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1. Introduction 

Mitochondria may be considered an evolutionary product originating from the 

endosymbiotic process of an aerobic bacterium with a protoeukaryotic cell, which started 

about 2 billion years ago. This hypothesis was based on the similarities in DNA and protein 

synthesis machinery between prokaryotic and eukaryotic cells (Margulis, 1970). In 1890, 

Altmann, who termed this organelle the “bioblast”, concluded that these were elementary 

organisms for performing vital functions (Ernster & Schatz, 1981). Furthermore, in 1898 

Benda introduced the name “mitochondrion” from the Greek (Mitos: thread and Chondrion: 

granule). Other authors showed the appearance of these structures during spermatogenesis 

(Ernster & Schatz, 1981) and defined them as subcellular organelles commonly found in the 

cytoplasm, with essential functions of aerobic metabolism for eukaryotic cells. These 

organelles have a wide plasticity and mobility, allowing some modifications in shape. 

Mitochondrial movement into the cytosol has been associated with microtubules, which 

may determine organelle organization in different cell types (Yaffe, 1999). Mitochondria can 

form long filaments of mobile chains, as observed in cardiac muscle cells, or be fixed into a 

single position as studied in sperm flagella (Yaffe, 1999). The number of mitochondria per 

cell may also vary according to cell type, usually located in high ATP utilization regions 

such as cardiac muscle and liver (Frederick & Shaw, 2007; Scheffler, 2008). This organelle 

also occupies a considerable portion of the cytoplasmic volume, being essential for the 

evolution of a number of organisms. 

Mitochondria are also involved in several central metabolic pathways that are important for 

cell function, modulation of cytosolic Ca+2 signaling, determination of cell death (apoptosis) 

(Camara et al., 2011), aging and associated diseases (Kowald & Kirkwood, 2011), 

autophagous embryonic development (Ong & Hausenloy, 2010), as well as being a 

continuous source of superoxide and  reactive oxygen species (Stowe & Camara, 2009; 

Koopman et al., 2010). Nevertheless, the main function of mitochondria is to generate 

chemical energy sources (ATP) through oxidative phosphorylation (Saraste, 1999), acting as 

the organism’s “powerhouse”. Without the presence of this particular organelle, animal cells 

would depend on anaerobic glycolysis for their energy production, which would be 
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completely insufficient to meet demand. Mitochondrial metabolism of sugars is considered 

highly efficient, producing more energy than the glycolysis pathway. 

Each mitochondrion has its own DNA and RNA with a complete system of transcription 
and translation, which synthesizes only a few proteins (Yoon et al., 2010). The 
mitochondrial genome of different tissues  differs in size and gene content (Gray et al., 
1999). In mammals, the mitochondrial genome is composed of a circular DNA molecule 
that has been reduced to approximately 16.5kb in size, encoding genes for only 13 
proteins, all of them indispensable for electron transport chain functioning. The human 
mitochondrial genome is composed of a single double-stranded DNA molecule that 
curiously does not have an intron, but contains 37 genes essential to the mitochondrial 
respiratory function (Wallace, 1999). Moreover, two ribosomal RNAs and 22 transfer 
RNAs are absolutely crucial for the mitochondria translation system (Yoon et al., 2010). 
All other genes responsible for normal mitochondrial operations are encoded in the cell 
nucleus (Wallace, 1999). 
Mitochondria have a double membrane system and are structurally divided into four 
compartments: inner membrane, outer membrane, matrix and intermembrane space (Chan, 
2006), as represented in Figure 1. Several porin molecules are present in the outer 
mitochondrial membrane. Porins are transporter proteins, which form aqueous channels 
through the lipid bilayer (Schirmer, 1998). Thus, the outer membrane functions as a filter, 
being impermeable to molecules above 5,000 kDa (Weissig et al., 2004). However, larger 
proteins can enter the mitochondrion through an N-terminus signal sequence connecting it 
to a specific protein (outer membrane translocase), located in the outer mitochondrial 
membrane (Herrmann & Neupert, 2000). An outer membrane disruption can lead to a  
 

 

