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1. Introduction 

In civil engineering, all kinds of concrete structures inevitably encounter some form of 
dynamic loading during their lifetime. For example, bridges and tall buildings encounter 
wind loading, dams suffer from hydrodynamic pressure loading, ocean platforms encounter 
the impact of ocean waves, and all kinds of structures may suffer from earthquake loading. 
Because of their unpredictability and destructive capacity, these kinds of loadings always 
become important factors in controlling structural design. 

The concrete is a typical rate-dependent material: its strength, stiffness, and ductility (or 
brittleness) are affected by loading rates. Researches on the rate dependency of concrete 
started in 1917 by the Abrams’ dynamic compressive experiment (Abrams 1917). Jones (1936) 
investigated the relationship between compressive strengths of concrete and loading rates. 
Their experiments gave the conclusion that the compressive strengths of concrete increased 
with loading rates. Numerous tests have been carried out to investigate the response of 
concrete to rapid loading. Watstein (1953) observed that the compressive strengths of concrete 
increased an average of 80 percent when the strain rate increased from the static loading rate 
10-6s-1 to 10s-1. Based on the results of his experiments, Norris (1959) proposed an empirical 
formula and predicted that the compressive strengths were increased up to 33%, 24%, and 17% 
greater than the static strengths when the strain rates were 3s-1, 0.3s-1, and 0.1s-1, respectively. 
Atchley (1967) reported that the dynamic compressive strength increased from 25% to 38%. 
Experimental results from Hughes (1972) illustrated that the compressive strengths of concrete 
increased 90% more than the static strength on the impact loading. 

Although researchers are not in complete agreement with which strain rates cause the 
increase in strength to be significant, it is generally accepted that a definite increase in the 
uniaxial compressive strength of concrete correlates with the increase of strain rates. 
However, confusion also has arisen in regard to the increase in magnitude of dynamic 
strengths. Some experimental results (Abrams 1917; Jones 1936; Watstein 1953; Rush 1960; 
Atchley 1967; Spooner 1972; Hughes 1972; Sparks 1973; Dilger 1984) showed that an increase 
of 30 percent more than the static strength of concrete, and even up to 80 percent, is possible. 
Others, such as Moore (1934), Evans (1942) and Dhir (1972), indicated that the increase in the 
strength of concrete was less than 20 percent and was not influenced by the rate of loading. 
Bischoff  (1991) reviewed and analyzed the dynamic compressive experiments of concrete 
and deduced that the confusion about the increased magnitude of dynamic strengths arose 
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because many factors, such as concrete quality, aggregate, age, curing and moisture 
conditions, influenced the behavior during the rapid loading. 

The reported dynamic tensile tests of concrete in literature are more difficult to perform and 
the results are few. Birkimer (1971) conducted two sets of dynamic tensile tests using plain 
concrete cylinders. In the first set, the dynamic strength at the strain rate of 20s-1 was 
between 17.2 MPa and 22.1 MPa, whereas the static tensile strength was 3.4 MPa at the 
quasi-static strain rate of 0.57×10-6s-1. In the second set, the concrete dynamic strength was 
between 15.4 MPa and 27.6 MPa. Zielinski (1981) studied the behavior of concrete subjected 
to the uniaxial impact tensile loading and found that the ratios of impact and static tensile 
strengths were between 1.33 and 2.34 for various concrete mixes. Oh (1987) presented a 
realistic nonlinear stress-strain model that could describe the dynamic tensile behavior of 
concrete. An equation was proposed to predict the increase of tensile strengths resulting 
from an increase of strain rate. Tedesco (1991) conducted the direct tension tests of plain 
concrete specimens on a split-Hopkinson pressure bar to investigate the effects of increasing 
strain rate on the tensile strength of concrete. Rossi (1994) made an experimental study of 
rate effects on the behaviors of concrete under tensile stress to investigate the effect of the 
water/cement ratio on the tensile strength enhancement. In addition, an analysis of the 
physical mechanisms was developed to investigate how the Stefan effect, the cracking 
process, and the inertia forces participated together in the dynamic behavior of a specimen 
subjected to a uniaxial tensile test (Rossi, 1996). Cadoni (2001) studied the effect of strain rate 
on the tensile behavior of concrete at different relative humidity levels. Malvar (1998) 
reviewed the extant data characterizing the effects of strain rate on the tensile strength of 
concrete and compared the DIF formulation with that recommended by the European CEB. 
Finally, an alternative formulation was proposed based on the experimental data.  

Many high arch dams have been built and will be built in areas of China with high seismic 
activity. Some of them will reach 300 meters in height. For researchers and engineers, the 
significant concern is paid on the safety of these structures against earthquake shocks. 
During the past two or three decades, many sophisticated computer programs are 
developed and used for numerical analysis of the arch dams. Our ability to analyze 
mathematical models of dam structures subjected to earthquake ground motions has been 
improved dramatically. Nevertheless, the current design practice in the seismic design of 
arch dams has to be based on the linear elastic assumption. The key property that 
determines the capacity of arch dams to withstand earthquakes is the tensile strength of 
concrete. However, the design criterion for the tensile stress remained a problem at issue. A 
widely accepted standard has not been available. The conventional design practice accounts 
for the rate sensitivity by means of drastic simplifying assumptions. That is, in all cases, the 
allowable stresses of an arch dam under earthquake load are increased by, such as a Chinese 
Standard (2001), 30% of the value specified for static case. Similarly, the dynamic modulus 
of elasticity is assigned 30% higher than its static value. Raphael (1984) carried out the 
dynamic test of concrete from dam cores and reported an average dynamic-static splitting 
tensile strength ratio of 1.45, and an average dynamic-static compressive strength ratio of 
1.31 for the same loading rate ranges. Harris (2000) performed laboratory tests on concrete 
cores drilled from dams and tested at strain rates that simulated dynamic and static loading 
conditions. Results indicated that dynamic-static strength ratios were greater than those for 
both the tensile and compressive strength tests. Thereby, it is improper that the same 
increments of strengths and elastic modulus of concrete at different strain rates are adopted 
during the process of analyzing the seismic response of dams. 
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Few researchers considered the effect of strain rates on dynamic responses of arch dams 
because there was a lack of rate-dependent dynamic constitutive models of concrete. 
Cervera (1996) developed a rate-dependent isotropic damage model for the numerical 
analysis of concrete dams. The application of the proposed model to the seismic analysis of a 
large gravity concrete dam showed that the tensile peak strength of concrete could be 
increased up to 50 percent for the range of strain rates that appear in a structural safety 
analysis of a dam subjected to severe seismic actions. Lee (1998) developed a plastic-damage 
model for the concrete subjected to cyclic loading using concepts of fracture-energy-based 
damage and stiffness degradation. The rate-dependent regularization was used to guarantee 
a unique converged solution for softening regions. No effect for the rate-dependency on the 
stress distribution has been involved. Chen (2004) proposed a rate-dependent damage 
constitutive model for massive concrete by introducing rate-dependant plastic damage 
variables as internal variables. The nonlinear seismic responses of arch dams were 
computed using this model and the results were compared with the results given by the 
corresponding rate-independent damage model. It showed that the distribution of strain 
rates not only influenced the vibration modes of dam but also had significant effects on the 
dynamic damage of arch dams. Li (2005) analyzed the seismic response of a high arch dam, 
in which a rate-dependent damage constitutive model of concrete was considered and the 
nonlinear contact of joints was simulated by direct stiffness method based on the Lagrange 
multiplier. The study showed that the nonlinear concrete model had great effects on the 
dynamic opening of the contraction joints caused by the nonlinear softening and cracking. 
Bai (2006) established a rate-dependent damage constitutive model for simulating the 
mechanical behaviors of concrete by introducing the effect of strain rate into the damage 
tensor. The model was applied to analyze the seismic overload response of a typical 
concrete gravity dam. Results indicated that the distribution of strain rate caused by seismic 
loading varied at the dam surface and significantly affected the dynamic response. 

