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1. Introduction

Throughout these centuries, the origin of life is an intriguing question that still remains
unanswerable (Nadeau & Subramaniam, 2011). Moreover, the growth and evolution of each
living species in nature is governed by a life code, an acronym widely famous as DNA that
means deoxyribonucleic acid (Rittscher, 2010). With a function of organic acid, the great
DNA action consists into the organization and regulation of the genetic informations, which
are simply so-called as genes (Gréaslund et al, 2010). Thus, due to the immensity of genes to
be taken into account, the DNA composition transformed it into a large olygomer formed by
nucleotide subunits (Jung & Marx, 2005), and therefore DNA is considered one of the largest
macromolecules ever known. Within the cellular environment, the DNA is organized into
some very long structures so-named chromosomes, which are duplicated through the cell
division process.

In the view of the recent history, however, in fact DNA is considered the cornerstone of the
biological science, and therefore the appealing to investigate its structure was always an
exciting task. Briefly, in 1868 the physicist Miescher (Dahm, 2008) has proposed the first
DNA evidences. After that, precisely in 1878, the nucleic acid was isolated as primary
nucleobases by Kossel (Jones, 1953). However, only in the beginning of the last century that
these nucleobases were understood as being formed by phosphate groups linked by ester
bonds of the 2-deoxyribose (see Fig. 1). Some time later, the discovering of the X-ray
diffraction by Rontgen (Frankel, 1996) has aided Astbury (Astbury, 1947) to conclude that
DNA had a regular structure. Furthermore, it was by the X-ray diffraction studies of
Franklin and Gosling (Franklin & Gosling, 1953), in 1952, that Watson and Crick (Watson &
Crick, 1953) informed the most modern structure of DNA as a double-helix form (Watson,
1980).

The DNA double-helix is stabilized by means of hydrogen bonds between nucleotides as
well as stacking interactions among the aromatic nucleobases widely known as adenine (A),
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Fig. 1. Representation of the DNA structure.

cytosine (C), guanine (G) and thymine (T), which are tied to ester/phospate. In this context,
it is widely established that these two types of base pairs form different hydrogen bonds. In
other words, A and T form two hydrogen bonds N-H O and N --‘H-N, whereas G and C
form three hydrogen bonds O --‘H-N, N-H N, and N-H O, as can be seen in the Fig. 2.
On the other hand, the stability of the DNA is also ruled by the interactions formed by G
and C, which are recognized as intra-strand base type of stacking.
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Fig. 2. Illustration of the hydrogen bonds between nucleotides.
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The biological science is well-known as one of the most interdisciplinary areas due to the
large number of molecular processes occurring simultaneously within the living organisms
(Cech & Rubin, 2004), in particular those related to the DNA functionality. Until nowadays,
however, the discovery of the DNA structure is seen as one of the most important scientific
conquests of all time. It was by this bioscientific scenery that an immense variety of contexts
were grouped to congregate one unique idea: molecular recognition and its biochemical
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functionality (Igbal et al, 2000; Laskowski, 1996). According to Hitaro (Hitaro, 2002), the
biological understanding is closely related to the examination of structure and dynamics of
the cellular functions in a cooperative way, not in isolated parts of the own organism. In
corroborating to this, as a guide Stahl et al (Stahl et al, 2010) affirm that the molecular
recognition is stated whether an attractive interaction provoked by the approaching of two
molecules, which possess at least a slight difference of electronegativity between them. So,
we would like to emphasize that a careful attention to the knowledge about the profile of
the interaction types seems to be necessary.

Some time ago, a historical review signed by Martin and Derewenda put in proof a ransom
of the concepts related to the hydrogen bonding (Martin & Derewenda, 1999). It was quoted
some important researchers in this regard, such as Linski, Orgel, Nernst, Werner, and finally
Lewis, that is considered one of the pioneers of the contemporary chemistry at work with
systems formed via hydrogen bonds. However, Latimer and Rodebush have published the
first report about hydrogen bond investigations in aqueous medium. Well, Astbury
suggested a structure to the alfa-queratine caused by interactions of the NH and CO groups
on the peptide bonds. Pauling and Mirsky revisited the protein structure and emphasized
that peptide bonds were formed through the hydrogen bonds between the oxygen and
peptide nitrogen. In meanwhile, Huggins has carefully analyzed the results reported by
Astbury (Astbury, 1947), and noted that the amide hydrogen to behave out of the plane
unless molecular resonance effects were enhanced, so that the single pair of electrons of
nitrogen was also in the peptide chain.