Fig. 1. Scheme of the structure and function of mitochondria by a diagrammatic 
representation of the Krebs cycle, electron transport chain and ATP synthesis. 
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diffusion of proteins into the cytosol, inducing possible cell death (Chipuk et al., 2006). The 
intermembrane determines the space between the outer and inner membrane. Some proteins 
enter the intermembrane space, but they do not show the ability to penetrate the inner 
membrane due to enhanced hydrophobicity (Yoon et al., 2010). 
The inner membrane is characterized by a major phospholipid structure termed cardiolipin. 
This structure consists of four fatty acids, allowing the membrane potentially to become 
impervious to almost all molecules (McMillin & Dowhan, 2002). The membrane is 
convoluted in form, due to the presence of numerous cristae, which tend to be projected into 
the matrix, considerably increasing the inner membrane area. Interestingly, mitochondria 
from heart muscle cells have three times more cristae than those from liver cells (Alberts et 
al., 2002). Possibly this difference occurs due to ATP demand for different cell types. Inside 
the inner membrane there is a widely varying number of transporter proteins, which 
provide limited permeability and assist the entry and exit of ions and molecules that are 
required or metabolized by enzymes located in the mitochondrial matrix (Herrmann & 
Neupert, 2000). In summary, the inner membrane proteins have basically three categories 
and corresponding functions: ATP synthase which produces ATP in the matrix, carrier 
proteins to regulate the passage of metabolites from within the matrix to outside it, and 
proteins involved in oxidation reactions in the respiratory chain. 
The matrix is considered the highly functional zone inside mitochondria, due to its 
responsibility for ATP production (Krebs, 1940). It also contains mitochondrial DNA, 
RNA and ribosome special carriers. The matrix contains a vast amount of the enzyme 
responsible for the tricarboxylic acid cycle (TAC), also known as the Krebs cycle. This 
produces NADH + H+ and FADH2, essential for ATP synthesis by electrons donated to 
the electron transport chain (Krebs, 1940). These electron pairs are transferred to an O2 

molecule to form H2O molecules. In this way, protons are loaded from the intermembrane 
space to the mitochondrial matrix by ATP synthase enzyme, yielding ATP for each proton 
loaded (Ernster & Schatz, 1981). 

2. Classic and novel techniques applied to the mitochondrial proteome 

Progress in mitochondrial research has been made with a range of molecular research 
tools that have been used to identify and compare several compounds. Proteins are one of 
the major molecules of interest within mitochondria, because their disturbance is directly 
responsible for several biologic modulations. Proteomics is the study of all proteins at a 
single given moment; it involves tools to identify and elicit the entire protein composition 
of a single tissue, cell or organelle (Wilkins et al., 1996). Proteomic tools have developed 
steadily, and each has been used in its time in mitochondrial proteome research, starting 
with the classic combination of IEF (isoelectric focusing) and SDS-PAGE (sodium dodecyl 
sulfate polyacrylamide gel electrophoresis) known as 2-DE (two-dimensional 
electrophoresis). Next came the DIGE (Differential Gel Electrophoresis) fluorescent 
method, and now tools include several gel-free (MudPIT) and novel peptide labeling 
techniques, in addition to complementary functional analysis methods (e.g. Blue Native 
and Native DIGE). 
The analysis of cell compartments and specific organelles has become more common among 
proteomics researchers, now that subcellular research has provided in-depth knowledge of 
specific cellular signaling and other related functions (Scheffler, 2008). Up to now, 
mitochondria have been one of the main organelles to be investigated with a wide range of 
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research tools (Lopez & Melov, 2002), which have generated valuable molecular data 
(Scheffler, 2008). The main interest driving mitochondrial research stems from the wide 
spectrum of important molecular signaling that this organelle performs within the cell and 
also the entire organism, including its crucial role in energy production (Ernster & Schatz, 
1981), calcium homeostasis (Deluca et al., 1962), programmed cell apoptosis (Liu et al., 1996) 
and several pathologies (Chan, 2006; Pagliarini et al., 2008). Furthermore, mitochondrial 
dysfunction may play a crucial role in neurological (e.g. Alzheimer’s, Parkinson’s) (Lovell et 
al., 2005; Jones, 2010), cardiovascular (e.g. Ischemia, heart failure) and muscular diseases 
(Kim et al., 2006; Finsterer & Stollberger, 2010), as well as in the development of cancer 
(Kamp et al., 2011) and aging processes (Dencher et al., 2007; O'Connell & Ohlendieck, 
2009).  
It is also known that the mitochondrion network within a multicellular organism may be 

coordinated by a proteome reservoir of thousands of polypeptides (~1500), which can be up 

or down-regulated and have not been fully covered until now (Meisinger et al., 2008). 