The effect of strain rates on dynamic behaviors of concrete is an important aspect in the 
evaluation of the seismic responses of concrete structures. To evaluate the seismic behaviors 
of concrete structures, the dynamic experiment and the dynamic constitutive model of 
concrete are necessary. The main objective of this study is, based on the results of the 
dynamic uniaxial tensile and compressive experiments on the concrete, to establish the 
dynamic constitutive model of concrete and study the effect of strain rates on dynamic 
responses of concrete dams.  

2. Dynamic experiments of concrete 

2.1 Dynamic uniaxial tensile experiment of concrete 

2.1.1 Tensile specimen 

A concrete mix with proportions, by weight, of cement: water: gravel: sand content = 
1.00:0.75:4.09:2.56 was used in the study. The employed cement is 425 Portland cement, 
the fine aggregate is general river sand, and the coarse aggregate is crushed rock. 
Specimens were cast in steel moulds and cured in moisture condition for 7 days, then they 
were naturally cured at 20±3 Celsius degree temperature in the laboratory. Fifty 
dumbbell-shaped specimens were cast for the tensile experiment, as shown in Fig.1. The 
specimens of dumbbell shape ensure that the specimens were destroyed at the middle of 
specimen in tension.  
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Fig. 1. Tensile specimen 

2.1.2 Tensile test loading system and measuring system 

The tensile dynamic test was carried out using the 1000-kN servo fatigue testing machine at 
the State Key Laboratory of Coastal and Offshore, Dalian University of Technology. During 
the process of experiments, the loading sign is sent by the control center, and then it is 
transferred to the servo fatigue testing machine. The magnitude and frequencies of loading 
are controlled by the control center. 

During the tensile test, the specimen was adhered to two steel plates by the constructional 
glue. The bottom steel plate was fixed to the base with bolts and the upper steel plate was 
connected to the load cell with the load transducer, as shown in Fig. 2. In order to increase 
the stiffness of the loading system, a frame was formed by four steel bars connecting the 
load cell to the base with bolts.  

 

Fig. 2. Tensile test setup 
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The data acquisition processor is 32-channel. Vertical and lateral strains of specimens were 
measured by four pairs of decussate strain gauges adhered on the four sides of specimens. 
Vertical and lateral displacements were measured by two opposite Linear Variable 
Displacement Transducers (LVDT) fixed to two opposite sides of the specimen. The load 
was measured by the load transducer fixed to the specimen. All measured signals were 
transmitted to the data acquisition and processing system of the computer through a 
specially allocated amplifier. 

2.1.3 Analysis of the tensile experimental results 

2.1.3.1 Stain-rate influence on uniaxial strength of concrete 

The dynamic tensile strengths of 15 specimens under different strain rates of 10-5s-1, 10-4s-1, 
10-3s-1and 10-2s-1 are shown in table 1. It shows that the uniaxial tensile strengths of concrete 
increase with the increasing of strain rates. Compared to the quasi-static tensile strength of 
concrete at the strain rate of 10-5s-1, the dynamic tensile strengths of concrete at strain rates of 
10-4s-1, 10-3s-1 and 10-2s-1 increase 6%, 10% and 18%, respectively.  

 

Strain rate 
/ s-1 

Tensile Strengths / MPa 

10-5 10-4 10-3 10-2 

1 1.388 1.435 1.549 1.639 

2 1.582 1.480 1.502 1.753 

3 1.469 1.604 1.696 1.731 

4 1.355 1.606 1.629  

average 1.449 1.531 1.594 1.696 

Table 1. Dynamic strength of concrete in tension 

According to the references, the increases in strengths follow a linear-logarithmic relationship 

with the increases in strain rates. By test results the linear-logarithmic relationship between the 

tensile strength enhancement with the strain rate enhancement, is given by 

  1.0 0.057 logt ts t tsf f       (1)  

Fig.3 shows the relationship between the dynamic tensile strength and the static tensile 

strength of concrete at different strain rates of 10-5s-1, 10-4s-1, 10-3s-1and 10-2s-1. 

2.1.3.2 Stain-rate influence on elastic modulus 

The stress-strain curves of concrete in tension at different strain-rate loading are illustrated 

in Fig.4. It is clear that during different strain rate loading the slope of curves is linear at the 

beginning of loading, indicating that the initial tangent modulus of concrete is independent 

of strain rate.  
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Fig. 3. The relationship between the dynamic tensile strength and the static tensile strength 

 
 
 

 
 
 

Fig. 4. The stress-strain curves of concrete in tension 
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2.1.3.3 Stain-rate influence on critical strain 

Table 2 illustrates the critical strain of concrete in tension obtained from the present test. 
Table 2 implies that in the range of strain rate from 10-5s-1 to 10-2s-1, the effect of strain rate 
on the critical strain value of concrete in tension is little, if any. 