Nevertheless, the theory cyclol of proteins in the peptide chain advocated by Wrinch have
the form -C(OH) --'N instead of -(CO)-(NH)-, as it was known. In theory, no classical
hydrogen bond could be formed. Thus, Pauling was quick to recognize the flaws in your
publishing model in July 1939, in which he emphasized the planarity of the peptide bond.
Pauling published his article weeks before the Nazis invaded Poland on September 1.
However, the same year Pauling also released his classic book “The Nature of the Chemical
Bond’, who was one of the leading spokesmen for the dissemination and development of
the history of chemical bond and hydrogen bond, so far. After several years of insights
and discussions, Pauling affirmed in its theories that hydrogen bonds (Y --‘H) are formed
by electronegative differences between proton donors (H) and their acceptor ones (Y), as
already mentioned (Pauling, 1939). However, Pimentel and McClellan did not agree with
this electronegative criterion, and they stated that hydrogen bonds can exist if the
hydrogen is bound to any other atom (Pimentel & McClellan, 1960). Some years later,
theoreticians established some physical conditions in order to unveil the nature of the
hydrogen bond. For instance, when the electrostatic attractive is the dominant
phenomenon undoubtedly the intermolecular system is stabilized by means of hydrogen
bonds (Umeyama & Morokuma, 1977). In opposition to this, van der Waals systems are
widely known as weakly bound because the London dispersion forces are the main
contributions (Cukras & Sadlej, 2008).

Traditionally, besides oxygen, but fluorine and nitrogen are the most known proton
acceptors in systems stabilized at light of the H--'F and H--'N hydrogen bonds. However,
the proton character is a quite accepted parameter, and thereby, the hydrogen bond model
leads to X-H*---Y-5, It can be perceived a charge separation interpreted as charge
transference between HOMO and LUMO orbitals of the proton donor and acceptor,
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respectively. With this in mind, it was established that other proton acceptor types can be
useful, such as the unsaturated hydrocarbon centers, by which the X-H*?-- 1% hydrogen
bonds emerged with great evidence. In this scenery, it become stated that a single element is
not answerable for the formation of the hydrogen bond, but ideally the cornerstone of this
interaction is site with high electronic density, which at this time is assumed as formed by
electronegative elements or unsaturated bonds. The magnificence of the 1 centers becomes
reliable upon the formation of the r-5 - - 1% sandwich stacking, whose profile is known as one
of the weakest interaction with strength in range of 1-3 kcal/mol, being considered then as
London’s dispersion forces beyond the van der Waals contacts often devoted to weak
hydrogen bonds.

The interpretation and forward comprehension of all kind of events and phenomena
inherent to the DN'A environment is not an easy task (Sponer et al, 2001-2002), but in recent
years the applicability of the chemical methods, physical theories and spectroscopy analyses
have been decisive in accurate investigations of the biological systems (Shogren-Knaak et al,
2001). On the other hand, this has yielded intense debates among the expert theoreticians,
and a lot of computational approaches have been implemented with the purpose to
decompose the total energy into the following terms: electrostatic, dispersion, charge
transfer, polarizability, and exchange potential (Umeyama & Morokuma, 1977). Surely,
other interaction types also occur, such as dihydrogen bonds, halogen bonds or stacking, but
in practice the most important is the availability of appropriated methodologies to the
examination of all properties of these interactions. In general, this requirement is displayed
on the basis of theoretical calculations, such as those from ab initio, semi-empirical or DFT
nature, where all of them are always implemented to seek and find the deeper potential
energy surface.