Therefore the cataloging of the entire organelle proteome is of inestimable value to 

biomedical research, and further understanding of molecular mitochondrial modulation of 

positive stimulus or pathological insults shows enormous pharmacological potential 

(Fearnley et al., 2007; Wang et al., 2009). By different proteomic methods, much progress has 

been made in this direction in order to  target and catalogue mitochondrial  proteins from 

different organisms, such as humans (Rabilloud et al., 1998; Lefort et al., 2009), rodents 

(Zhang et al., 2008; Doran et al., 2009), fungi (Grinyer et al., 2004) and plants (Taylor et al., 

2011). 

In addition to simple proteome cataloging, several studies have been carried out to compare 

mitochondrial proteomes from different tissues (Forner et al., 2006; Fang & Lee, 2009; Forner 

et al., 2009), as well as from organ structures (e.g. heart atria, ventricle) (Forner et al., 2009) 

and  mitochondrial  subpopulations (e.g. intermyofibrillar and subsarcolemmal) (Kavazis et 

al., 2009; Ferreira et al., 2010; Ferreira et al., 2010), with the aim of characterizing specific 

molecular profiles and functions. Using these tissues, specific proteome characterization 

during various biologic stimuli and disturbances, such as aging (Dencher et al., 2007; 

O'Connell & Ohlendieck, 2009), exercise (Kavazis et al., 2009; Egan et al., 2011) and oxidative 

stress (2008; Lee et al., 2008; Zhang et al., 2008) have also been investigated to attempt to 

answer the numerous questions concerning the disturbance and adaptation of 

mitochondrial homeostasis. 

Concerning the delicate process of organelle isolation and some proteomic analysis 

limitations, much has been achieved in surveying the mitochondrial proteome, as 

reviewed elsewhere (Mathy & Sluse, 2008). Classic protein detection methods, such as 2-

DE, have been improved. Moreover, other proteomical techniques have reached higher 

levels of accuracy; data collection has improved with sample labeling and gel-free 

analysis, such as shotgun proteomics performed by multidimensional chromatography 

(2D-LC-MS) directly coupled with high throughput mass spectrometry (Aebersold & 

Mann, 2003; Tao et al., 2009). By means of these classic and up-to-date techniques, 

mitochondrial proteins have also been confirmed by the functional proteomic approach 

using native electrophoresis (e.g. Blue Native PAGE and Native DIGE) to investigate 

protein-protein interactions and membrane protein complexes (Brookes et al., 2002), 

increasing insights into molecular expression and signaling within inner and outer 

mitochondrial compartments. 
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2.1 Proteomic gel-based techniques in mitochondrial research 

The bulk of mitochondria proteome research has been performed using 2-DE associated 

with MS (mass spectrometry) identification. By combining IEF and protein separation by 

molecular mass (SDS-PAGE), after the staining process 2-DE gels may reveal up to 3000 

protein spots (Lopez & Melov, 2002). The capacity to simultaneously resolve thousands of 

proteins and by this technique compare different proteomes is possibly the main strength of 

this technique, which has undergone constant improvement since its invention in the 

middle of the 70´s (Klose, 1975; O'Farrell, 1975). To overcome its various limitations, such as 

sample complexity, poor protein solubilizing (e.g. membrane proteins) and low resolution 

(e.g. hydrophobic and extreme acid or basic proteins) observed in 2-DE analyses, several 

upgrades have been developed, from sample preparation (e.g. protein extraction and 

solubilizing process) to gel conduction. Given the precision needed in mitochondrial 

proteomic analysis, these limitations represent a considerable barrier. Marty and Sluse 

(2008) reported that mitochondrial proteins appear mostly within the pH range of 3 to 11, 

and within the 15 to 100 kDa molecular mass range. Furthermore, several proteins from the 

electron transporter chain, which represent about 40% of inner membrane proteins 

(Schwerzmann et al., 1986), have high hydrophobic properties, a property that clearly makes 

IEF processes more difficult (Santoni et al., 2000). An incomplete proteome map may reflect 

a series of misconducted analyses and slightly erroneous insights, leading overall to a very 

poor understanding of mitochondrial processes.  