 

Strain rate 10-5s-1 10-4 s-1 10-3 s-1 10-2 s-1 

1 106 106 122 102 

2 127 130 98 114 

3 113 112 108 123 

4 102 114 110  

Average 112 116 110 113 

Table 2. The critical strain of concrete in tension 

2.1.3.4 Stain-rate influence on Poisson’s ratio 

Table 3 shows the change in Poisson’s ratio of concrete in tension and compression. It is 
found that the maximum of Poisson’s ratio is 0.20 but the minimum is 0.13. And it is 
concluded that Poisson’s ratio isn’t obviously dependent on the loading rate according to 
the average of results.  

 

Strain rate 10-5s-1 10-4 s-1 10-3 s-1 10-2 s-1 

1 0.16 0.17 0.14 0.15 

2 0.14 0.16 0.14 0.19 

3 0.19 0.18 0.15 0.13 

4 0.14 0.13 0.16  

Average 0.16 0.16 0.15 0.16 

Table 3. The Poisson’s ratio of concrete in tension 

2.2 Dynamic uniaxial compressive experiment of concrete 

2.2.1 Compressive specimen 

Similar to the tensile specimen, the concrete mix with proportions, by weight, of cement: 
water: gravel: sand content was still 1.00:0.75:4.09:2.56. The employed cement is 425 Portland 
cement, the fine aggregate is general river sand, and the coarse aggregate is crushed rock. 
Specimens were cast in steel moulds and cured in moisture condition for 7 days, then they 
were naturally cured at 20±3 Celsius degree temperature in the laboratory. Fifty cuboid 
specimens with 100×100×300mm were cast for the compressive experiment, as shown in Fig.5. 
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Fig. 5. Compressive specimen 

2.2.2 Compressive test loading system and measuring system 

The compressive dynamic test was also carried out using the 1000-kN servo fatigue testing 
machine at the State Key Laboratory of Coastal and Offshore, Dalian University of 
Technology. As for the compressive test, the cuboid specimen was placed vertically on the 
circular steel plate connecting the base with the load transducer, as shown in Fig. 6. The 
measure system is same as the tensile test. 

 

Fig. 6. Compressive test setup 
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2.2.3 Analysis of the compressive experimental results 

2.2.3.1 Stain-rate influence on uniaxial strength of concrete 

Table 4 gives the dynamic compressive strengths of concrete at different strain rates. It can 
be concluded that the uniaxial compressive strengths of concrete increase with the 
increasing of strain rate. Compared to the quasi-static compressive strength of concrete at 
the strain rate of 10-5s-1, the dynamic compressive strengths of concrete at strain rate of 10-4s-

1, 10-3s-1, 10-2s-1 and 10-1s-1 increase 4.8%, 9.0%, 12.0% and 15.6%, respectively.  

 

Strain rate 
/ s-1 

Compressive strengths / MPa 

10-5 10-4 10-3 10-2 10-1 

1 21.89 22.09 24.63 24.04 26.19 

2 22.03 24.40 23.18 25.97 24.94 

3 20.67 21.72 22.60 22.70 26.72 

4 23.35 23.93 25.44 25.76 23.76 

average 22.00 23.03 23.96 24.62 25.40 

Table 4. Dynamic strengths of concrete in compression 

Similar to the dynamic tensile strength, the linear-logarithmic relationship between the 
compressive strength enhancement with the strain rate enhancement, is also given by 

  1.0 0.040logc cs c csf f       (2) 

Fig.7 gives the relationship between the dynamic compressive strength and the static 
compressive strengths of concrete. 

 

Fig. 7. The relationship between the dynamic and static compressive strength  
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2.2.3.2 Stain-rate influence on elastic modulus 

The stress-strain curves of concrete in compression at different strain-rate loading are 
plotted in Fig.8. The initial tangent modulus of concrete in compression slightly increased as 
the strain rate increased. The initial tangent moduli of concrete at strain rate of 10-4s-1, 10-3s-1, 
10-2s-1 and 10-1s-1 increase to 1.3×104MPa, 1.38×104MPa, 1.48×104MPa and 1.60×104MPa from 
1.23×104MPa at strain rate of 10-5s-1, respectively. 

 

Fig. 8. The stress-strain curves of concrete in compression 

2.2.3.3 Stain-rate influence on critical strain 

Table 5 gives the results of the critical compressive strain of concrete obtained from the 
present test. It shows that a slight decrease in the critical compressive strain value was 
observed as the strain rate was increased.  

 

Strain rate 10-5s-1 10-4 s-1 10-3 s-1 10-2 s-1 10-1 s-1 

1 2524 2164 2480 2382 2030 

2 2713 2153 2244 2172 2114 

3 2180 2633 2083 2231 2234 

4 2353 2304 2137 2003 1965 

Average 2443 2314 2236 2197 2086 

Table 5. The critical strain of concrete in compression 

2.2.3.4 Stain-rate influence on Poisson’s ratio 

Table 6 shows the change in Poisson’s ratio of concrete in tension and compression. It is 
found that the maximum of Poisson’s ratio is 0.20 but the minimum is 0.13. And it is 
concluded that Poisson’s ratio isn’t obviously dependent on the loading rate according to 
the average of results.  
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Strain rate 10-5s-1 10-4 s-1 10-3 s-1 10-2 s-1 10-1 s-1 

1 0.18 0.14 0.20 0.14 0.15 
2 0.13 0.19 0.18 0.18 0.17 
3 0.15 0.16 0.14 0.17 0.17 
4 0.17 0.15 0.17 0.20 0.15 

Average 0.16 0.16 0.17 0.17 0.16 

Table 6. The Poisson’s ratio of concrete in compression 

3. Rate-dependent constitutive model of concrete 

3.1 Consistency viscoplastic model theory 

The consistency viscoplastic model can be seen as an extension of the classic elasto-plastic 

model to account for the rate-dependent behavior of materials. This model, which uses the 

Von Mises yield surface, was applied by Wang (1997) to analyze metal. With this method, 

the consistency viscoplastic Hoffman model of concrete was modified by Winnicki (2001). In 

this model, during viscoplastic flow, the actual stress state must remain on the yield surface, 

and the consistency condition is imposed. 