On the other hand, a long time the scientific community would felt a necessity of a
theoretical method by which the chemical bond content could be elucidated in its essence.
Indeed, this theoretical method has emerged 40 years ago due to an insight of Bader based
in catching information computed directly from the electronic density. Baptized as
Quantum Theory of Atoms in Molecules (QTAIM) (Bader, 1990), this method models all
points of molecular surface through the integration of the electronic density by taking into
account the formalism of quantum mechanics for subspace. Thus, the principle adopted by
Bader was purely based in quantum mechanics, but with the purpose to describe the atomic
behaviour within the molecular environment. By revisiting the trajectory of the QTAIM
development, Bader simply took into account the atomistic cooperative activity, by which
atoms were defined in a molecule as open systems able to exchange charge and momentum
with their neighbours.

The QTAIM benchmark is treat confined systems by means of boundary conditions, in
which the molecular or atomic surfaces and their shapes are enable to transfer momentum.

Vp(r).n(r) = 0 for all points on surface S(Q) 1)

In a recent chapter, Bader (Bader, 2009) has discussed that proper open system are defined
by equation of motion for an observable G as follows:

(g) {(i/fl) f V*[A, Glypdr + cc} = (%) {jg ds(2,m)j;(r).n(r) + cc} 2)
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Where the expressions for J(r) and its property density p¢(r) are given by:

1) = (5 ) ¥ [ dry R (ECI) ~ T (G@m)) )

2mi

oo = (5){[ arv Gow) —w (Gw)} @

The great goal here is transform each property into a particle density in a real space in
according to the operation of [ dz, which sums the spins over all coordinates denoted by r in
a surface space indicated by Q. If we take into account that Schrodinger and Heisenberg's
equations define the changes on state function and how these changes affect an average
value of an observable. In this context, one of the most appropriated procedures to obtain a
great relationship concerned to the observable, energy (E) for instance, is dedicated to the
Ehrenfest’s theorem, by which the time rate of change of the average values of an electronic
position f and momentum p = iAV yields the following relation:

A

<p>
dt

d =< VI =< F@r) > ()

F means a force exerted on an electron at position £ by an average distribution of the
remains electrons as well as by a nuclear framing yielding the force exerted on the electron
density. In a real surface space, this kind of force is computed as:

F= f f dr {y* (-0} = f drF(r) = —f dS(Q,)a(r).n(r) ©
Q 0}

In this equation, the momentum of flux density of the QTAIM is distinguished by the stress
tensor a'(r) , whose physical nature indicates a dimension of energy density.

2

g(r) = ( ){w*voﬁm + V(WYY — VP 7y — Ty} )

4m

The stress tensor 6(r) is defined through the derivation of the Newton’s equation of motion
(Bader, 1991):

d*<F> 8
mT=<F(r) ()

The Lagrangian formalism should be used to account the kinetic (K) and potential (U)
energies, what results in the next equation:

L= mqu —U(q) 9)
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To set out the QTAIM formalism, it was used the principle of least action for particle motion
in subspace conditions. Well, the principle of least action states that a quantity (q) derived
from wave function is minimized in space and time (t; and t2) and the atomic surface of a
open system is modelled as a zero-flux surface, by which the time variations in end points is
zero (see Fig. 3), as well as the surface also is zero in the extreme of functions, what can be
summarized as:

2(foL. d /0L
SW., ()=f ———(—.) Sqdt = 0 (10)

12 q " 1<aq dt aq q

q

L -
q,] 54

i 50
q,
4 —t
(t1+5) t ty (t+5t)

Fig. 3. Description of the principle of least action.

In this equation, L symbolizes the Lagrangian defined by the kinetic (K) and potential (U)
energies. In surface, W12 vanishes according to the Euler-Lagrange equation, and therefore,
the Schrodinger’s equation for normalized wave function can be determined as:

AY —EY =0HY* —EY* = (11)
with H = — %Vz + U. In terms of quantum mechanics, the Lagrangian of the state functions is
defined as: L(¥, VW, ‘{'J,t). In regards to the first-order variation in W, it can be obtained the

Schrodinger’s equation if (Z—T) = HY as the Euler-Lagrange equation W(q,t) dependent of
time. In this context, by solving the Schrodinger’s equation HW = EW on the basis of the
classical Hamilton-Jacobi equation for a stationary state reduces the quantum Lagrangian to
J(y, Vy) in order to minimize the total energy. If the wavefunction is normalized, an
undetermined multiplier in J(y, V) is executed, thereby a new functional G(y, Vy ) is
obtained. Moreover, it should be pointed out that G(y, V) and L(¥, V¥, W,t) are functional
2
of Vy and VW whose kinetic energy are respectively given as follows: + (:—m) <VP.vY >
and — (%) < YV2Y >, Thus, it can be stated the difference between two forms of kinetic

energy as proportional to the Laplacian (L) of the electronic density:

h? h2 h2
—c=1 — (Ve _ () pur vw = — (2= 12
K-G=L <2m>lp vy <2m) Vy*. VY = <4m) 72p (12)

Ruled by the Gauss’s surface theorem over a spatial region S(€2):

www.intechopen.com



Hydrogen Bonds and Stacking Interactions on the

DNA Structure: A Topological View of Quantum Computing 159
h2
K—G=-— (—)f VZpdr (13)
4m) ),
hZ
K—G=-— <—> jﬂ ds(Q) Vp(r).n (14)
4m

where K(Q) and G(Q) represent the kinetic energy densities, which are equivalent to the
Laplacian of the charge density, V2p,. If the surface S(Q) is one of zero-flux at any point r
where n is a normal vector, K(Q2) = G(€2) and becomes established the equation (1), whose
meaning defines the surface by which the atom is delimited as zero-flux of charge density
(Fig. 4). In other words, the value of the first electronic density derivative is zero, whereas
the second derivatives go to a minimum or maximum of charge concentration.

Fig. 4. Topology with representation of the zero-flux surface.

The relationship between surface conditions and high and low electronic density sites is
ruled by the virial theorem. By assuming the contributions of the kinetic and potential
energies, elevated and depressive charge density regions are modelled by the positive
(kinetic energy density G is positive) and negative (electronic potential energy density U is
negative) Laplacian values, as demonstrated by the equation (16):

264U = L v2p(r) (15)
~ \4m p
R o2 16)
U=<m>v p(r) — 2G (

2
with G = zh—N [Vy * Vydt, in which G is the gradient kinetic energy density and W is an
m

antisymmetric many-electron wavefunction (Matta & Boyd, 2007). By the action of the
kinetic (G) and potential (U) energy operators, QTAIM identifies maximum and minimum
of electronic density in the molecular surface and the chemical bonds are classified as
closed-shell whether V2p) > 0 or shared interactions when V2py) < 0. As aforesaid, the
negative Laplacian indicates high concentration of charge density (uphill) whereas depletion
of charge density is motivated by the positive Laplacian (downhill). The Laplacian V2p is
defined by the sum of the eigenvalues of the Hessian Matrix H (V2pr) = A1 + A2 + A3) (see
Equations 17), whereas the electronic density p(y is described as a set of critical points, such
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as Cage Critical Points (CCP), Ring Critical Points (RCP), Bond Critical Points (BCP), and
Nuclear Attractor (NA).

2 2 2
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All these critical points are specific, and their internal formalisms are ruled either by the
sum of the eigenvalues signs (A1 + A2 + A3) as well as by the number of non-zero eigenvalues.
Therefore, it is obtained a coordinate pair (r, s), which can be used to classify the critical
points above cited. For instance, the coordinates of CCP, RCP, BCP, and NA are (3,+3),
(3,+1), (3-1), and (3,-3). As explained above, r is a coordinate where a normal vector is
aligned perpendicularly to molecular surface, but now r is interpreted as an intermediary
point wherein two gradient paths of electronic density emerge from two bonded nuclei.
Actually, this analysis is routinely applied in many investigations, in particular the
application in systems formed by hydrogen bonds must be worthwhile. As widely
established, these arguments have been also applied successfully to study m-systems
(Oliveira & Aratjo, 2011) and hydrogen-bonded complexes (Oliveira et al, 2009). As such, it
can be seen critical points as extremes of electronic density, that is, maximum or minimum
in each particular case. For instance, the BCP coordinates (3,-1) implies that the
tridimensional (x, y, z) electronic density is extreme, whereas -1 is the summed result of two
maximum (two -1 signs) and one minimum (one +1 sign) of electronic density. By the nature
of the m--‘H hydrogen bonds, the proton donor is aligned perpendicularly to the 1 cloud,
but in regards to QTAIM critical points, the BCP (3,-1) between the carbon atoms above
mentioned is the attractor for the bond path linking the hydrogen to the C=C, C=C, and C-C
bonds. In this context, the coordinate (3,-1) is considered an able QTAIM source to accept
protons along the CC bonds.