Moving on from the classic gel-based technique, the limitations positively promoted a series 

of upgrades in proteomic methods, leading mitochondriomics research to provide more 

accurate, qualitative, quantitative and functional proteome data. Development of several 

fluorescent staining methods and protein labeling prior to 2-DE separation as performed by 

the Difference Gel Electrophoresis method, known as DIGE (Unlu et al., 1997), responded to 

specific concerns about the qualitative and quantitative limitations of protein spot detection. 

The DIGE method is based on the incorporation of different fluorescent cyanide dyes 

(Cydye3, Cydye5 and Cydye7 by GE Healthcare) into lysine residue present in the protein 

samples (Byrne et al., 2009). Once each sample is labeled with a distinct fluorescent dye, 

which includes an internal standard (a mixture of all labeled samples), samples are resolved 

together by the same 2-DE experiment. As the gel is scanned, fluorescent excitation from 

each distinct dye is captured and overlapped for spot expression comparison between the 

other dyes and the standard signal, enabling the results to overcome possible intra-gel 

variability errors (Lilley & Friedman, 2004). In comparison to classic 2-DE, the DIGE 

technique has been successfully used by various research groups to shed some light on the 

mitochondrial proteome in a wide variety of organisms and physiological modulations 

(Jacoby et al., 2010; Egan et al., 2011; Glancy & Balaban, 2011). Because it overcomes the 

problem of data reproducibility, DIGE is the ultimate gel-based method and strongly 

recommended when protein quantification and comparison is desirable, as has been well 

reviewed (Mathy & Sluse, 2008). 

Most of the gel-based methods (2-DE and DIGE) started with treatments using strong 

solubilizing detergents (e.g. SDS, CHAPS, Sulfobetaines, Triton-X) and chaotropic agents 

(e.g Urea, Thiourea) as reviewed by Petriz et al., (2011). The use of such agents leads to a real 

limitation on gel-based analysis caused by denaturing processes, which prevent any 

functional and protein-cross-talk analysis. However, major protein complexes present in 

abundance in the mitochondrial membrane may be analyzed from a functional perspective, 
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as proposed by differential analyses, such as Blue-Native Electrophoresis (BN-PAGE) 

developed by Schagger and Von Jagow (1991). The main idea of BN-PAGE in mitochondrial 

research is first to separate membrane and other functional protein complexes by preserving 

enzyme activity using a non-denaturing gel. These entire complexes are then separated 

within a denaturating SDS-PAGE gel in order to divide protein complexes subunits by their 

molecular weight (Schagger & von Jagow, 1991). Brookes et al. (2002) have shown the great 

potential that this technique has demonstrated in functional proteomics for mitochondrial 

molecular signaling, protein-to-protein interaction and post-translational modifications, 

especially in respiratory chain proteins from the mitochondrial membrane. A variation of 2D 

BN-PAGE is the Native DIGE (Difference Gel Electrophoresis) technique (Dani & Dencher, 

2008), which couples the fluorescent dyes labeling technique to the previously described 

BN-PAGE (Dani & Dencher, 2008). DIGE analyses use fluorescent labeling and internal 

standards to enhance the accuracy of analyses. Thus, non-denaturing techniques have been 

well used (van den Ecker et al., 2010; Phillips et al., 2011), demonstrating that these 

techniques may contribute extensively to greater knowledge on the part that molecular 

signaling plays in mitochondrial functionality.  

2.2 Gel-free and proteomic straightforward methods 

Up-to-date gel-free proteomic techniques, such as LC/LC-MSMS (Reinders & Sickmann, 
2007; Lefort et al., 2009) have complemented gel-based experiments, leading 
mitochondrial molecular investigation to higher levels of data production and accuracy. It 
is well known that protein quantitation and low abundant protein detection have been 
among the major limitations on proteomic research. Fortunately, a series of gel-free 
methods have empowered this research by overcoming some of the main in-gel 
limitations and functioning as complementary tools for proteomic data mining. Gel-free 
methods are based on the separation of complex protein samples by liquid 
chromatography (e.g. reversed-phase, strong cationic exchange) followed by direct mass 
spectrometry analysis. When performed by more than one LC column  this entire process 
characterizes 2D-LC analysis, known as multidimensional protein identification 
technology (MudPIT) (Link et al., 1999). MudPIT has been recognized as a high 
throughput method with enhanced ability to identify thousands of proteins within a 
single experiment (Motoyama & Yates, 2008). To enhance multidimensional 
chromatography for MS analysis, a series of chemical molecular labeling methods were 
developed to facilitate proteomic mining and especially quantitative proteome 
comparisons. