunctions of several
complete systems of commuting operators which include the operator of the field equation.
These mode functions must be orthonormalized with respect to a suitable relativistic scalar
product such that the subspaces of functions of positive and respectively negative frequencies
remain orthogonal to each other in any frame. This conjecture leads to a stable vacuum state
when we perform the canonical quantization which enables us to derive the propagators and
especially the one-particle operators. Moreover, the theory of the interacting fields may be
developed then as in the flat case using the S-matrix and the perturbation theory since the
normal ordering of the operator products do make sense thanks to the stability of the vacuum
state.

The theory of quantum fields with spin on curved backgrounds has a specific structure since
the spin half can be defined only in orthogonal local (non-holonomic) frames. Therefore,
in general, the Lagrangian theory of the matter fields has to be written in local frames

assuming that this is tetrad-gauge covariant. Thus the gauge group L↑
+ ⊂ SO(1, 3) (of
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the principal fiber bundle) and its universal covering group, SL(2, C), (of the spin fiber
bundle) become crucial since their finite-dimensional (non-unitary) representations induce
the covariant representations of the universal covering group of the isometry one according
to which the matter fields transform under isometries (Cotăescu, 2000). The generators of
these covariant representations are the differential operators given by the Killing vectors
associated to isometries according to the generalized Carter and McLenagan formula (Carter
& McLenaghan, 1979). The theory of the fields with integer spin can be written either in
local frames or exclusively in natural ones where we have shown how the spin must be
defined in order to recover the Carter and McLenagan formula (Cotăescu, 2009). Thus the
external symmetry offers us the conserved operators among them we may select different
sets of commuting operators which have to define the free quantum modes. A convenient
relativistic scalar product and a stable vacuum state have to complete the framework we need
for performing the canonical quantization.

Our method is helpful on the de Sitter space-time where all the free field equations can
be analytically solved while the SO(1, 4) isometries provide us with a large collection of
conserved operators. A particular feature of this symmetry is that the energy and momentum
operators do not commute to each other. Consequently, there are no mass-shells and the
energy and momentum are diagonal in different bases, called the energy and respectively
momentum bases (or representations). In spite of this new behavior, we pointed out that
the principal invariants of the covariant representations can be expressed in terms of rest
energy and spin as in special relativity (Cotăescu, 2011a). Moreover, we have derived the
principal sets of quantum modes of the free scalar (Cotăescu et al., 2008), Dirac (Cotăescu,
2002; Cotăescu & Crucean, 2008), Proca (Cotăescu, 2010) and Maxwell (Cotăescu & Crucean,
2010) fields applying the same procedure of canonical quantization. In what follows we would
like to present these results for the scalar and Dirac fields which are the typical examples of
the field theory formulated exclusively either in natural or in local frames.

In the second section we briefly review our theory of external symmetry focusing on the de
Sitter isometries and their invariants. The third section is devoted to the de Sitter space-time
and its isometries. The next two sections are devoted to the second quantization of the scalar
and Dirac fields. For these fields we derive the quantum modes in momentum representation
using the free field equations in the (co)moving frames of the de Sitter expanding universe
and the local frames defined by the diagonal gauge in the case of the Dirac equation. The
polarization of the Dirac field is given in the helicity basis which can be easily defined in the
momentum representation we use. Considering appropriate scalar products in each particular
case, a special attention is paid to the orthogonality and completeness properties as well as to
the choice of the vacuum state. We argue that the vacuum of Bunch-Davies type (Bunch &
Davies, 1978) we define here is stable as long as the particle and antiparticle sets of mode
functions remain orthogonal among themselves in any frame. Under such circumstances the
method of canonical quantization is working well allowing us to obtain important pieces as
propagators and one-particle operators. Finally, we present our conclusions marking out what
is new in interpreting the global quantum modes studied here.

2. External symmetry in general relativity

In general relativity the space-time symmetries are the isometries of the background
associated to the Killing vectors. The physical fields minimally coupled to gravity take over
this symmetry transforming according to appropriate representations of the isometry group.

176 Advances in Quantum Theory
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In the case of the scalar vector or tensor fields these representations are completely defined by
the well-known rules of the general coordinate transformations since the isometries are in fact
particular automorphisms. However, the theory of spinor fields is formulated in orthogonal
local frames where the basis-generators of the spinor representation were discovered by Carter
and McLenaghan (Carter & McLenaghan, 1979).

For this reason we proposed a new theory of external symmetry in the context of the
gauge-covariant theories in local orthogonal frames (Cotăescu, 2000). We introduced there
new transformations which combine isometries and gauge transformations such that the
tetrad fields should remain invariant. In this way we obtained the external symmetry group
and we derived the general form of the basis-generators of the representations of this group
shoving that these are given by a formula which generalizes the Carter and McLenaghan one.
Moreover, we pointed out that this theory can be formulated exclusively in natural frames if
there are only scalar, vector and tensor fields (Cotăescu, 2009).

2.1 Tetrad gauge covariance

Let us consider the pseudo-Riemannian space-time (M, g) and a local chart (or natural frame)
of coordinates xµ (labeled by natural indices, µ, ν, ... = 0, 1, 2, 3) (Wald, 1984). Given a
gauge, we denote by eµ̂ the tetrad fields that define the local frames and by êµ̂ those of

the corresponding coframes. These have the usual duality, ê
µ̂
α eα

ν̂ = δ
µ̂
ν̂ , ê

µ̂
α e

β
µ̂ = δ

β
α , and

orthonormalization, eµ̂ · eν̂ = ηµ̂ν̂, êµ̂ · êν̂ = ηµ̂ν̂, properties. The metric tensor gµν = ηα̂β̂ êα̂
µ ê

β̂
ν

raises or lowers the natural indices while for the local indices (µ̂, ν̂, ... = 0, 1, 2, 3) we have to
use the flat Minkowski metric η =diag(1,−1,−1,−1). The derivatives in local frames are the
vector fields ∂̂ν̂ = e

µ
ν̂ ∂µ which satisfy the commutation rules [∂̂µ̂, ∂̂ν̂] = C ··σ̂

µ̂ν̂· ∂̂σ̂ defining the

Cartan coefficients.

The metric η remains invariant under the transformations of its gauge group, O(1, 3). This

has as subgroup the Lorentz group, L↑
+, of the transformations Λ[A(ω)] corresponding to

the transformations A(ω) ∈ SL(2, C) through the canonical homomorphism (Tung, 1984). In

the standard covariant parametrization, with the real parameters ωα̂β̂ = −ωβ̂α̂, the SL(2, C)

transformations A(ω) = exp(− i
2 ωα̂β̂Sα̂β̂) are generated by the covariant basis-generators

of the sl(2, C) algebra, denoted by Sα̂β̂. For small values of ωα̂β̂ the matrix elements of the

transformations Λ in the local basis can be expanded as Λ
µ̂ ·
· ν̂ [A(ω)] = δ

µ̂
ν̂ + ω

µ̂ ·
· ν̂ + · · · .

Assuming now that (M, g) is orientable and time-orientable we can consider G(η) = L↑
+

as the gauge group of the Minkowski metric η (Wald, 1984). This is the structure group of
the principal fiber bundle whose basis is M. The group Spin(η) = SL(2, C) is the universal
covering group of G(η) and represents the structure group of the spin fiber bundle (Lawson
& Michaelson, 1989). In general, a matter field ψ(ρ) : M → V(ρ) is locally defined over M with

values in the vector space V(ρ) of a representation ρ, generally reducible, of the group Spin(η).
The covariant derivatives of the field ψ(ρ),

D
(ρ)
α̂ = e

µ
α̂ D

(ρ)
µ = ∂̂α̂ +

i

2
ρ(S

β̂ ·
· γ̂) Γ̂

γ̂

α̂β̂
, (1)
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depend on the connection coefficients in local frames,

Γ̂σ̂
µ̂ν̂ = eα

µ̂e
β
ν̂ (ê

σ̂
γΓ

γ
αβ − êσ̂

β,α)

=
1

2
ησ̂λ̂(Cµ̂ν̂λ̂ − Cµ̂λ̂ν̂ − Cν̂λ̂µ̂) ,

(2)

which assure the covariance of the whole theory under tetrad gauge transformations
produced by automorphisms A of the spin fiber bundle. This is the general framework of
the theories involving fields with half integer spin which can not be treated in natural frames.

2.2 External symmetries in local frames

A special difficulty in local frames is that the theory is no longer covariant under isometries
since these can change the tetrad fields that carry natural indices. For this reason we proposed
a theory of external symmetry in which each isometry transformation is coupled to a gauge
one able to correct the position of the local frames such that the whole transformation should
preserve not only the metric but the tetrad gauge too (Cotăescu, 2000). Thus, for any isometry
transformation x → x′ = φξ(x) = x + ξaka + ..., depending on the parameters ξa (a, b, ... =
1, 2...N) of the isometry group I(M), one must perform the gauge transformation Aξ defined
as

Λα̂ ·
· β̂
[Aξ(x)] = êα̂

µ[φξ(x)]
∂φ

µ
ξ (x)

∂xν
eν

β̂
(x) (3)

with the supplementary condition Aξ=0(x) = 1 ∈ SL(2, C). Then the transformation laws of
our fields are

(Aξ , φξ) :

e(x) → e′(x′) = e[φξ(x)]

ê(x) → ê′(x′) = ê[φξ(x)]

ψ(ρ)(x) → ψ′
(ρ)

(x′) = ρ[Aξ(x)]ψ(ρ)(x) .