One of the most usual types of interactions existing in DNA structure is the hydrogen bond.
As already mentioned, the formation of a hydrogen bond claims by one center with high
electronic density, such as those containing lone electron pairs. In this context, a lot of
proton acceptors possessing great electronic density have been exhaustively examined, e.g.,
hydrogen peroxides (HP). The great insight to investigate the capability of hydrogen
peroxide in genetic environment is due to its presence in human blood as a metabolic
bioproduct. It is widely reported the formation of several interaction complexes at the DNA
level, of which the adenine base is one of the most used in this regard. Thus, the work
elaborated by Dobado and Molina (Dobado & Molina, 1999) display great informations
about the formation of hydrogen complexes on the DNA structure, in particular those
composed by adenine and HP. As depicted in Fig. 5, there are multiple hydrogen bonds
formed, in general, they are mutual once HP is functioning either as proton acceptor or
proton donor, and due to this it is not easy to estimate the real strengths of these hydrogen
bonds. From the structural point of view, the values of the hydrogen bond distances vary
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Fig. 5. The adenine -- hydrogen peroxide complexes

between 1.8 A and 2.1 A. In terms of the QTAIM approach, by the topological contour plots
of these geometries illustrated in the Fig. 6 became reliable to put in discussion the
hydrogen bond profiles between adenine ---HP.

Fig. 6. V2p) contour maps for the hydrogen bonds.
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As can be seen, the structural nature of the hydrogen bond within these complexes is justly
cyclic once two intermolecular BCP were located adenine and HP. According to QTAIM
virial theorem of electronic energy, these BCP above mentioned are the source to obtain the
Laplacian and electronic density quantities. It can be observed that the N-H--O
(adenine --'HP) and O-H --'N (HP ‘- adenine) hydrogen bonds were characterized not only in
terms of the positive values of Laplacian fields and low amounts of electronic density, but
also by the location of the RCP, what leads to the identification of large cyclic structures
formed by seven or up to eight members. However, the charge concentration measurement
on the RCP is valid to debate the hydrogen bond strength. As such, it was computed the
higher p) value of 0.04 e/a,? for O-H N, whereas it was found 0.025 e/a,? for N-H--O. In
spite of this, the V2p() values of 0.1 e/a,5 and 0.06 e/a5 also indicate that O-H --'N is a pure
closed-shell interaction albeit N-H - -O cannot be one a typical one. In other words, the
hydrogen bond is formed when HP is the strongest proton acceptor, what in this sense
could be concluded that HP is a Lewis’s base.

The formation of hydrogen bond is a quite diversified event and not occurs uniquely by
means of independent species or isolated monomers, but also within the same structure
whether the acceptor and donor of protons are located in appropriated molecular sites.
This type of interaction is recognized as intramolecular, and its functionality on the DNA
structure has been well examined. In this context, Hocquet (Hocquet, 2001) provided an
explanation to the different conformations C3’-endo/anti and C2-endo/anti of the
deoxyribonucleosides, namely as 2’-deoxycytidine (dC), 2’-deoxythymidine (dT), 2’-
deoxyadenosine (dA), and 2’-deoxyguanosine (dG) pictured in the Fig. 7 due to the
formation of intramolecular hydrogen bonds between the purine base and the sugar

group.

Hg s 5
OH — NH T/j\f
0 /fe
2
& 0
HO
3,
2'-deoxycytidine (dC) 2'-deoxythymidine (dT)
Hg
OH e >:|'~.| OH
o £ NH, ©
&
. NH
N N a0 3N e 1
S N )
Ho x HO g
NH»
2'-deoxyadenosine (dA) 2'-deoxyguanosine (dG)

Fig. 7. Chemical structure and atom numbering of the four 2’-deoxyribonucleosides.
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Fig. 8. Geometry optimized structures of 2’-deoxycytidine (dC) and the molecular graph
showing all BCP and RCP.