The viscoplastic yield function can be expressed as 

 ( , , ) 0ijF       for 0   (3) 

In uniaxial tension and compression, equation (3) can be expressed as 

 
( , , )

( , , )

c ij c c

t ij t t

F F

F F

  

  

 
 




 (4) 

It is difficult to establish biaxial or triaxial constitution relations because of the lack of biaxial 
dynamic experiment results for the concrete. For simplicity, the biaxial dynamic behavior of 
concrete is assumed to be the same as the uniaxial dynamic behavior with an increasing 

factor bcK  for the strength such that: 

 ( , , )bc bc ij c cf K f      (5) 

On an arbitrary stress state, it is assumed that: 

 ( )c c ij     ( )t t ij     (6) 

Functions ( )t ij   and ( )c ij  should be chosen in such a way that, for loading processes 

with dominant tensile stress states, ( ) 1t ij    and ( ) 0c ij   ; similarly, for loading 

processes with dominant compressive stress states ( ) 0t ij   and ( ) 1c ij   , and for 

loading processes with tensile-compressive stress states 0 ( ) 1t ij    and 0 ( ) 1c ij   . 

These functions must satisfy the condition of ( ) ( ) 1t ij c ij     . Consequently, weight 

functions ( )t ij   and ( )c ij   can be achieved expediently. 

Using such conditions, the yield function can be expressed as  

www.intechopen.com



Advances in Geotechnical Earthquake Engineering –  
Soil Liquefaction and Seismic Safety of Dams and Monuments 

 

244 

 ( , , ) ( , , , , ) 0ij ij c c t tF F            (7) 

At the same time, the viscoplastic consistency condition must be satisfied so that: 

 0ij c c t t
ij c c t t

F F F F F
d d d d d    

    
    

    
    

 
   (8) 

The effects of t  and t  on tf  are assumed to be independent and the instantaneous tensile 

strength tf  is formulated in a very general way as follows 

 ( ) ( )t ts t t t tf f H R    (9) 

Similarly, the instantaneous compressive strength is computed as 

 ( ) ( )c cs c c c cf f H R    (10) 

where ( )t tH  , ( )t tR  , ( )c cH  and ( )c cR   are the assumption functions achieved by 

experiment. Here,  is adopted as 2 / 3vp vpVP
ij ij     . 

3.2 Consistency viscoplastic William-Warnke three-parameter model of concrete 
(xiao, 2010)  

In this study, the yield surface function is assumed to be the same as the failure surface 

function of concrete so that the yield function of the William-Warnke three-parameter model 

can be expressed as  

 
1 1

( , , ) 0
( )

m m m m cF f
r

    
 

     (11) 

where two parameters   and ( )r   are chosen by three conditions: 1) uniaxial tensile 

strength tf , 2) uniaxial compressive strength cf , and 3) biaxial compressive 

strength bc bc cf k f . 

Defining ij
ij

F
m







, one can achieve: 

 

2

1 1 1 1

3 5

m m
ij

ij m ij m ij ij

m
ij ij

m ij

F F F F r
m

r

r
s

r r

 
     




  

     
      
      


    



 (12) 

where 1ij ijI     and 2ij ijs J    . 

For the sake of simplicity, defining 
1

3
A


 , 

1

5 m

B
r

  and 
2
mC

r


   and substituting them 

into equation (11), one obtains: 
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 ij ij ij ij ij
ij ij ij

F r r
m A Bs C A Bs C

 
   
   

      
   

 (13) 

Defining 
u

r
v

  and taking the partial derivative with respect to the stress tensor ij , one 

obtains: 

 2

( )
du dvv uu vr d d D

v
 

 

  
  

 
 (14) 

where  

1
2 2 2 2 2 2 22 ( )cos (2 )[4( )cos 5 4 ]c c t c t c c t t c tu r r r r r r r r r r r         

2 2 2 24( )cos ( 2 )c t c tv r r r r     

2 2
2 2

1
2 2 2 2 2

4 (2 )( )sin cos
2 ( )sin

[4( )cos 5 4 ]

c t c t c
c t c

c t t c t

r r r r rdu
r r r

d r r r r r

 
 

 
  

  
 

2 28( )sin cost c

dv
r r

d
 


   

According to the William-Warnke three-parameter model, the relationship between   and 

ij  is given as follows:  

 
3

3
2

2

3 3
cos3

2

J

J
    (15) 

By taking the partial derivative of equation (11) with respect to the stress tensor ij , the 

following expression can be obtained as: 

 

3 3 32 2
5 3

2 22 3
2 2

3
5 3

2 2
2 2

3 3 3 1

4sin 3 2sin 3

3 3 3 1

4sin 3 2sin 3

ij ij ij ij ij

ij ij

J J JJ J

J J J J

J
s t

J J

  
      

 

      
       

      

     
 (16) 

where 3
ij

ij

J
t







 and ijt  has the behavior such as:  

(1) 0ij ijt          (2) 33ij ijt s J        (3) 2
2

2

3
ij ijt t J  
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Simply, defining 3
5

2
2

3 3

4sin 3

J
E

J
   and 

3
2

2

3 1

2sin 3
U

J
   , equation (16) can be expressed 

as  

 
ij ij

ij

E s U t




   


  (17) 

Substituting equations (10) and (13) into equation (9), ijm  is simplified as:  

 

( )

( )

ij ij ij ij ij
ij

ij ij ij

ij ij ij

F
m A B s CD E s U t

A B CDE s CDU t

s t






  


        


      

  
 (18) 

where A  , B CDE    and CDU  . 

In equation (5), 
c

F





, 
c

F



 

, 
t

F





 and 
t

F



 

 could be expressed as 

( )c c

c c c c c c

f fF F F F r

f f r f


   

      
  

       
 

( )c c

c c c c c c

f fF F F F r

f f r f


   

      
  

           

( )t t

t t t t t t

f fF F F F r

f f r f


   

      
  

       
 

( )t t

t t t t t t

f fF F F F r

f f r f


   

      
  

         
 

where the curves of c

c

f





, c

c

f



 

, t

t

f





 and t

t

f



 

 can be achieved by uniaxial compressive and 

tensile tests of concrete.  

Based on the associated plastic flow rule, the viscoplastic strain is defined as  

 vp
ijij

ij

F
d d d m  




 


 (19) 

The invariable can be expressed as  

 
2 2

( )
3 3

vp vp
ij ij ijij ijd d d m m d g d         (20) 
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Using these functions, the consistency equation (4) can be expressed as 

 0ij ijm d hd sd       (21) 

where  

( ) ( ) ( ) ( )c c c c c t t t t t

F
h a h R a h R   




  


   

( ) ( ) ( ) ( )c c c c c t t t t t

F
s a H r a H r   




  


 
 

In which  

( ) ( )t ts t ij ij
t

F
a f g

f
  




 ( ) ( )c cs c ij ij
c

F
a f g

f
  




 

( )
( ) t t

t t
t

H
h










 ( )
( ) c c

c c
c

H
h










 

( )
( ) t t

t t
t

R
r













 ( )
( ) c c

c c
c

R
r











 

Dynamic tensile and compressive tests were carried out to investigate the effect of strain 
rates on the dynamic tensile and compressive behaviors of concrete (Xiao, 2008). Test results 
indicate that the tensile and compressive strengths of concrete increase with the increase of 
the loading rate. The initial tangential modulus and the critical strain of concrete in tension 
are independent of strain rate, but those in compression slightly increased with the strain 
rate. Poisson’s ratio of concrete in both tension and compression is not obviously dependent 
on loading rate. 

Based on the experimental data, the functions ( )t tH   and ( )t tR   are given in Fig. 9(a) and 

Fig. 9(b), where the plotted curves are the fitting curves for the later calculation.  

   
(a) Function of ( )t tH   (b) Function of ( )t tR   

Fig. 9. Function of ( )t tH   and ( )t tR   
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Similarly, the functions of ( )c cH   and ( )c cR   are given in Fig. 10(a) and Fig. 10(b). 

 
(a) Function of ( )c cH   (b) Function of ( )c cR   

Fig. 10. Function of ( )c cH   and ( )c cR   

3.3 Euler return mapping algorithm 

At the time t , the stress t
ij , the invariable t  and the rate of invariable t  should satisfy 

the yield condition:  

 ( , , ) 0t t t
ijF       (22) 

At the time t t , the stress can be written as 

 ( , )ept t t t
ij ij ij ij ij klijklD             (23) 

where ( , )ep
ijijklD    is the tangent module of the consistency viscoplastic model. 

Also, the stress t t
ij

  , the invariable t t   and the rate of invariable t t   at the time t t  

should satisfy the yield condition: 

 ( , , ) 0t t t t t t
ijF          (24) 

At the short time increment, the assumption is an approximation for   as   

 
t t

t






  (25) 

Thus, the internal parameter t t   and its rate t t   can be expressed by 

 ( ) ( )
t t

t t t t t t t t
ij ijg g

t


      




       (26) 
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 ( )t t t t t t t
ijg           (27) 

Consequently, the yield condition at the time t t  can be formulated using the above 

expression as in the classic rate-independent plasticity as follows: 

 ( , ) 0t t t t
ijF       (28) 

During the thk  iteration at the time t t ，the stress k
ij  and plastic multiplier k  might 

not satisfy the yield condition:  

 ( , ) 0k k k
ijF     (29) 

Generally, the stress k
ij  does not reflect the real stress t t

ij
   at the end of the given time 

t t . So, the residual stress can be expressed as  

 ( , ) ( , )epk k k k t t k t
ij ij ij ij ij ij ij klijklr D              (30) 

During the ( 1)thk   iteration at the time t t ， the yield function value 1kF   and the 

residual stress 1k
ijr   can be achieved from the truncated Taylor's series expansion of the 

yield F  and the residual stress ijr  about position k , and then set to zero: 

 
1 0

k k
k k k k

ij
ij

F F
F F  

 
  

   
 

 (31) 

 1 0
k k

k k k k
ij ij ij

ij

r r
r r  

 
  
   

 
 (32) 

Equations (31) and (32) represent a set of linear equations for the iterative stress update k
ij  

and the iterative viscoplastic multiplier update k . 

Defining 

 

k k

ij

k k

ij

F F

r r

 

 

  
 
  

  
  

   

A  

 
k

k
ij

F

r

    
  

b  

equations (31) and (32) can be expressed as 
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    
k

k
ij





    
  

A b  (33) 

where 

1k k k k k k
kF F F d F F s

h
d t t


       
    

     
    


   

ij ij ij ij
ij

F
m s t  




   


 

( )ep
klijklDr 

 


 

 
 

( )
ij ep

ijkl pqijpq
kl kl

r
I D 

 

 
 

 
 

where ijklI  was the identity tensor of the fourth order. 

Taking into account the symmetry of the stress tensor, the iterative stress update k
ij  and 

the iterative viscoplastic multiplier update k  are achieved by solving the set of linear 

equations. The iteration process continues until the norms F and ijr  reaches to reasonably 

small ammount. The final values of   and ij  at the end of the time step are obtained by 

a summation process: 

 
1

N
k

k

 


   (34) 

 
1

N
k

ij ij
k

 


   (35) 

where N  is the total number of iterations. 

3.4 Tangent module of the consistency viscoplastic model 

According Hooke’s law, the stress change can be written as 

 ( )ijkl kl ijkl kl ijkl kl ijklkl kl

vp vpe e e e e
ijd D d D d d D d D d           (36) 

Substituting the equation (36) into the equation (8), the consistency viscoplastic condition is 
expressed by 

 ( ) 0ijkl kl ijkl kl

vpe e

ij

F F F
D d D d d d   

  
  

   
  




 (37) 
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According to the flow law, the viscoplastic strain change is given by the following: 

 
vp
ij

ij

Q
d d 







 (38) 

Substituting it into equation (37), one obtains 

 ( ) ( ) ( ) 0ijkl ijkl
e e

ij
ij ij ij

F F Q F F
D d d D d d   

    
    

   
    


  (39) 

Therefore, the viscoplastic multiplier is expressed as 

 

( )

1 1
( ) ( )

ijkl

ijkl

e
ij

ij

e

ij kl

F
D d

d
F Q F F

D d d
d d





 

     





   

 
   




 (40) 

Substituting it into equation (36), the following formula is obtained as 

 1 1

1

vpe e
ij ijkl kl ijkl kl

e e
ijkl kl ijkl

kl

e
mnpq pq

e e mn
ijkl kl ijkl

e kl
mnpq

mn pq

e e
ijkl mnpq kp lq

e mn kl
ijkl kl

e
mnpq

mn pq

d D d D d

Q
D d D d

F
D d

Q
D d D

F Q F F
D d d

d d

F Q
D D

D d
F Q F

D
d

  

 






 

     

 
 

  

 


 




 
 

     
   

 
 

 
  


 




1

( )

kl

vp epe
ijkl kl klijkl ijkl

d
F

d d
d

D D d D d


 

  






 

  ε




 (41) 

where ep
ijklD  is the tangent module of the consistency viscoplastic model. 

 
1 1

ep vpe
ijklijkl ijkl

e e
ijkl mnpq kp lq

e mn kl
ijkl

e
mnpq

mn pq

D D D

F Q
D D

D
F Q F F

D d d
d d

 
 

 
     

 

 
 

 
   

 
   




 (42) 

Therefore,  
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 1 1

e e
ijkl mnpq kp lq

vp mn kl
ijkl

e
mnpq

mn pq

F Q
D D

D
F Q F F

D d d
d d

 
 

 
     

 
 

 
   

 
   




 (43) 

The yield function of the classic William-Warnke three-parameter model is expressed as 

 
1 1

( , , ) 0
( )

m m m m cF f
r

    
 

     (44) 

The divergence of the yield function is written as 

 ij ij ij
ij

F
s t  




  


 (45) 

To the relative flow criteria, the flow law is the same as the yield function of the model:  

 ( , , ) ( , , )ij ijQ F        (46) 

Then, the tangent module of the consistency viscoplastic model can be written as follows 

 

1 1

( ) ( )

( ) ( )

(3 2 2 )(

e e
ijkl mnpq kp lq

vp mn kl
ijkl

e
mnpq

mn pq

e e
ijkl mn mn mn mnpq kl kl kl kp lq

e
mn mn mn mnpq pq pq pq

ij ij ij

F Q
D D

D
F Q F F

D d d
d d

D s t D s t

s
s t D s t h

t
K G s G t

 
 

 
     

       

     


  

 
 

 
   

 
   

   
 

     

 
 




2 2 2 2
2 2 3

3 2 2 )

4
9 4 12

3

kl kl klK G s G t

s
K G J G J G J h

t

  

   


 

    

  (47) 

Defining  

2 2 2 2
0 2 2 3

4
9 4 12

3

s
P K G J G J G J h

t
   


       

1 03P K P  

2 02P G P  

3 02P G P  

Therefore, the equation (47) can be expressed as 
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 1 2 3 1 2 3( )( )vp
ij ij ij kl kl klijklD P P s P t P P s P t        (48) 

The tangent module of the consistency viscoplastic model is obtained as 

 

1 2 3 1 2 3( )( )

ep vpe
ijklijkl ijkl

e
ijkl ij ij ij kl kl kl

D D D

D P P s P t P P s P t 

 

     
 (49) 

3.5 Comparisons with experimental data 

The stress-strain curves of concrete for the uniaxial tension at the strain rate 10-3/s, shown in 

Fig. 11(a), are calculated and compared with experimental results. Fig. 11(b) shows the 

stress-strain curves of concrete for the uniaxial tension at the strain rate 10-5s-1, 10-4s-1, 10-3s-1 

and 10-2s-1nd the comparisons with the experimental data. Similarly, the stress-strain curves 

of concrete for the uniaxial compression at the strain rate 10-2s-1, shown in Fig. 12(a), are 

calculated and compared with the experimental results. Fig. 12(b) illustrates the stress-strain 

curves of concrete for the uniaxial compression at the strain rate 110-5s-1, 10-4s-1, 10-3s-1, 10-2s-1 

and 10-1s-1 and the comparisons with the experimental data. 

 
 
 
 
 
 
 

 
(a) strain rate 10-3/s (b) different strain rates 

 
 
 
 
 
 

Fig. 11. Model and tensile test results 
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(a) strain rate 10-2/s (b) different strain rates 

Fig. 12. Model and compressive test results 

The consistency viscoplastic model is modified from the classic William-Warnke three-
parameter model of concrete and has the advantages and disadvantages of the William-
Warnke three-parameter model. It may directly simulate the dynamic behaviors of concrete 
and it is simple and easy to calculate. Thus, the proposed model is good for analyzing the 
dynamic responses of concrete structures.  

3.6 Numerical example 

In order to study the effect of strain rate on the dynamic response of concrete structures, the 
dynamic response of a simple-supporting beam with dimensions 8m×1m×1m is analyzed 

with this model. Fig. 13 shows the discretized beam and calculated elements adopting three-
dimension eight-node equivalent parameter elements. An impact loading is imposed on the 
midpoint of beam and Fig. 14 depicts the loading history. Dynamic response is analyzed 
with the ADNFEM program compiled by the authors. The material properties are as 
follows: the elastic modulus of concrete is 1.6×104MPa, the Poisson’s ratio is 0.17, the mass 

density is 2.4×103kg/m3, the static compressive strength is 22MPa and the static tensile 

strength is 2.2MPa. 

 

Fig. 13. Structure and meshes of the beam 
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Fig. 14. Time-dependent curve of loading 

Fig. 15 illustrates the displacement of midpoint A with time. Three curves shown in the 
figure denote the vertical displacement of the beam at model I (linear elastic model), model 
II (rate-dependent William-Warnke three-parameter model), and model III (rate-
independent William-Warnke three-parameter model), respectively. Fig. 15 shows that, at 
the beginning of loading, the beam is at the elastic state and three displacement curves are 
the same. When the stress of the beam reaches to the initial yield stress, the displacement 
curves of three models separate, and when time is 0.1 second, the loadings of three models 
reach to their maximums, but the displacements of the three models do not reach to their 
maximums at the same time. The vertical displacement of model I reaches to its maximum 
1.50mm at time 0.114 second, but that of model II reaches to its maximum 1.62mm at time 
0.110 second, and that of model III reaches to its maximum 1.90mm at time 0.117 second. It 
is clearly shown that displacement of the beam changes greatly after considering the effect 
of strain rate. The displacement of the beam with the model II decreases with 14.7 percent 
compared with that of the beam with model III but increases with 8.0 percent compared 
with that of the beam with model I. 

 

Fig. 15. Displacement of point A 
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At the same time, the stresses of the beam with the three models differ greatly from 

each other. Table 7 lists the maximums of the tensile and compressive principal stress 

of the beam with the three models. It can be seen clearly that principal stresses of the 

beam with different models vary greatly. The tensile principal stress of the beam with 

model II increases with 13.10 percent compared with that of the beam with model III, 

but the compressive principal stress decreases with 11.6 percent. Compared with model 

I, the tensile principal stress of the beam with model II decreases with 16.80 percent, but 

the compressive principal stress increases with 19.1 percent. Similarly, the stress 

distribution of the beam changes greatly. Fig. 16(a), (b) and (c) show the stress 

distribution of the beam with the three models respectively when the displacement is 

maximum. The tensile stress distribution figure is shown above and the compressive 

stress distribution figure is illustrated below. It can be seen clearly from these figures 

that the stress magnitudes and distributions of the beam change greatly with the 

different models. Consequently, it can be seen that the dynamic response of the concrete 

beam, the displacement, and the stress magnitude and distribution, change greatly after 

considering the effect of strain rate. 

 

model 
The first principal stress of point B

MPa 
The third principal stress of point A 

MPa 

model I 1.97 -2.04 

model II 1.64 -2.43 

model III 1.45 -2.75 

Table 7. Maximal principal stress of beam 

4. Seismic response of arch dam 

4.1 Model and parameters of arch dam 

In order to illustrate the effect of the rate dependency on the dynamic structural response, a 

278m high arch dam in China subjected to earthquake excitation is analyzed by the 
proposed model. The dam and the foundation are discretized into 450 and 1,040 three-
dimensional isoparametric 8-node elements, respectively. Fig. 17 shows the discretized dam-

foundation system. 

The material properties are as follows: for the dam body, the elastic module is 2.4104MPa, 

the Poisson’s ratio is 0.17, the density is 2.4103kg/m3, the static compressive strength is 

30MPa, and the static tensile strength is 3MPa; for the foundation rock, the elastic module is 

1.6104MPa, the Poisson’s ratio is 0.25, and the density is 2.0103kg/m3. The five lowest 

vibration frequencies of the dam in care of full reservoir are: 1f =0.997Hz, 2f =1.004Hz, 

3f =1.450Hz, 4f =1.497Hz and 5f =1.542Hz. An assumption of massless foundation is 

introduced to simplify the dam-foundation interaction analysis, although more rigorous 

interaction effects can be included.  
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(a) model I 

 

 

 

 
(b) model II 

 

 

 

 
(c) model III 

 

Fig. 16. Distribution of principal stress of beam, Pa 
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Fig. 17. Geometry and mesh of arch dam 

 

Fig. 18. Time history of earthquake input 

Three-dimensional earthquake waves are used as the input. The design earthquake 

acceleration peak is 0.321 gal . Fig. 18 shows the typical artificial unitary acceleragram that met 

the requirements of the Chinese Specifications for Seismic Design of Hydraulic Structures. 

4.2 Design of the ADNFEM Program 

The ADNFEM (Arch Dam Nonlinear Finite Element Method) program compiled by the 
authors is used to calculate the dynamic response of arch dams in the rate-dependent 
constitutive model. The program is validated by ANSYS in the rate-independent model 
when the strain rate was zero in the rate-dependent constitutive model. 

The dynamic response of arch dams includes two parts: static analysis and seismic response 
analysis. The static analysis of arch dams is carried out to calculate the initial stress and 
strain state of the seismic response of arch dams. In order to form the Rayleigh damping 
matrix, the model of arch dams is calculated during the process of seismic response analysis. 
The processes of static analysis and seismic response analysis are listed as Table 8 and 
Table 9. 
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1. Input initial data and form one-dimension bandwidth memory vector and constrain 

condition vector; 

2. Input the constrain condition;  

3. Set the loading step 1I  ;  

4. Form the Ith  static load vector f ; 

5. Judge elastic-plasticity state of every element and calculate the elastic-plasticity 

impact factor; 

6. Form the tangent stiffness matrix of structures K ; 

7. Calculate the elastic-plasticity predicted state; 

8. Set the iterative 1J   of the Ith  loading step; 

9. Solve for the iterative displacement 1 u K f ; 

10. Update incremental displacements    u u u ;  

11. For every Gaussian integration point: 

a. Compute the incremental strains ε  

b. Compute the elastic-plastically predicted stress state ep ep
t  σ σ D ε  

c. If epσ  violates the yield criterion, perform the return mapping for the 

consistency model 

12. Check for convergence, if not, J←J+1, go to step 9; 

13. Update the loading step I←I+1, go to step 4; 

14. Output the static analysis results. 

Table 8. Summary of static analysis 

 

1. Form the mass matrix M  and initial stiffness matrix K ; 

2. Calculate the first two frequencies 1  and 2  with the subspace iterative method; 

Input structural damping ratio   and calculate the Rayleigh damping factor 

1 2
1

1 2

2  
 




, 2
1 2

2
 




; 

3. Form the damping matrix 1 2  C M K ; 

4. Input the earthquake wave acceleration ga ; 

5. Initialize the parameters of the Newmark-β method N  and N ; 

6. Set the loading step 1I  ; 

7. Form the Ith  earthquake load vector t t t t
g g

   f Ma ; 

8. Initialize the displacements, velocities, and accelerations; 

0 u , 0 u ; 

0 1 1
( 1)
2

t t t t
N Nt

       a v a , 0 (1 ) (1 )
2

N N
t t t t

N N

t
  
     v v a  
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9. Set the iterative 1J   of the Ith  loading step; 

10. Update velocities and accelerations 

1
2

1J J
t t t t

N t
 

 


  a u a , 11J J
t t t t

N t
 

 


  v u v ; 

11. Judge elastic-plasticity state of every element and calculate the elastic-plasticity 
impact factor; 

12. Form the tangent stiffness matrix of structures K ; 
13. Compute the equivalent stiffness matrix and equivalent force vector; 

2

1 N

NN tt


  

  K K M C ; 

1 1
( ) { ( 1) }

2 2
t J J J JN N
g t t t t t t t t

N N N Nt
   

 
            f f M v a C v a ; 

14. Solve for the iterative displacement 1 u K f ; 

15. Update incremental displacements    u u u ;  

16. For every Gaussian integration point: 
a. Compute the incremental strains ε  

b. Compute the elastic-plastically predicted stress state ep ep
t  σ σ D ε  

c. If epσ  violates the yield criterion, perform the return mapping for the consistency 
model 

17. Check for convergence, if not, J←J+1, go to step 11; 
18. Update the loading step I←I+1, go to step 8; 
19. Output the seismic response analysis results.

Table 9. Summary of dynamic analysis 

4.3 Seismic response of arch dam 

4.3.1 Stresses in arch dams 

The dynamic response analyses of the arch dam are performed with three models: model I 
(linear elastic model), model II (rate-dependent William-Warnke three-parameter model), 
and model III (rate-independent William-Warnke three-parameter model). The maximum 
values of the first and the third principle stresses in the dam are shown in Table 10. Fig. 19 
shows the distributions of the third principle stresses obtained from the three models. It is 
seen that, in all three cases, the maximum compressive stress is the same and appeared at 
the bottom of the upstream face; the material remaines working in the elastic range. While, 
for the maximum tensile stress there is the marked difference among the calculated results 
of the three models. Owing to the plasticity of concrete, the maximal values of the first 
principal stresses of model II and III decrease with 37.7% and 44.5%, respectively, compared 
with model I. Because the dynamic tensile strength of concrete increases with the increase of 
strain rates, the maximal values of the first principal stresses of model II, taking into account 
the effect of strain rates, increase with 12.2% compared with model III. Fig. 20, Fig. 21 and 
Fig. 22 show the distributions of the first principle stress obtained from the three models. 
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model 
The first principal stress 

MPa 
The third principal stress 

MPa 

model I 5.17 -12.50 

model II 3.22 -12.50 

model III 2.87 -12.50 

Table 10. Maximal principal stress of arch dam 

 

 
(a) upstream face (b) downstream face 

Fig. 19. Distribution of the third principle stress (model I, II, and III), Mpa 

 
(a) upstream face (b) downstream face 

Fig. 20. Distribution of the first principle stress (model I), Mpa 

 
(a) upstream face (b) downstream face 

Fig. 21. Distribution of the first principle stresses (model II), Mpa 
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(a) upstream face (b) downstream face 

Fig. 22. Distribution of the first principle stresses (model III), MPa 

4.3.2 Strain and strain rate of arch dam 

The maximal equivalent strain of concrete in three cases are the same because the 

compressive strain of concrete plays a more important role in the equivalent strain of 

concrete in the dominant compressive stress states, although the tensile strain is important 

in the dominant tensile stress states, but the values are smaller than those for the 

compressive strain. Fig. 23 shows the distributions of the equivalent strain of the arch dam 

from the three models. It is clear that the maximal equivalent strain is 4.7510-4, and it 

appears at the bottom of the downstream face. Similarly, the maximal equivalent strain rates 

in the three cases are the same, and Fig. 24 shows the distributions of the equivalent strain 

rates of the arch dam from the three models. The maximal equivalent strain rate is up to 

3.4710-2s-1 and it also appears at the bottom of the downstream face. 

 
(a) upstream face (b) downstream face 

Fig. 23. Distribution of the equivalent strain (model I, II, and III) 

 
(a) upstream face (b) downstream face 

Fig. 24. Distribution of the equivalent strain rate (model I, II, and III), s-1 
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4.3.3 Plastic strain and plastic strain rate of arch dam 

The equivalent viscoplastic strain of concrete appears only on the tensile zones of the arch 
dam. Fig. 25 and Fig. 26 show the distributions of the maximal equivalent viscoplastic 
strains obtained from model II and model III, respectively. It is shown that the maximal 
equivalent viscoplastic strains appear on the bottom of the upstream face and that the strain 
rates has little effect. Fig.27 and Fig.28 show the distributions of the maximal equivalent 
viscoplastic strain rates obtained from model II and model III, respectively. Similarly, the 
maximal equivalent viscoplastic strain rate appears on the bottom of the upstream face but it 
decreases with 17.5% after taking into account the effect of strain rates. 

 
 
 
 
 
 

 
(a) upstream face (b) downstream face 

 
 

Fig. 25. Distribution of the equivalent viscoplastic strain (model II) 

 
 
 

 
(a) upstream face (b) downstream face 

 
 

Fig. 26. Distribution of the equivalent viscoplastic strain (model III) 
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(a) upstream face (b) downstream face 

 
 

Fig. 27. Distribution of the equivalent viscoplastic strain rate (model II), s-1 

 
 
 

 
(a) upstream face (b) downstream face 

 
 

Fig. 28. Distribution of the equivalent viscoplastic strain 
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5. Conclusions 

Based on the numerical results obtained, the following conclusions are drawn: 

1. Results indicate that the tensile and compressive strengths of concrete increase with 
increase of the rate of loading. The initial tangent modulus and the critical strain of 
concrete are independent of strain rate in tension but slightly increased as the strain rate 
increased in compression. Poisson’s ratio of concrete isn’t obviously dependent on the 
loading rate both in tension and in compression. 

2. Comparisons between the models and experimental data show that the consistency 
model may simulate directly the uniaxial dynamic behaviors of concrete. The dynamic 
responses of a simple-supporting beam show that dynamic responses of concrete beam, 
the displacement, the stress magnitude and distribution, change greatly after 
considering the effect of strain rate. 

3. In all three cases, the maximum values of the compressive stress are the same and the 
concrete remains working in the elastic range. The maximal values of the first 
principal stresses of the arch dam, taking into account the effect of strain rates, 
increase with 12.2% because the dynamic tensile strength of concrete increases with 
the increase of strain rates. There are no effects of strain rates on the maximal 
equivalent strain and the maximal equivalent strain rate of the arch dam. The strain 
rates have little effect on the maximal equivalent viscoplastic strain, while the 
maximal equivalent viscoplastic strain rate decreases with 17.5% after taking into 
account the effect of strain rates. 
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7. Symbol notation 

Symbol Description 

tf  dynamic tensile strength of concrete 

tsf
 static tensile strength of concrete 

cf  dynamic compressive strength of concrete 

tsf
 static compressive strength of concrete 

t  dynamic tensile strain rate 

ts
 quasi-static tensile strain rate 

c  dynamic compressive strain rate 

cs
 quasi-static compressive strain rate 

E  elastic modulus of concrete 

K  volume module of concrete 

G  shear module of concrete 
  Poisson’s ratio of concrete 
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ij  the stress tensor 

ijs  the deviatoric stress tensor 

ijr  the residual stress tensor 

m  the average stress 

m  the average shear stress 

ij  the strain tensor 

vp
ij  the viscoplastic strain tensor 

  internal variable 

  rate of internal variable 

  the viscoplastic multiplier 

t  weight function of tensile invariable 

c   weight function of compressive invariable 

F   yield function 

Q  plastic flow function 

1I
 the first invariant of stress tensor 

2J
 the second invariant of deviatoric stress tensor 

3J
 the third invariant of deviatoric stress tensor 

e
ijklD  elastic stiffness of concrete 

vp
ijklD  viscoplastic stiffness of concrete 
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