(4)

We have shown that the pairs (Aξ , φξ) constitute a well-defined Lie group we called the
external symmetry group, S(M), pointing out that this is just the universal covering group of
I(M) (Cotăescu, 2000). For small values of ξa, the SL(2, C) parameters of Aξ(x) ≡ A[ωξ(x)]

can be expanded as ω
α̂β̂
ξ (x) = ξaΩ

α̂β̂
a (x) + · · · , in terms of the functions

Ω
α̂β̂
a ≡

∂ω
α̂β̂
ξ

∂ξa |ξ=0
=

(

êα̂
µ k

µ
a,ν + êα̂

ν,µk
µ
a

)

eν
λ̂

ηλ̂β̂ (5)

which depend on the Killing vectors ka = ∂ξa
φξ |ξ=0 associated to ξa.

The last of Eqs. (4) defines the operator-valued representations T(ρ) : (Aξ , φξ) → T
(ρ)
ξ

of the group S(M) which are called the covariant representations (CR) induced by the
finite-dimensional representations ρ of the group SL(2, C). The covariant transformations,

(T
(ρ)
ξ ψ(ρ))[φξ(x)] = ρ[Aξ(x)]ψ(ρ)(x) , (6)

leave the field equation invariant since their basis-generators (Cotăescu, 2000),
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X
(ρ)
a = i∂ξa T

(ρ)
ξ |ξ=0

= −ik
µ
a ∂µ +

1

2
Ω

α̂β̂
a ρ(Sα̂β̂) ,

(7)

commute with the operator of the field equation and satisfy the commutation rules

[X
(ρ)
a , X

(ρ)
b ] = icabcX

(ρ)
c determined by the structure constants, cabc, of the algebras s(M) ∼

i(M). In other words, the operators (7) are the basis-generators of a CR of the s(M) algebra
induced by the representation ρ of the sl(2, C) algebra. These generators can be put in the
covariant form (Cotăescu, 2000),

X
(ρ)
a = −ik

µ
a D

(ρ)
µ +

1

2
ka µ; ν e

µ
α̂ eν

β̂
ρ(Sα̂β̂) , (8)

which represents the generalization to any representation ρ of the famous formula given by
Carter and McLenaghan (Carter & McLenaghan, 1979) for the spinor representation ρs =
( 1

2 , 0)⊕ (0, 1
2 ).

A specific feature of the CRs is that their generators have, in general, point-dependent spin
terms which do not commute with the orbital parts. However, there are tetrad-gauges in
which at least the generators of a subgroup G ⊂ I(M) may have point-independent spin

terms commuting with the orbital parts. Then we say that the restriction to G of the CR T(ρ)

is manifest covariant. Obviously, if G = I(M) then the whole representation T(ρ) is manifest
covariant (Cotăescu, 2000).

2.3 Isometries in natural frames

Whenever there are no spinors, the matter fields are vectors or tensors of different ranks and
the whole theory is independent on the tetrad fields dealing with the natural frames only. In
general, any tensor field, Θ, transforms under isometries as Θ → Θ′ = Tξ Θ, according to a
tensor representation of the group S(M) defined by the well-known rule in natural frames

⎡

⎣

∂φα
ξ (x)

∂xµ

∂φ
β
ξ (x)

∂xν
...

⎤

⎦

(

Tξ Θ
)

αβ...
[φ(x)] = Θµν...(x) . (9)

Hereby one derives the basis-generators of the tensor representation, Xa = i ∂ξa
Tξ |ξ=0, whose

action reads
(Xa Θ)αβ... = −i(ka

νΘαβ...; ν + ka
ν
; αΘνβ... + ka

ν
; βΘαν......) . (10)

Our purpose is to show that the operators Xa can be written in a form which is equivalent to
equation (8) of Carter and McLenaghan.

In order to accomplish this we start with the vector representation ρv = ( 1
2 , 1

2 ) of the SL(2, C)

group, generated by the spin matrices ρv(Sα̂β̂) which have the well-known matrix elements

[ρv(S
α̂β̂)]

µ̂ ·
· ν̂ = i(ηα̂µ̂δ

β̂
ν̂ − η β̂µ̂δα̂

ν̂ ) , (11)

in local bases. Furthermore, we define the point-dependent spin matrices in natural frames
whose matrix elements in the natural basis read

179Quantum Fields on the de Sitter Expanding Universe
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(S̃µν)σ ·
· τ = e

µ
α̂ eν

β̂
eσ

γ̂[ρv(S
α̂β̂)]γ̂ ·

· δ̂
êδ̂

τ = i(gµσδν
τ − gνσδ

µ
τ ) . (12)

These matrices represent the spin operators of the vector representation in natural frames.
We observe that these are the basis-generators of the groups G[g(x)] ∼ G(η) which leave
the metric tensor g(x) invariant in each point x. Since the representations of these groups
are point-wise equivalent with those of G(η), one can show that in each point x the
basis-generators S̃µν(x) satisfy the standard commutation rules of the vector representation
ρv (but with g(x) instead of η).

In general, the spin matrices of a tensor Θ of any rank, n, are the basis-generators of the
representation ρn = ρ1

v ⊗ ρ2
v ⊗ ρ3

v ⊗ .... ⊗ ρn
v which read ρn(S̃) = S̃1 ⊗ I2 ⊗ I3... + I1 ⊗ S̃2 ⊗

I3... + ..... Using these spin matrices a straightforward calculation shows that equation (8) can
be rewritten in natural frames as (Cotăescu, 2009),

Xn
a = −ik

µ
a∇µ +

1

2
ka µ; ν ρn(S̃

µν) , (13)

where ∇µ are the usual covariant derivatives. It is not difficult to verify that the action of these
operators is just that given by equation (10) which means that Xn

a are the basis-generators of
a tensor representation of rank n of the group S(M).

Thus, it is clear that the tensor representations are equivalent with the CRs defined in local
frames while the equation (13) represents the generalization to natural frames of the Carter
and McLenaghan formula. We stress that this result is not trivial since it can not be seen as a
simple basis transformation like in the usual tensor theory of the linear algebra. The principal
conclusion here is that the Carter and McLenaghan formula is universal since it holds not only
in local frames but in natural frames too (Cotăescu, 2009).

3. The de Sitter expanding universe

Our approach is helpful on the four-dimensional de Sitter space-time where all the usual free
field equations can be analytically solved while the isometries give rise to the rich so(1, 4)
algebra. Hereby we selected various sets of commuting operators determining the quantum
modes of the scalar, vector and Dirac fields.

3.1 Natural and local frames

Let us consider (M, g) be the de Sitter space-time defined as the hyperboloid of radius
1/ω (where ω denotes the Hubble de Sitter constant) embedded in the five-dimensional
flat space-time (M5, η5) with Cartesian coordinates zA (labeled by the indices A, B, ... =
0, 1, 2, 3, 4) and the metric η5 = diag(1,−1,−1,−1,−1) (Birrel & Davies, 1982). The local
charts (or natural frames) of coordinates {x} can be easily introduced on (M, g) defining the
sets of functions zA(x) able to solve the hyperboloid equation, η5

ABzA(x)zB(x) = −ω−2. In

a given chart the line element ds2 = η5
ABdzAdzB = gµν(x)dxµdxν defines the metric tensor of

(M, g).

In what follows we restrict ourselves to consider only the (co)moving charts, {t,�x} and
{tc,�x} which have the same Cartesian space coordinates, xi (i, j, k... = 1, 2, 3), but different
time coordinates. The first chart is equipped with the proper time t ∈ (−∞, ∞) while

180 Advances in Quantum Theory
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tc = −ω−1 e−ωt ∈ (−∞, 0] is the conformal time. These charts are defined by the functions
(Birrel & Davies, 1982),

z0 =
eωt

2ω

(

1 + ω2
�x 2 − e−2ωt

)

= − 1

2ω2tc

[

1 − ω2(tc
2 −�x 2)

]

(14)

z4 =
eωt

2ω

(

1 − ω2
�x 2 + e−2ωt

)

= − 1

2ω2tc

[

1 + ω2(tc
2 −�x 2)

]

(15)

zi = eωtxi = − 1

ωtc
xi (16)

and have the line elements

ds2 = dt2 − e2ωt d�x · d�x =
1

ω2tc
2

(

dtc
2 − d�x · d�x

)

. (17)

We remind the reader that these charts cover only the expanding portion of (M, g) known as
the de Sitter expanding universe.

The theory of external symmetry in local frame depends on the choice of the tetrad-gauge. The
simplest gauge in the chart {t,�x} is the diagonal one in which the non-vanishing components
of the tetrad fields are

ê0
0 = e0

0 = 1 , êi
j = eωtδi

j , ei
j = e−ωtδi

j . (18)

The corresponding gauge in the chart {tc,�x} is given by the non-vanishing tetrad components,

e0
0 = −ωtc , ei

j = −δi
j ωtc , ê0

0 = − 1

ωtc
, êi

j = −δi
j

1

ωtc
. (19)

3.2 The Killing vectors of the SO(1, 4) isometries

The de Sitter manifold (M, g) is defined as a homogeneous space of the pseudo-orthogonal
group SO(1, 4) which is in the same time the gauge group of the metric η5 and the
isometry group, I(M), of the de Sitter space-time . The group of the external symmetry,
S(M) = Spin(η5) = Sp(2, 2), has the Lie algebra s(M) = sp(2, 2) ∼ so(1, 4) for which
we use the covariant real parameters ξAB = −ξBA. In this parametrization, the Killing
vectors corresponding to the SO(1, 4) isometries can be derived considering the natural
representation carried by the space of the scalar functions over M5. The basis-generators of
this representation are the genuine orbital operators

L5
AB = i

[

η5
ACzC∂B − η5

BCzC∂A

]

= −iKC
(AB)∂C (20)

which define the components of the Killing vectors K(AB) on (M5, η5). With their help we

can derive the corresponding Killing vectors of (M, g), denoted by k(AB), using the obvious

identities k(AB)µdxµ = K(AB)CdzC.