The QTAIM calculations used to examine the conformations of these deoxyribonucleosides
revealed the existence of BPs and an intermediate BCP along them. In according to the
molecular graph (see Fig. 8), it is quoted the formation of the O5 --‘H6, O5 :-H2" and
02:-H1" in C2’-endo/anti, whereas O5" --‘H6 and O4’ --‘H6 interactions in C3’-endo/anti. In
comparison with other traditional works, the values of the electronic density and Laplacian
correspond to median hydrogen bond strength, although it should be mentioned that low
pw values followed by positive V2p(y provide a closed-shell interaction. In this scenery, we
would like to say that the proton donor feature of H6 diminish as follows dT > dC > dA >
dG. Nevertheless, it was demonstrated that dT shows higher electronic density in
comparison to the remaining deoxyribonucleosides. In exception, the C2’-endo/anti
conformation of dC presents an O5--‘H6 hydrogen bond weak, but in other hand, the C3’-
endo/anti conformation has a normal electronic density value but its Laplacian is very high,
what signify the existence of closed-shell interaction.

Subramanian et al (Parthasarathi et al, 2004) have used QTAIM topological parameters, such
as electronic densities, Laplacian shapes, and chemical descriptors to investigate the
formation of DNA base pairs and which hydrogen bond profiles are formed among them. In
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Fig. 9 is illustrated the bond paths, BCPs as red dots, and RCPs as yellow dots of the
Guanine --Cytosine Watson and Crick (GCWC) and 2amino-Adenine--Thymine
(2aminoAT) DNA complexes, which are formed by means of three stable hydrogen bonds.
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Fig. 9. Molecular graphs of DNA bases.

Initially, the QTAIM protocol indicates the existence of the hydrogen bonds N-H--O and
N-H N in conformity with their positive Laplacian values accompanied by low electronic
density accounts, meaning the existence of a closed-shell interaction between these DNA
entities. So, if we take into account the Koch and Popelier's criteria to ensure the
characteristics of hydrogen bonds (Koch & Popelier, 1995), the alterations on the charge
density of the proton donors are one of the most drastic events occurred after complexation.
Of course that the QTAIM topological parameters are used in this insight, such as the
appropriated values of electronic density and Laplacian values at the BCP, or even the
mutual penetration between proton donors and acceptors.

Furthermore, one of the most important analyses in structures stabilized via hydrogen
bonds is the measurement of its interaction strength, which can be obtained through the
topological descriptors, e.g., electronic density, Laplacian, and electronic density energy,
these in association with molecular parameters, such as interactions energies, structural
distances, and vibrational stretching frequencies. In fact, these relationships have been very
useful in studies of hydrogen-bonded complexes, but it was also used to investigate the
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interaction strength between the DNA base pairs. Well, in Fig. 10 is plotted a relationship
between the interaction energies and the electronic densities computed in each
intermolecular BCP not only in regards to GCWC and 2aminoAT, but other DNA types are
also included in this analysis, of which we can cite Cytosine--Cytosine (CC), two
Thymine ‘- Thymine configurations (ITT1 and TT2), two Adenine--*‘Adenine configurations
(AA1 and AA2), as well as other ones.
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Fig. 10. Relationship between the interaction energy and total p() of the DNA base pairs.

Through the correlation coefficient value of 0.859 can be perceived a good and linear
relationship between the electronic density in the range of 0.030 and 0.055 e/a,® and the
interaction energy between 9-15 kcal/mol. It can be seen that DNA pairing bases
stabilized by three hydrogen bonds are most strongly bound, once the electronic densities
of these systems are more than 0.05 e/a,3, and thereby they are not placed in the linear
region. Notably, it is by the fact that the supermolecule approach is not accurate for
determining the interaction energy in systems formed by three hydrogen bonds or higher,
e.g. GCWC and 2aminoAT, we can assume that slight deviations in the linear adjustments
should occur.

Nevertheless, additional hydrogen bonds beyond than two previously identified are
possible, mainly in GG3 complex but in GG1 not. Ideally it could be possible to identify a
bifurcate hydrogen bond O6 ---H(C8) and O6 ---‘H(N2) in GG1, although it was not possible
to characterize any BCP or RCP for these two interactions, what makes QTAIM unfeasible to
be used in this regard. However, the application of the Laplacian instead of the electronic
density as topological descriptor to predict the interaction strength is very useful in many
situations. To the best of our knowledge, the hydrogen bond strength on the DNA bases is
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also unveiled through the relationship between the interaction energy and the Laplacian
computed in each intermolecular BCP, either those with two hydrogen bonds or even with
three ones. This relationship is illustrated in Fig. 11, by which a correlation coefficient of
0.827 was obtained. We can observe that similar results were obtained in comparison to that
presented for the electronic density. The low electronic density values as well as the
depletion characteristic of the Laplacian corroborated themselves, and in this sense, these
two QTAIM parameters show similar efficiency to predict the interactions strength of the
DNA bases of pairs.
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Fig. 11. Relationship between the interaction energy and total V2p of the DNA base pairs.

As is widely known, the interaction strength is the cornerstone to preserve the molecular
stabilization, and in the DNA scenery, it has been demonstrated that their nucleobases
provide the molecular stability of the DNA chains due to the number of the hydrogen
bonds to be formed, and indeed, their strengths are included in this context. Among the
DNA structures well-known, it has been noticed that m stacking and hydrogen bonds are
the most important types of interaction that retains the DNA helical structure with great
influence of the guanine and cytosine nucleobases. In an overview, these nucleobases in
olygonucleotides form are stabilized by distinct energies, i.e., 20 kcal/mol for hydrogen
bonds whereas 2.40 kcal/mol for o stacking. In order to understand the connectivity
between hydrogen bonds and m stacking, a symbolic model system was examined, in
which the action of the benzene upon the formation of the CsHg - GC and CesHs - CG
complex must be worthwhile (Robertazzi & Platts, 2006). In according to the Fig. 12, the
bond paths and BCP of the C¢Hg - GC (a) and C¢Hg --‘CG (b) complexes can be analyzed.
The QTAIM results show that no significant variation could be found between (a) and (b),
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Fig. 12. Topologies of (a) benzene - GC and (b) benzene ‘- CG.

i.e., the electronic density for the hydrogen bonds and m stacking are in the range of
0.001 e/ aqd.

Likely, a decisive argument changes the conclusion highlighted above: inclusion of benzenic
structures with the following substituents -NO,, -F, -CH3, -CHO, -OH, and -NH; into the
ternary complexes (a) and (b). This action should be useful to demonstrate that the
hydrogen bonds and m stacking can be affected by the hardness (n) of the substituted
benzene, whose definition according to the Density Functional Theory (DFT) (Geerlings et al,
2003) is based on second derivative of electronic energy (E) with respect to the number of
electrons (N) for a constant external potential U :

_1(&*E

The great goal of this insight is the reduction of the charge transfer from guanine (G) to
cytosine (C) with stacked substituted groups on the benzene structure. For example,
changing -NO, by -NH; cytosine is a better proton acceptor with increase of the electronic
density at the BCP of the hydrogen bonds H1 N3 and H2:-O2, but otherwise, a worse
proton donor causes an increase in the electronic density, what could lead to confirm surely
that o stacking does influence the formation of hydrogen bonds between G and C. As can be
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seen, hydrogen bonds and 1 stacking bring great deformations on the molecular sites of the
DNA, but its ideal structure is preserved. In accord with Meggers et al (Meggers et al, 2005),
DNA polymer analogous formed by m stacking interactions in agreement with Watson-
Crick pairing scheme of bases produces a-double helix with absence of the backbone sugar
residues. Definitively, hydrogen bonds and n stacking interactions are not independent, as
already discussed the influence between them.

The nucleobases dimers are formed by m stacking interactions, which can be also
subdivided into intrastrand (a) and interstrand (b), as illustrated below. As widely-
known, the formation of stacking interactions is closely compromised with the formation
of the gene codes. In this context is that, in addition to the hydrogen bonds, the i stacking
contacts should be carefully reliable to interpret the DNA structure and the a-helix
formation.

Basel- Based Basel - Base4 Basel - Base 4
(a) +| T T |7 (b) | "y Tl W 0
Base2-Base3 Base 2 - Base3 Base 2 - Base3

Indeed, there is an intense discussion about the formation of hydrogen bonds on the
nucleobases dimers. For instance, in recent years the triple hydrogen bonds occurrence on
nucleobase has been evaluated through the application of high-level calculations, by which
a slight difference in range of 3 kcal/mol between the dimer and the individual hydrogen
bonds was discovered. Due to this, recently Matta et al (Matta et al, 2006) have developed a
theoretical investigation of WC dimeric derived from the DNA fragments. It was quoted the
existence of three types of hydrogen bonds, namely as N-H--O, C-H:-O, and N-H--N.
The first hydrogen bond type occurs between A and T as well as in G and C. The second
hydrogen bond is recognized as triple between A and T. Finally, the last hydrogen bond
model makes itself presents in a double format between A and T as well as G and C. Thus, it
should be important to comment each one of these hydrogen bonds and their influence on
the DNA structure.

It is observed a slight higher concentration of p(r) in the CG complex in comparison to AT,
in which the values are 0.028 e/a,®> and 0.025 e/a.3, respectively. Moreover, the H---O
hydrogen bond is sensitively weak in AT once the value of p(y is 0.006 e/a.3. Furthermore,
the ellipticity curvature A3 is smaller in AT rather than in CG, what indicates a less charge
density accumulation in the intermolecular region of the AT system. Only for mention, the
remaining \; and A, are perpendicular to the BP of the hydrogen bonds, what makes their
negative results and then are not taken into account. In according to the Equation 15, the
virial potential operator U is negative over the entire molecule, whereas G is positive. If U is
the dominant term, a high electronic density concentration is assumed, as can be seen in
shared interactions such as covalent or unsaturated bonds. In other words, the electrons are
placed on the BCP. The same reasoning can be dedicated to G, although the kinetic
contribution diagnoses closed-shell interactions, or in this current work, the hydrogen bonds
N-H:-O and H--O. Thus, it was suggested an alternative approach to the virial expression
in order to propose a novel term so-called as electronic energy density H:

H=2G+U (19)
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Well, it is by the contributions of G and U that H is estimated. It was observed negative
values of H not for N-H--O, but actually to N-H--H. The main feature of the N-H--'H
hydrogen bond is its length, which is very short in AT than in CG. Thereby, the electronic
density py) of 0.052 e/ag® is AT is higher than CG, whose value is 0.038 e/a’. Nevertheless,
these hydrogen bonds exhibit positive value of V2p( as well as negative electronic energy
density H, what is anomalous for closed-shell interactions, but it can be an indication of
shared electronic density. However, Fig. 13 illustrates different i stacking interactions on
DNA structure.
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Fig. 13. Molecular graph of the nucleobase dimer duplexes.

It was discovered some diversity of o interactions formed by the N--N, C---C, C--'N, and
O N contacts. These, some are intrastrand and other ones are interstrand. For the third
structure, G4 ---C7 and G5---C6, in addition to the six hydrogen bonds, eight i stacking
interactions are known, of which six are intrastrand whereas two are interstrand. As
remarkably defined, the values of the electronic energy density H are positive due to the
contribution of G accompanied by U with smaller negative amounts. By this relationship,
the Laplacian fields are positive, and in this current analysis were obtained values of V2p(,
in range of 0.009-0.039 e/a.,®>, what no doubts in regards to the profile of closed-shell
interactions remains about these interactions. In comparison with some typical hydrogen
bonds formed, the p() values of the intrastrand and interstrand m-stacked contacts are very
low, but the lowest charge concentration is found in intrastrand situations. In an overview,
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it was quoted that albeit these 11 stacking interactions are weak, surely they can influence the
geometry and stabilization of the DNA structure.
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