In the chart {t,�x} the Killing vectors of the de Sitter symmetry have the components,

k0
(0i) = k0

(4i) = xi , k
j

(0i)
= k

j

(4i)
− 1

ω
δ

j
i = ωxixj − δ

j
i ϑ , (21)

k0
(ij) = 0 , kl

(ij) = δl
j x

i − δl
i xj ; k0

(04) = − 1

ω
, ki

(04) = xi . (22)

181Quantum Fields on the de Sitter Expanding Universe
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while in the other moving chart, {tc,�x}, these components become

k0
(0i) = k0

(4i) = ωtcxi , k
j

(0i)
= k

j

(4i)
− 1

ω
δ

j
i = ωxixj − δ

j
i ϑ , (23)

k0
(ij) = 0 , kl

(ij) = δl
j x

i − δl
i xj ; k

µ

(04)
= xµ , (24)

where the function ϑ is defined as

ϑ =
1

2ω
(1 + ω2

�x 2 − e−2ωt) =
1

2ω
[1 + ω2(�x 2 − tc

2)] , (25)

3.3 The so(1, 4) generators of covariant representations

According to our general theory, the generators of the CRs T(ρ) of the group S(M) = Sp(2, 2),
induced by the representations ρ of the SL(2, C) group, constitute CRs of the sp(2, 2) algebra
induced by the representations ρ of the sl(2, C) algebra. Therefore, their commutation
relations are determined by the structure constant of the group Sp(2, 2) and the principal
invariants are the Casimir operators of the CRs which can be derived as those of the algebras
sp(2, 2) ∼ so(1, 4).

In the covariant parametrization of the sp(2, 2) algebra adopted here, the generators X
(ρ)
(AB)

corresponding to the Killing vectors k(AB) result from equation (7) and the functions (5) with

the new labels a → (AB). Using then the Killing vectors (21) and (22) and the tetrad-gauge
(18) of the chart {t,�x}, after a little calculation, we find first the sl(2, C) generators. These are
the total angular momentum,

J
(ρ)
i ≡ 1

2
εijkX

(ρ)
(jk)

= −iεijkxj∂k + S
(ρ)
i , (26)

and the generators of the Lorentz boosts

K
(ρ)
i ≡ X

(ρ)
(0i)

= ixi∂t + iϑ(x)∂i − iωxi xj∂j + e−ωtS
(ρ)
0i + ωS

(ρ)
ij xj , (27)

where ϑ is defined by Eq. (25). In addition, there are three generators,

R
(ρ)
i ≡ X

(ρ)
(i4)

= −K
(ρ)
i +

1

ω
i∂i , (28)

which play the role of a Runge-Lenz vector, in the sense that {Ji, Ri} generate a so(4)
subalgebra. The energy (or Hamiltonian) operator,

H ≡ ωX
(ρ)
(04)

= i∂t − iωxi∂i , (29)

is given by the Killing vector k(04) which is time-like only for ω|�x|eωt ≤ 1. Fortunately, this
condition is accomplished everywhere inside the light-cone of an observer at rest in �x = 0.
Therefore, the operator H is correctly defined.

The generators introduced above form the basis {H, J
(ρ)
i , K

(ρ)
i , R

(ρ)
i } of the covariant

representation of the sp(2, 2) algebra with the following commutation rules (Cotăescu, 2011a):
[

J
(ρ)
i , J

(ρ)
j

]

= iεijk J
(ρ)
k ,

[

J
(ρ)
i , R

(ρ)
j

]

= iεijkR
(ρ)
k ,

[

K
(ρ)
i , K

(ρ)
j

]

= −iεijk J
(ρ)
k (30)

[

J
(ρ)
i , K

(ρ)
j

]

= iεijkK
(ρ)
k ,

[

R
(ρ)
i , R

(ρ)
j

]

= iεijk J
(ρ)
k ,

[

R
(ρ)
i , K

(ρ)
j

]

=
i

ω
δij H , (31)
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and
[

H, J
(ρ)
i

]

= 0 ,
[

H, K
(ρ)
i

]

= iωR
(ρ)
i ,

[

H, R
(ρ)
i

]

= iωK
(ρ)
i . (32)

As mentioned in the previous section, it is useful to replace the operators �K(ρ) and �R(ρ) by the

momentum operator �P and its dual, �Q(ρ), whose components are defined as

Pi = ω(R
(ρ)
i + K

(ρ)
i ) = i∂i , Q

(ρ)
i = ω(R

(ρ)
i − K

(ρ)
i ) . (33)

which have the remarkable properties (Cotăescu, 2011a)

[H, Pi] = iωPi ,
[

H, Q
(ρ)
i

]

= −iωQ
(ρ)
i ,

[

Q
(ρ)
i , Q

(ρ)
j

]

= [Pi, Pj] = 0 . (34)

We obtain thus the basis {H, Pi, Q
(ρ)
i , J

(ρ)
i } and the basis of the Poincaré type formed by

{H, Pi, J
(ρ)
i , K

(ρ)
i }.

The last two bases bring together the conserved energy (29) and momentum (33a) which
are the only genuine orbital operators, independent on ρ. What is specific for the de Sitter
symmetry is that these operators can not be put simultaneously in diagonal form since they
do not commute to each other,as it results from Eq. (34a). Therefore, there are no mass-shells.

4. The massive Klein-Gordon field

The quantum modes of the scalar field in moving frames of de Sitter manifolds are well-known
from long time (Birrel & Davies, 1982) paying attention to the scalar propagators, known as
two-point functions (Candelas & Raine, 1975; Chernikov & Tagiriv, 1968), we recover here
using the canonical quantization (Cotăescu et al., 2008).

4.1 Scalar quantum mechanics

In what follows we study the scalar field minimally coupled to the de Sitter gravity using our
recently proposed new quantum mechanics on spatially flat Robertson-Walker space-times in
which we defined different time evolution pictures (Cotăescu, 2007).

4.1.1 Lagrangian theory

In an arbitrary chart {x} of a curved manifold the action of a charged scalar field φ of mass m,
minimally coupled to gravity, reads (Birrel & Davies, 1982),

S [φ, φ∗] =
∫

d4x
√

gL =
∫

d4x
√

g
(

∂µφ∗∂µφ − m2φ∗φ
)

, (35)

where g = |det(gµν)|. This action gives rise to the Klein-Gordon equation

1√
g

∂µ [
√

g gµν∂νφ] + m2φ = 0 . (36)

The conserved quantities predicted by the Noether theorem can be calculated with the help of
the stress-energy tensor

Tµν = ∂µφ∗∂νφ + ∂νφ∗∂µφ − gµνL . (37)
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Thus, for each isometry corresponding to a Killing vector k(AB) there exists the conserved

current Θµ[k(AB)] = −T
µ ·
· ν kν

(AB)
which satisfies Θµ[k(AB)];µ = 0 producing the conserved

quantity

C[k(AB)] =
∫

Σ
dσµ

√
g Θµ[k(AB)] , (38)

on a given hypersurface Σ ⊂ M. Moreover, generalizing the form of the conserved electric
charge due to the internal U(1) symmetry one defines the relativistic scalar product of two
scalar fields as

〈φ, φ′〉 = i
∫

Σ
dσµ√g φ∗ ↔

∂µ φ′ , (39)

using the notation f
↔
∂ h = f (∂h) − h(∂ f ). With this definition one obtains the following

identities
C[k(AB)] = 〈φ, X(AB)φ〉 (40)

which can be proved for any Killing vector using the field equation (36) and the Green’s
theorem. These identities will be useful in quantization, giving directly the conserved
one-particle operators of the quantum field theory (Cotăescu et al., 2008).

4.1.2 Time-evolution pictures on de Sitter space-time

Let us consider now the de Sitter expanding universe (M, g) and the chart {t,�x} with FRW
line element. We say that the natural time-evolution picture (NP) is the genuine quantum
theory in this chart where the time evolution of the massive scalar field is governed by the
Klein-Gordon equation

(

∂2
t − e−2ωt∆ + 3ω∂t + m2

)

φ(x) = 0 . (41)

The solutions of this equation may be square integrable functions or tempered distributions
with respect to the scalar product (39) that in NP and for Σ = R3 takes the form

〈φ, φ′〉 = i
∫

d3x e3ωt φ∗(x)
↔
∂t φ′(x) . (42)

since in this chart
√

g = e3ωt.

The principal operators of NP are the isometry generators given by Eqs. (26)-(29) but
calculated for the scalar representation (0, 0) whose generators vanish. Thus, these operators
are just the genuine orbital generators of the natural representation which is equivalent to the

scalar CR. In addition, we consider the coordinate operator, �X, defined as (Xiφ)(x) = xiφ(x),
that obeys,

[Pi, X j] = iδij I , [H, Xi] = −iωXi , (43)

where I is the identity operator.

The NP can be changed using point-dependent operators which could be even non-unitary
operators since the relativistic scalar product does not have a direct physical meaning as
that of the non-relativistic quantum mechanics . We exploit this opportunity for introducing
the new time-evolution picture, called the Schrödinger picture (SP), with the help of the

184 Advances in Quantum Theory

www.intechopen.com



Quantum Fields on the de Sitter

Expanding Universe 11

transformation φ(x) → φS(x) = W(x)φ(x)W−1(x) produced by the operator of time
dependent dilatations (Cotăescu, 2007),

W(x) = exp
[

−ωt(xi∂i)
]

, W+(x) = e3ωt W−1(x) , (44)

which has the following convenient actions

W(x)F(xi)W−1(x) = F
(

e−ωtxi
)

, W(x)G(∂i)W
−1(x) = G

(

eωt∂i

)

, (45)

upon any analytical functions F and G. This transformation leads to the Klein-Gordon
equation of the SP

[

(

∂t + ωxi∂i

)2
− ∆ + 3ω(∂t + ωxi∂i) + m2

]

φS(x) = 0 , (46)

and allows us to define the scalar product of this picture,

〈φS, φ′
S〉 ≡ 〈φ, φ′〉 = i

∫

d3x

[

φ∗
S

↔
∂t φ′

S + ωxi(φ∗
S

↔
∂i φ′

S)

]

, (47)

as it results from Eqs. (44).

The specific operators of the SP, denoted by HS, Pi
S and Xi

S, are defined as

(HSφS)(x) = i∂tφS(x) , (Pi
SφS)(x) = −i∂iφS(x) , (Xi

SφS)(x) = xiφS(x) , (48)

The meaning of these operators can be understood in the NP. Indeed, performing the inverse
transformation we recover the conserved energy operator H = W−1(x) HS W(x) and we find
the new interesting time-dependent operators of the NP,

Xi(t) = W−1(x) Xi
S W(x) = eωtXi , (49)

Pi(t) = W−1(x) Pi
S W(x) = e−ωtPi , (50)

which satisfy the canonical commutation rules (Cotăescu, 2007),

[Xi(t), Pj(t)] = iδij I , [H, Xi(t)] = [H, Pi(t)] = 0 . (51)

The angular momentum has the same expression in both these pictures since it commutes
with W(x). We note that even if Xi(t) and Pi(t) commute with H they can not be considered
conserved operators since they do not commute with the Klein-Gordon operator.

In NP picture the eigenvalues problem H fE(t,�x) = E fE(t,�x) of the energy operator leads to
energy eigenfunctions of the form

fE(t,�x) = F[eωt
�x]e−iEt (52)

where F is an arbitrary function. This explains why in this picture one can not find energy
eigenfunctions separating variables. However, in our SP these eigenfunctions become the
new functions

f S
E (t,�x) = W(x) fE(t,�x)W

−1(x) = F(�x)e−iEt (53)

which have separated variables. This means that in SP new quantum modes could be derived
using the method of separating variables in coordinates or even in momentum representation.
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4.2 Scalar plane waves

As mentioned before, the specific feature of the quantum mechanics on M is that the
conserved energy and momentum can not be measured simultaneously with desired
accuracy. Consequently, there are no particular solutions of the Klein-Gordon equation with
well-determined energy and momentum, being forced to consider different plane waves
solutions depending either on momentum or on energy and momentum direction. Thus we
shall work with two bases of fundamental solutions we call here the momentum and energy
bases . The momentum basis is well-known (Birrel & Davies, 1982; Chernikov & Tagiriv, 1968)
but the energy one is a new basis derived using our SP (Cotăescu et al., 2008).

4.2.1 The momentum basis

It is known that the Klein-Gordon equation (41) of NP can be analytically solved in terms
of Bessel functions (Birrel & Davies, 1982). There are fundamental solutions determined as
eigenfunctions of the set of commuting operators {Pi} of NP whose eigenvalues pi are the
components of the momentum �p. Among different versions of solutions which are currently
used we prefer the normalized solutions of positive frequencies that read

f�p(x) =
1

2

√

π

ω

1

(2π)3/2
e−3ωt/2Zk

( p

ω
e−ωt

)

ei�p·�x , k =
√

µ2 − 9
4 , (54)

where p = |�p|, the functions Zk are defined in the Appendix A and we denote µ = m
ω .

Obviously, the fundamental solutions of negative frequencies are f ∗
�p (x).

All these solutions satisfy the orthonormalization relations

〈 f�p, f�p′ 〉 = −〈 f ∗
�p , f ∗

�p′ 〉 = δ3(�p − �p′) , 〈 f�p, f ∗
�p′ 〉 = 0 , (55)

and the completeness condition

i
∫

d3 p f ∗
�p (t,�x)

↔
∂t f�p(t,�x

′) = e−3ωtδ3(�x −�x′) . (56)

For this reason we say that the set { f�p |�p ∈ R3
p} forms the complete system of fundamental

solutions of positive frequencies of the momentum basis of the Hilbert space H
(+)
KG of particle

states. The solutions of negative frequencies, { f ∗
�p |�p ∈ R3

p}, span an orthogonal Hilbert space,

H
(−)
KG , associated to the antiparticle states. We must stress that this separation of the positive

and negative frequencies defines the Bunch-Davies vacuum which is known to be stable.

In this basis, the Klein-Gordon field can expanded in terms of plane waves of positive and
negative frequencies in usual manner as

φ(x) = φ(+)(x) + φ(−)(x)

=
∫

d3 p
[

f�p(x)a(�p) + f ∗
�p (x)b∗(�p)

] (57)

where a and b are the particle and respectively antiparticle wave functions of the momentum
representation. These can be calculated using the inversion formulas a(�p) = 〈 f�p, φ〉 and

b(�p) = 〈 f�p, φ∗〉.
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4.2.2 The energy basis

The plane waves of given energy have to be derived in the SP (Cotăescu, 2007) where the
Klein-Gordon equation has the suitable form (46). We assume that in this picture the scalar
field can be expanded as

φS(x) = φ
(+)
S (x) + φ

(−)
S (x) =

∫ ∞

0
dE

∫

d3q
[

φ̂
(+)
S (E,�q)e−iEt+i�q·�x + φ̂

(−)
S (E,�q)eiEt−i�q·�x

]

(58)

where φ̂
(±)
S behave as tempered distributions on the domain R3

q such that the Green

theorem may be used. Then we can replace the momentum operators Pi
S by qi and the

coordinate operators Xi
S by i∂qi obtaining the Klein-Gordon equation of the SP in momentum

representation,

{

[

±iE + ω
(

qi∂qi + 3
)]2

− 3ω
[

±iE + ω
(

qi∂qi + 3
)]

+�q2 + m2

}

φ̂
(±)
S (E,�q) = 0 , (59)

where E is the energy defined as the eigenvalue of HS. We remind the reader that the operators
Pi

S and Xi
S become in NP the time dependent operators (49) and respectively (50) while HS is

related to the conserved energy operator H. This means the energy E is a conserved quantity
but the momentum �q does not have this property. More specific, only the scalar momentum
q = |�q| is not conserved while the momentum direction is conserved since the operator (50) is

parallel with the conserved momentum �P. For this reason we denote �q = q�n observing that
the differential operator of Eq. (59) is of radial type and reads qi∂qi = q ∂q. Consequently, this
operator acts only on the functions depending on q while the functions which depend on the
momentum direction �n behave as constants. Therefore, we have to look for solutions of the
form

φ̂
(+)
S (E,�q) = hS(E, q) a(E,�n) , (60)

φ̂
(−)
S (E,�q) = [hS(E, q)]∗ b∗(E,�n) , (61)

where the function hS satisfies an equation derived from Eq. (59) that can be written simply
using the new variable s =

q
ω and the notation ǫ = E

ω . This equation,

[

d2

ds2
+

2iǫ + 4

s

d

ds
+

µ2 − ǫ2 + 3iǫ

s2
+ 1

]

hS(ǫ, s) = 0 , (62)

is of the Bessel type having solutions of the form hS(ǫ, s) = const s−iǫ−3/2 Zk(s). Collecting
all the above results we derive the final expression of the Klein-Gordon field (58) as

φS(x) =
∫ ∞

0
dE

∫

S2
dΩn

{

f S
E,�n(x)a(E,�n) + [ f S

E,�n(x)]∗b∗(E,�n)
}

, (63)

where the integration covers the sphere S2 ⊂ R3
p. The fundamental solutions f S

E,�n of

positive frequencies, with energy E and momentum direction �n result to have the integral
representation

f S
E,�n(x) = N0e−iEt

∫ ∞

0
ds

√
s Zk(s) eiωs�n·�x−iǫ ln s , (64)

where N0 is a normalization constant.
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For understanding the physical meaning of this result we must turn back to NP where the
scalar field

φ(x) =
∫ ∞

0
dE

∫

S2
dΩn

{

fE,�n(x)a(E,�n) + [ fE,�n(x)]∗b∗(E,�n)
}

, (65)

is expressed in terms of the solutions of NP that can be put in the form

fE,�n(t,�x) = W−1(x) f S
E,�n(t,�x)W(x) = f S

E,�n(t, eωt
�x)

= N0e−
3
2 ωt

∫ ∞

0
ds

√
s Zk

(

se−ωt
)

eiωs�n·�x−iǫ ln s , (66)

changing the integration variable eωts → s in the integral (64). Using then the scalar product
(108) and the method of the Appendix B we can show that the normalization constant

N0 =
1

2

√

ω

2

1

(2π)3/2
, (67)

assures the desired orthonormalization relations

〈 fE,�n, fE′ ,�n ′ 〉 = −〈 f ∗E,�n, f ∗E′ ,�n ′ 〉 = δ(E − E′) δ2(�n −�n ′) , 〈 fE,�n, f ∗E′ ,�n ′ 〉 = 0 , (68)

and the completeness condition

i
∫ ∞

0
dE

∫

S2
dΩn

{

[ fE,�n(t,�x)]
∗ ↔

∂t fE,�n(t,�x
′)
}

= e−3ωtδ3(�x −�x ′) . (69)

This means that the set of functions { fE,�n|E ∈ R+,�n ∈ S2} constitutes the complete system of

fundamental solutions of the energy basis of H
(+)
KG . The set { f ∗E,�n|E ∈ R+,�n ∈ S2} forms the

energy basis of H
(−)
KG .

The last step is to calculate the transition coefficients between the momentum and energy
bases of the NP that read (Cotăescu et al., 2008)

〈 f�p, fE,�n〉 = 〈 fE,�n, f�p〉∗ =
p−

3
2√

2πω
δ2(�n −�np) e−i E

ω ln
p
ω , (70)

where�np = �p/p. With their help we deduce the transformations

a(�p) =
∫ ∞

0
dE

∫

S2
dΩn〈 f�p, fE,�n〉a(E,�n) =

p−
3
2√

2πω

∫ ∞

0
dE e−i E

ω ln
p
ω a(E,�np) , (71)

a(E,�n) =
∫

d3 p 〈 fE,�n, f�p〉a(�p) =
1√

2πω

∫ ∞

0
dp

√
p e i E

ω ln
p
ω a(p�n) , (72)

and similarly for the wave functions b. These transformations do not mix the particle and
antiparticle states such that we can conclude that the Bunch-Davies vacuum defined here is
stable with respect to the basis transformations.
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4.3 Quantization and one-particle operators

The quantization can be done in canonical manner considering that the wave functions a and
b of the fields (57) and (65) become field operators (such that b∗ → b†). We assume that the
particle (a, a†) and antiparticle (b, b†) operators fulfill the standard commutation relations in
the momentum basis, from which the non-vanishing ones are

[a(�p), a†(�p ′)] = [b(�p), b†(�p ′)] = δ3(�p − �p ′) . (73)

Then, from Eq. (71) it results that the field operators of the energy basis satisfy

[a(E,�n), a†(E′,�n ′)] = [b(E,�n), b†(E′,�n ′)] = δ(E − E′)δ2(�n −�n ′) , (74)

and
[a(�p), a†(E,�n)] = [b(�p), b†(E,�n)] = 〈 f�p, fE,�n〉 , (75)

while other commutators are vanishing. In this way the field φ is correctly quantized
according to the canonical rule (Drell & Bjorken, 1965),

[φ(t,�x), π(t,�x′)] = e3ωt [φ(t,�x), ∂tφ
†(t,�x′)] = i δ3(�x −�x′) , (76)

where π =
√

g ∂tφ
† is the momentum density derived from the action (35). All these operators

act on the Fock space which has the unique Bunch-Davies vacuum state |0〉 accomplishing

a(�p)|0〉 = b(�p)|0〉 = 0 , 〈0|a†(�p) = 〈0|b†(�p) = 0 , (77)

and similarly for the energy basis. The sectors with a given number of particles have to be
constructed using the standard methods, obtaining thus the generalized bases of momentum
or energy.

The one-particle operators corresponding to the conserved operators can be calculated bearing
in mind that for any self-adjoint generator X of the scalar representation of the group I(M)
there exists a conserved one-particle operator of the quantum field theory which can be
calculated simply as

X =: 〈φ, Xφ〉 : (78)

respecting the normal ordering of the operator products. Hereby we recover the standard
algebraic properties

[A, φ(x)] = −Aφ(x) , [A,B ] =: 〈φ, [A, B] φ〉 : (79)

due to the canonical quantization adopted here. In other respects, the electric charge operator
corresponding to the U(1) internal symmetry (of Abelian gauge transformations φ → eiαIφ)
results from the Noether theorem to be Q =: 〈φ, Iφ〉 := : 〈φ, φ〉 :.

However, there are many other conserved operators which do not have corresponding
differential operators at the level of quantum mechanics. The simplest examples are the
operators of number of particles,

Npa =
∫

d3 p a†(�p)a(�p) =
∫ ∞

0
dE

∫

S2
dΩna†(E,�n)a(E,�n) , (80)

and that of antiparticles, Nap (depending on b and b†), giving rise to the charge operator
Q = Npa −Nap and that of the total number of particles, N = Npa +Nap.

189Quantum Fields on the de Sitter Expanding Universe

www.intechopen.com



16 Will-be-set-by-IN-TECH

In what follows we focus on the conserved one-particle operators determining the momentum
and energy bases. The diagonal operators of the momentum basis the are Q and the
components of momentum operator,

P i =: 〈φ, Piφ〉 :=
∫

d3 p pi
[

a†(�p)a(�p) + b†(�p)b(�p)
]

. (81)

In other words, the momentum basis is determined by the set of commuting operators
{Q,P i}. The energy basis is formed by the common eigenvectors of the set of commuting
operators {Q,H, P̃ i}, i.e. the charge, energy and momentum direction operators. The energy
operator can be easily calculated since the solutions (66) are eigenfunctions of the operator H.
In this way we find

H =: 〈φ, Hφ〉 :=
∫ ∞

0
dE E

∫

S2
dΩn

[

a†(E,�n)a(E,�n) + b†(E,�n)b(E,�n)
]

. (82)

More interesting are the operators P̃ i of the momentum direction since they do not come from
differential operators and, therefore, must be defined directly as

P̃ i =
∫ ∞

0
dE

∫

S2
dΩn ni

[

a†(E,�n)a(E,�n) + b†(E,�n)b(E,�n)
]

. (83)

The above operators which satisfy simple commutation relations,

[H,P i] = iωP i , [H, P̃ i] = 0 , [Q,H] = [Q,P i] = [Q, P̃ i] = 0 , (84)

are enough for defining the bases considered hare.

Our approach offers the opportunity to deduce mode expansions of conserved one-particle
operators but in bases where these are not diagonal. For example, we can calculate the mode
expansion of the energy operator in the momentum basis either starting with the identity

(H f�p)(x) = −iω

(

pi∂pi +
3

2

)

f�p(x) (85)

or using Eq. (72). The final result (Cotăescu et al., 2008),

H =
iω

2

∫

d3 p pi
[

a†(�p)
↔
∂ pi

a(�p) + b†(�p)
↔
∂ pi

b(�p)
]

, (86)

is similar to those obtained for other fields as we shall see later. This expansion has a
remarkable property namely, the change of the phase factors,

f�p(x) → f�p(x)eiχ(�p) , a(�p) → e−iχ(�p)a(�p) , b(�p) → e−iχ(�p)b(�p) , (87)

using a real phase function χ(�p), preserve the form of the operators φ, Q and P i but
transforms the Hamiltonian operator as

H → H+ ω
∫

d3 p [pi∂pi χ(�p)]
[

a†(�p)a(�p) + b†(�p)b(�p)
]

. (88)

Our preliminary investigations indicate that this property may be helpful for avoid some
mathematical difficulties related to the flat limit ω ∼ 0 (Cotăescu, 2011b).

We note that beside the above conserved operators we can introduce other one-particle
operators extending the definition (78) to the non-conserved operators of our quantum
mechanics. However, these operators will depend explicitly on time, their expressions being
complicated and without an intuitive physical meaning.
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4.4 Commutator and Green functions

In the quantum theory of fields the Green functions are related to the partial commutator
functions (of positive or negative frequencies) defined as

D(±)(x, x′) = i[φ(±)(x), φ(±) †(x′)] (89)

and the total one, D = D(+) + D(−). These function are solutions of the Klein-Gordon
equation in both the sets of variables and obey [D(±)(x, x′)]∗ = D(∓)(x, x′) such that D results
to be a real function. This property suggests us to restrict ourselves to study only the functions
of positive frequencies,

D(+)(x, x′) = i
∫

d3 p f�p(x) f�p(x′)∗ = i
∫ ∞

0
dE

∫

S2
dΩn fE,�n(x) fE,�n(x′)∗ , (90)

resulted from Eqs. (57) and (65). Both these versions lead to the final expression

D(+)(x, x′) =
π

4ω

i

(2π)3
e−

3
2 ω(t+t′)

∫

d3 p Zk

( p

ω
e−ωt

)

Z∗
k

( p

ω
e−ωt′

)

ei�p·(�x−�x′) (91)

from which we understand that D(+)(x, x′) = D(+)(t, t′,�x − �x ′) and may deduce what

happens at equal time. First we observe that for t′ = t the values of the function D(+)(t, t,�x −
�x ′) are c-numbers which means that D(t, t,�x −�x ′) = 0. Moreover, from Eqs. (56) or (69) we
find

(∂t − ∂t′ )D(+)(t, t′,�x −�x ′)
∣

∣

∣

t′=t
= e−3ωtδ3(�x −�x ′) (92)

and similarly for D(−).

The commutator functions can be written in analytical forms since the mode integral (91) may
be solved in terms of Gauss hypergeometric functions (Chernikov & Tagiriv, 1968). Indeed, in
the chart {tc,�x} this integral becomes

D(+)(tc, tc
′,�x −�x ′) =

iπω2

4

e−πk

(2π)3
(tctc

′)
3
2

∫

d3 p ei(�x−�x ′)·�p H
(1)
ik (−ptc)H

(1)
ik (−ptc

′)∗ (93)

and can be solved as,

D(+)(tc, tc
′,�x −�x′) =

im2

16π
e−πksech(πk) 2F1

(

3

2
+ ik,

3

2
− ik; 2; 1 +

y

4

)

, (94)

where the quantity

y(x, x′) =
(tc − tc

′ − iǫ)2 − (�x −�x ′)2

tctc
′ (95)

is related to the geodesic length between x and x′ (Birrel & Davies, 1982).

In general, G(x, x′) = G(t, t′,�x −�x ′) is a Green function of the Klein-Gordon equation if this
obeys

[

EKG(x)− m2
]

G(x, x′) = −e−3ωtδ4(x − x′) . (96)
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The properties of the commutator functions allow us to construct the Green function just as in
the scalar theory on Minkowski space-time. We assume that the retarded, DR, and advanced,
DA, Green functions read

DR(t, t′,�x −�x ′) = θ(t − t′)D(t, t′,�x −�x ′) , (97)

DA(t, t′,�x −�x ′) = − θ(t′ − t)D(t, t′,�x −�x ′) , (98)

while the Feynman propagator,

DF(t, t′,�x −�x ′) = i〈0|T[φ(x)φ†(x′)] |0〉
= θ(t − t′)D(+)(t, t′,�x −�x ′)− θ(t′ − t)D(−)(t, t′,�x −�x ′) , (99)

is defined as a causal Green function. It is not difficult to verify that all these functions satisfy
Eq. (96) if one uses the identity ∂2

t [θ(t) f (t)] = δ(t)∂t f (t), the artifice ∂t f (t − t′) = 1
2 (∂t −

∂t′ ) f (t − t′) and Eq. (92).

5. The Dirac field

The first solutions of the free Dirac equation in the moving chart with proper time and
spherical coordinates were derived in (Shishkin, 1991) and normalized in (Cotăescu et al.,
2006). We derived other solutions of this equation but in moving charts with Cartesian
coordinates where we considered the helicity basis in momentum representation (Cotăescu,
2002; Cotăescu & Crucean, 2008; Cotăescu, 2011b). These solutions are well-normalized,
satisfy the usual completeness relations and correspond to a unique vacuum state.

5.1 Spinor quantum mechanics

Let ψ be a Dirac free field of mass m, defined on the space domain D, and ψ = ψ+γ0 its
Dirac adjoint. The tetrad gauge invariant action of the Dirac field minimally coupled with the
gravitational field is

S [e, ψ] =
∫

d4x
√

g

{

i

2
[ψγα̂Dα̂ψ − (Dα̂ψ)γα̂ψ]− mψψ

}

(100)

where the Dirac matrices, γα̂, satisfy {γα̂, γβ̂} = 2ηα̂β̂. The covariant derivatives in
local frames, denoted simply by Dα̂, are given by Eq. (1) where we consider the spinor
representation ρs = ( 1

2 , 0)⊕ (0, 1
2 ) of the SL(2, C) group whose basis-generators in covariant

parametrization are Sα̂β̂ = i
4 [γα̂, γβ̂]. The operator of the Dirac equation EDψ = mψ, derived

from the action (100), reads ED = iγα̂Dα̂. In other respects, from the conservation of the
electric charge one deduces that when e0

i = 0 (i, j, ... = 1, 2, 3) the time-independent relativistic
scalar product of two spinors,

〈

ψ, ψ′〉 =
∫

D
d3x µ(x)ψ(x)γ0ψ′(x) . (101)

has the weight function µ =
√

g e0
0 .

Our theory of external symmetry offers us the framework we need to calculate the conserved
quantities predicted by the Noether theorem. Starting with the infinitesimal transformations
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of the one-parameter subgroup of S(M) generated by Xa, we find that there exists the
conserved current Θµ[Xa] which satisfies Θµ[Xa];µ = 0. For the action (100) this is

Θµ[Xa] = −T̃
µ ·
· ν kν

a +
1

4
ψ{γα̂, Sβ̂γ̂}ψ e

µ
α̂ Ωa β̂γ̂ (102)

where

T̃
µ ·
· ν =

i

2

[

ψγα̂e
µ
α̂ ∂νψ − (∂νψ)γα̂e

µ
α̂ ψ

]

(103)

is a notation for a part of the stress-energy tensor of the Dirac field. Finally, it is clear that the
corresponding conserved quantity is the real number (Cotăescu, 2002),

∫

D
d3x

√
g Θ0[Xa] =

1

2
[〈ψ, Xaψ〉+ 〈Xaψ, ψ〉] . (104)

We note that it is premature to interpret this formula as an expectation value or to speak about
Hermitian conjugation of the operators Xa with respect to the scalar product (101), before
specifying the boundary conditions on D. What is important here is that this result is useful
in quantization giving directly the one-particle operators of the quantum field theory.

On the de Sitter expanding universe we can chose the simple Cartesian gauge (18) of the chart
{t,�x} or the corresponding gauge (19) in the chart {tc,�x}. Then the Dirac operator takes the
forms

ED = −iωtc

(

γ0∂tc + γi∂i

)

+
3iω

2
γ0 = iγ0∂t + ie−ωtγi∂i +

3iω

2
γ0 (105)

and the weight function of the scalar product (101) reads

µ = (−ωtc)
−3 = e3ωt . (106)

This operator commutes with the isometry generators (26)-(29) whose spin parts are given
now by the matrices Sα̂β̂. Thus we obtained the NP of the Dirac theory.

The SP can be introduced transforming the Dirac field using the same operator (44) as in
the scalar case. In this picture the Dirac field becomes ψS(x) = W(x)ψ(x)W−1(x) while the
genuine orbital operators (49), (50) and H remain the same as in the scalar case. Moreover, we
obtain the free Dirac equation of the SP,

[

iγ0∂t + iγi∂i − m + iγ0ω

(

xi∂i +
3

2

)]

ψS(x) = 0 , (107)

and the new form of the relativistic scalar product,

〈

ψS, ψ′
S

〉

=
〈

ψ, ψ′〉 =
∫

D
d3x ψ̄S(x)γ0ψ′

S(x) , (108)

calculated according to Eqs. (101) and (44b). We observe that this is no longer dependent on√
g, having thus the same form as in special relativity.

5.2 Polarized plane wave solutions

In what follows we present the principal polarized plane wave solutions of the free Dirac
field minimally coupled to the de Sitter gravity. The polarization is described in the helicity
basis such that we have to speak about the momentum-helicity basis and the energy-halicity
one (Cotăescu, 2002; Cotăescu & Crucean, 2008). In addition, we derived the modes of the
momentum-spin basis (Cotăescu, 2011b) but these exceed the space of this paper.
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5.2.1 The momentum-helicity basis

The plane wave solutions of the Dirac equation with m �= 0 may be eigenspinors of the
momentum operators Pi corresponding to the eigenvalues pi. Therefore, we assume that,
in the standard representation of the Dirac matrices, with diagonal γ0 (Thaler, 1992), these
have the form

ψ
(+)
�p

=

(

f+(tc) α(�p)

g+(tc)
�σ · �p

p α(�p)

)

ei�p·�x , ψ
(−)
�p

=

(

g−(tc)
�σ · �p

p β(�p)

f−(tc) β(�p)

)

e−i�p·�x (109)

where σi denotes the Pauli matrices while α and β are arbitrary Pauli spinors depending on
�p. Replacing these spinors in the Dirac equation given by (105) and denoting µ = m

ω and

ν± = 1
2 ± iµ, we find equations of the form (161) whose solutions can be written in terms of

Hankel functions as

f+ = (− f−)∗ = c tc
2e

1
2 πµ H

(1)
ν− (−ptc) (110)

g+ = (−g−)∗ = c tc
2e−

1
2 πµ H

(1)
ν+ (−ptc) . (111)

The integration constant c will be calculated from the ortonormalization condition in the
momentum scale.

The plane wave solutions are determined up to the significance of the Pauli spinors α and
β. In general any pair of orthogonal spinors ξσ(�p) with polarizations σ = ±1/2 represents a
good basis in the space of α-spinors. According to the standard interpretation of the negative
frequency terms, the corresponding basis of the β-spinors is formed by the pair of orthogonal
spinors defined as ησ(�p) = iσ2[ξσ(�p)]∗. It remains to choose specific spinor bases, considering
supplementary physical assumptions. Here we choose the helicity basis which is formed by
the orthogonal Pauli spinors of helicity λ = ± 1

2 which satisfy the eigenvalues equations

�σ · �p ξλ(�p) = 2pλ ξλ(�p) , �σ · �p ηλ(�p) = −2pλ ηλ(�p) , (112)

and the orthonormalization condition ξ+λ (�p)ξλ′ (�p) = η+
λ (�p)ηλ′ (�p) = δλλ′ .

The desired particular solutions of the Dirac equation with m �= 0 result from our starting
formulas (109) where we insert the functions (110) and (111) and the spinors of the helicity
basis (112). It remains to calculate the normalization constant c with respect to the scalar
product (101) with the weight function (106). After a few manipulation, in the chart {t,�x}, it
turns out that the Dirac field can be expanded as

ψ(t,�x) = ψ(+)(t,�x) + ψ(−)(t,�x)

=
∫

d3 p ∑
λ

[

U�p,λ(x)a(�p, λ) + V�p,λ(x)b∗(�p, λ)
]

, (113)

in terms of the particle (a) and antiparticle (b) wave functions of the momentum
representation. The fundamental spinors of positive and negative frequencies with
momentum �p and helicity λ read (Cotăescu, 2002)

U�p,λ(t,�x) = iN

(

1
2 e

1
2 πµ H

(1)
ν− (qe−ωt) ξλ(�p)

λ e−
1
2 πµ H

(1)
ν+ (qe−ωt) ξλ(�p)

)

ei�p·�x−2ωt (114)

V�p,λ(t,�x) = iN

(

λ e−
1
2 πµ H

(2)
ν− (qe−ωt) ηλ(�p)

− 1
2 e

1
2 πµ H

(2)
ν+ (qe−ωt) ηλ(�p)

)

e−i�p·�x−2ωt , (115)
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where we introduced the new parameter q =
p
ω and

N =
1

(2π)3/2

√
πq . (116)

These solutions are the common eigenspinors of the complete set of commuting operators

{ED, �S2, Pi, W} obeying

Pi U�p,λ = pi U�p,λ , Pi V�p,λ = −pi V�p,λ , (117)

W U�p,λ = pλU�p,λ , W V�p,λ = −pλV�p,λ , (118)

where W = �J · �P = �S · �P is the helicity operator. For this reason we say that these spinors form
the momentum-helicity basis.

In other respects, according to Eqs. (160) and (162), it is not hard to verify that these spinors
are charge-conjugated to each other,

V�p,λ = (U�p,λ)
c = C(U�p,λ)

T , C = iγ2γ0 , (119)

satisfy the ortonormalization relations,

〈

U�p,λ, U�p ′ ,λ′
〉

=
〈

V�p,λ, V�p ′ ,λ′
〉

= δλλ′δ3(�p − �p ′) , (120)

〈

U�p,λ, V�p ′ ,λ′
〉

=
〈

V�p,λ, U�p ′ ,λ′
〉

= 0 , (121)

and represent a complete system of solutions in the sense that

∫

d3 p ∑
λ

[

U�p,λ(t,�x)U
+
�p,λ

(t,�x ′) + V�p,λ(t,�x)V
+
�p,λ

(t,�x ′)
]

= e−3ωtδ3(�x −�x ′) . (122)

Thus we can conclude that the separation of the positive and negative frequency modes
performed here is point-independent and corresponds to a stable vacuum state which is of
the Bunch-Davies type.

In the case of m = 0 (when µ = 0) it is convenient to consider the chiral representation of the
Dirac matrices (with diagonal γ5) and the chart {tc,�x}. We find that the fundamental solutions
in momentum-helicity basis of the left-handed massless Dirac field (Cotăescu, 2002),

U0
�p,λ(tc,�x) = lim

µ→0
PLU�p,λ(tc,�x) =

(−ωtc

2π

)3/2 (

( 1
2 − λ)ξλ(�p)

0

)

e−iptc+i�p·�x , (123)

V0
�p,λ(tc,�x) = lim

µ→0
PLV�p,λ(tc,�x) =

(−ωtc

2π

)3/2 (

( 1
2 + λ)ηλ(�p)

0

)

e iptc−i�p·�x , (124)

where PL = 1
2 (1− γ5) is the left-handed projection matrix. These solutions are non-vanishing

only for positive frequency and λ = − 1
2 or negative frequency and λ = 1

2 , as in the flat case
and, moreover, they have similar properties as in (119)-(118).
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5.2.2 The energy-helicity basis

The energy basis formed by eigenspinors of the energy operator, H, must be studied in the SP
where Eq. (107) can be solved in momentum representation (Cotăescu & Crucean, 2008). We
start assuming that the spinors of the SP may be expanded in terms of plane waves of positive
and negative frequencies as,

ψS(x) = ψ
(+)
S (x) + ψ

(−)
S (x)

=
∫ ∞

0
dE

∫

D̂
d3 p

[

ψ̂
(+)
S (E,�p) e−i(Et−�p·�x) + ψ̂

(−)
S (E,�p) ei(Et−�p·�x)

]

(125)

where ψ̂
(±)
S are spinors which behave as tempered distributions on the domain D̂ = R3

p such

that the Green theorem may be used. Then we can replace the momentum operators Pi
S by

their eigenvalues pi and the coordinate operators Xi
S by i∂pi obtaining the free Dirac equation

of the SP in momentum representation,

[

±Eγ0 ∓ γi pi − m − iγ0ω

(

pi∂pi +
3

2

)]

ψ̂
(±)
S (E,�p) = 0 , (126)

where E is the energy defined as the eigenvalue of HS. Denoting �p = p�n we observe that
the differential operator of Eq. (126) is of radial type and reads pi∂pi = p ∂p. Therefore, this
operator acts on the functions which depend on p while the functions which depend only on
the momentum direction�n behave as constants.

Following the method of section 4.2.2 we derive the fundamental solutions of the helicity basis
using the standard representation of the γ-matrices (with diagonal γ0) (Thaler, 1992). The
general solutions,

ψ̂
(+)
S (E,�p) = ∑

λ

uS(E,�p, λ) a(E,�n, λ) , (127)

ψ̂
(−)
S (E,�p) = ∑

λ

vS(E,�p, λ) b∗(E,�n, λ) , (128)

involve spinors of helicity λ = ± 1
2 and the particle and antiparticle wave functions, a and

respectively b, which play here the role of constants since they do not depend on p. According
to our previous results, the spinors of the momentum representation must have the form

uS(E,�p, λ) =

(

1
2 f

(+)
E (p) ξλ(�n)

λg
(+)
E (p) ξλ(�n)

)

, vS(E,�p, λ) =

(

λg
(−)
E (p) ηλ(�n)

− 1
2 f

(−)
E (p) ηλ(�n)

)

, (129)

where ξλ(�n) and ηλ(�n) = iσ2[ξλ(�n)]
∗ denote now the Pauli spinors of the helicity basis

introduced in section 5.2.1. (which depend only on the momentum direction�n). Furthermore,
we derive the radial functions solving the system

[

iω

(

p
d

dp
+

3

2

)

∓ (E − m)

]

f
(±)
E (p) = ∓p g

(±)
E (p) , (130)

[

iω

(

p
d

dp
+

3

2

)

∓ (E + m)

]

g
(±)
E (p) = ∓p f

(±)
E (p) , (131)
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resulted from Eq. (126). We find the solutions

f
(+)
E (p) = [− f

(−)
E (p)]∗ = Cp−1−iǫe

1
2 πµ H

(1)
ν− (

p
ω ) , (132)

g
(+)
E (p) = [−g

(−)
E (p)]∗ = Cp−1−iǫe−

1
2 πµ H

(1)
ν+ (

p
ω ) . (133)

The normalization constant C has to assure the normalization in the energy scale.

Collecting all the above results we can write down the final expression of the Dirac field (125)
in SP identifying the form of the fundamental spinors of given energy. Then we turn back to
the NP where the Dirac field,

ψ(x) = ψS(t, eωt
�x) =

∫ ∞

0
dE

∫

S2
dΩn ∑

λ

[

UE,�n,λ(t,�x)a(E,�n, λ) (134)

+VE,�n,λ(t,�x)b
∗(E,�n, λ)

]

, (135)

depends on the solutions written in NP,

UE,�n,λ(t,�x) = US
E,�n,λ(t, eωt

�x) , VE,�n,λ(t,�x) = VS
E,�n,λ(t, eωt

�x) . (136)

According to Eqs. (129), (132) and (133), we obtain the integral representations

UE,�n,λ(t,�x) = iN̂e−2ωt
∫ ∞

0
s ds

(

1
2 e

1
2 πµ H

(1)
ν− (se−ωt) ξλ(�n)

λ e−
1
2 πµ H

(1)
ν+ (se−ωt) ξλ(�n)

)

eiωs�n·�x−iǫ ln s , (137)

VE,�n,λ(t,�x) = iN̂e−2ωt
∫ ∞

0
s ds

(

λ e−
1
2 πµ H

(2)
ν− (se−ωt) ηλ(�n)

− 1
2 e

1
2 πµ H

(2)
ν+ (se−ωt) ηλ(�n)

)

e−iωs�n·�x+iǫ ln s , (138)

where we denote the dimensionless integration variable by s =
p
ω eωt and take

N̂ =
1

(2π)3/2

ω√
2

. (139)

We derived thus the fundamental spinor solutions of positive and, respectively, negative
frequencies, with energy E, momentum direction �n and helicity λ. These spinors are
charge-conjugated to each other,

VE,�n,λ = (UE,�n,λ)
c = C(UE,�n,λ)

T , C = iγ2γ0 , (140)

and satisfy the orthonormalization relations

〈

UE,�n,λ, UE,�n ′ ,λ′
〉

=
〈

VE,�n,λ, VE,�n ′ ,λ′
〉

= δλλ′δ(E − E′) δ2(�n −�n ′) , (141)
〈

UE,�n,λ, VE,�n ′ ,λ′
〉

=
〈

VE,�n,λ, UE,�n ′ ,λ′
〉

= 0 . (142)

deduced as in the Appendix B. Moreover, the completeness relation

∫ ∞

0
dE

∫

S2
dΩn ∑

λ

{

UE,�n,λ(t,�x)[UE,�n,λ(t,�x
′)]+

+VE,�n,λ(t,�x)[VE,�n,λ(t,�x
′)]+

}

= e−3ωtδ3(�x −�x ′) , (143)
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indicates that this system of solutions is complete. We say that this represents the
energy-helicity basis.

Finally, we derive the transition coefficients transforming the momentum-helicity and the
energy-helicity bases among themselves. After a few manipulation we find that these
coefficients,

〈

U�p,λ, UE,�n,λ′
〉

=
〈

V�p,λ, VE,�n,λ′
〉∗

= δλλ′
p−

3
2√

2πω
δ2(�n −�np) e−i E

ω ln
p
ω , (144)

〈

U�p,λ, VE,�n,λ′
〉

=
〈

V�p,λ, UE,�n,λ′
〉

= 0 , (145)

are similar to those of the scalar modes (70). Therefore, the particle wave functions a(�p, λ) and
a(E,�n, λ) are related among themselves by similar unitary transformations as (71) and (72) but
conserving, in addition, the helicity. These transformations preserve the vacuum state since
the antiparticle wave functions have the same properties and the particle and antiparticle
Hilbert spaces remain orthogonal to each other, as it results from Eq. (145).

5.3 Quantization and propagators

The quantization of the Dirac field can be done easily in the helicity bases as well as in the spin
one. We assume that the wave functions of the momentum-helicity basis, a(�p, λ) and b(�p, λ),
become field operators (so that b∗ → b†) satisfying the standard anticommutation relations
from which the non-vanishing ones are

{a(�p, λ), a†(�p ′, λ′)} = {b(�p, λ), b†(�p ′, λ′)} = δλλ′δ3(�p − �p ′) . (146)

The corresponding anticommutation rules of the energy-helicity basis are

{a(E,�n, λ), a†(E′,�n ′, λ′)} = {b(E,�n, λ), b†(E′,�n ′, λ′)}
= δλ,λ′δ(E − E′)δ2(�n −�n ′) . (147)

We say that this quantization is canonical since the equal-time anticommutator takes the
standard form (Drell & Bjorken, 1965)

{ψ(t,�x), ψ(t,�x ′)} = e−3ωtγ0δ3(�x −�x ′) , (148)

as it results from Eq. (122). In addition, we know that the mode separation we use defines a
stable vacuum state. Therefore, we have to construct the Fock space canonically, applying the
creation operators upon the unique vacuum state |0〉.
The one-particle operators corresponding to the isometry generators can be calculated as in
the scalar case using the definition X =: 〈ψ, Xψ〉 :. The operators which do not come from
differential operators have to be defined directly giving their mode expansions (Cotăescu,
2002). It is remarkable that all these operators have similar properties to those of the
scalar field presented here or of the vector fields studied in (Cotăescu, 2010; Cotăescu &
Crucean, 2010). The most interesting result is the expansion of the energy operator in the
momentum-helicity basis where we may use the identity

H U�p,λ(t,�x) = −iω

(

pi∂pi +
3

2

)

U�p,λ(t,�x) , (149)
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and the similar one for V�p,λ, leading to the expansion

H =
iω

2

∫

d3 p pi ∑
λ

[

a†(�p, λ)
↔
∂ pi a(�p, λ) + b†(�p, λ)

↔
∂ pi b(�p, λ)

]

(150)

which depend on the phase factors of the field operators as in the scalar or vector cases.

The Green functions can be expressed in terms of anticommutator functions,

S(±)(t, t′,�x −�x ′) = i{ψ(±)(t,�x), ψ
(±)

(t′,�x ′)} , (151)

and S = S(+) + S(−) which can be written as mode integrals that can be analytically solved
(Kosma & Prokopec, 2009). These functions are solutions of the Dirac equation in both their
sets of coordinates and helped us to write down the Feynman propagator,

SF(t, t′,�x −�x ′) = i 〈0| T[ψ(x)ψ(x′)] |0〉
= θ(t − t′)S(+)(t, t′,�x −�x ′)− θ(t′ − t)S(−)(t, t′,�x −�x ′) , (152)

and the retarded and advanced Green functions SR(t, t′,�x −�x ′) = θ(t − t′)S(t, t′,�x −�x ′) and
respectively SA(t, t′,�x −�x ′) = −θ(t′ − t)S(t, t′,�x −�x ′), which satisfy the specific equation,

[ED(x)− m]SF(t, t′,�x −�x ′) = −e−3ωtδ4(x − x′) , (153)

of the spinor Green functions on the de Sitter space-time (Cotăescu, 2002).

6. Concluding remarks

We presented here the complete quantum theory of the massive scalar and Dirac free fields
minimally coupled to the gravity of the de Sitter expanding universe. Applying similar
methods we succeeded to accomplish the theory of the Proca (Cotăescu, 2010) and Maxwell
(Cotăescu & Crucean, 2010) fields on this background. The main points of our approach are
the theory of external symmetry (Cotăescu, 2000; 2009) that provides us with the conserved
operators of the fields with any spin and the Schrödinger time-evolution picture (Cotăescu,
2007) allowing us to derive new sets of fundamental solutions.

The wave functions defining quantum modes are solutions of the field equations and common
eigenfunctions of suitable systems of commuting operators which represent conserved
observables globally defined on the de Sitter manifold. All these observables form the global
apparatus which prepares global quantum modes as it seems to be natural as long as the field
equations are global too. In this manner, we obtain wave functions correctly normalized on
the whole background such that the Hilbert spaces of the particle and respectively antiparticle
states remain orthogonal to each other in any frame, assuring thus the stability of a vacuum
state which is of the bunch-Davies type (Bunch & Davies, 1978).

The new energy bases introduced here completes the framework of the de Sitter quantum
theory, being crucial for understanding how the energy and momentum can be measured
simultaneously. We may convince that considering the simple example of a Klein-Gordon
particle in the state

|χ〉 =
∫

d3 p χ(�p)a†(p)|0〉 , χ(�p) = ρ(�p)e−iϑ(�p) , (154)
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determined by the functions ρ, θ : R3
p → R. The normalization condition

1 = 〈χ|χ〉 =
∫

d3 p |χ(�p)|2 =
∫

d3 p |ρ(�p)|2 (155)

shows that the function ρ must be square integrable on R3
p while θ remains an arbitrary real

function. Furthermore, according to Eqs. (81) and (86), we derive the expectation values of
the non-commuting operators P i and H,

〈χ|P i|χ〉 =
∫

d3 p pi |ρ(�p)|2 , 〈χ|H|χ〉 = ω
∫

d3 p [pi∂pi ϑ(�p)] |ρ(�p)|2 . (156)

The expectation values of the momentum operators are independent on the phase θ while that
the energy operator depends mainly on it. This means that we can prepare at anytime states
with arbitrary desired expectation values of both these observables. Thus, in the particular
case of θ(�p) = ǫ ln(p) we obtain 〈χ|H|χ〉 = ωǫ = E indifferent on the form of ρ if this obeys
the condition (155). In other respects, we observe that the dispersion of the energy operator in
this particular state,

dispH = 〈χ|H2|χ〉 − 〈χ|H|χ〉2 = ω2
∫

d3 p |pi∂pi ρ(�p)|2 − 9
4 ω2 , (157)

depends only on the momentum statistics given by the function ρ. Thus we can say that we
meet a new quantum mechanics on the de Sitter expanding universe.

We conclude that our approach seems to be coherent at the level of the relativistic
quantum mechanics where the conserved observables of different time-evolution pictures
are correctly defined allowing us to derive complete sets of quantum modes. Consequently,
the second quantization can be performed in canonical manner leading to quantum free
fields, one-particle operators and Green functions with similar properties to those of special
relativity. Under such circumstances, we believe that we constructed the appropriate
framework for studying quantum effects of interacting fields on the de Sitter background.
Assuming that the quantum transitions are measured by the same global apparatus which
prepares the free quantum states we may use the perturbation theory for deriving transition
amplitudes as in the flat case.

Finally we specify that our attempt to use quantum modes globally defined does not
contradict the general concept of local measurements (Birrel & Davies, 1982) which is the
only possible option when the isometries (or other symmetries) are absent and, consequently,
the global apparatus does not work.

7. Appendix

Appendix A: Some properties of Hankel functions

Let us consider the functions Zk depending on the Hankel functions H
(1,2)
ν (z) (Abramowitz &

Stegun, 1964) as

Zk(z) = e−πk/2H
(1)
ik (z) , Z∗

k (z) = eπk/2H
(2)
ik (z) . (158)

where z, k ∈ R. Then, using the Wronskian W of the Bessel functions we find that

Z∗
k (z)

↔
∂z Zk(z) = W[H

(2)
ik , H

(1)
ik ](z) =

4i

πz
. (159)
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A special case is of the Hankel functions H
(1,2)
ν± (z) of indices ν± = 1

2 ± ik where z, k ∈ R. These
are related among themselves through

[H
(1,2)
ν± (z)]∗ = H

(2,1)
ν∓ (z) , (160)

satisfy the equations

(

d

dz
+

ν±
z

)

H
(1)
ν± (z) = ie±πk H

(1)
ν∓ (z) ,

(

d

dz
+

ν±
z

)

H
(2)
ν± (z) = −ie∓πk H

(2)
ν∓ (z) (161)

and the identities

e±πk H
(1)
ν∓ (z)H

(2)
ν± (z) + e∓πk H

(1)
ν± (z)H

(2)
ν∓ (z) =

4

πz
. (162)

Appendix B: Normalization integrals

In spherical coordinates of the momentum space, �n ∼ (θn, φn), and the notation �q = ωs�n, we
have d3q = q2dq dΩn = ω3 s2ds dΩn with dΩn = d(cos θn)dφn. Moreover, we can write

δ3(�q −�q ′) =
1

q2
δ(q − q′)δ2(�n −�n′) =

1

ω3s2
δ(s − s′)δ2(�n −�n′) , (163)

where we denoted δ2(�n −�n′) = δ(cos θn − cos θ′n)δ(φn − φ′
n) .

The normalization integrals can be calculated according to Eqs. (66) and (163), that yield

〈 fE,�n, fE′ ,�n ′ 〉 = i
N2(2π)3

ω3
δ2(�n −�n ′)

∫ ∞

0

ds

s
ei(ǫ−ǫ′) ln s

[

Z∗
k (s e−ωt)

↔
∂t Zk(s e−ωt)

]

. (164)

The final result has to be obtained using Eq. (159) and the representation

1

2πω

∫ ∞

0

ds

s
e

i
ω (E−E′) ln s = δ(E − E′) . (165)
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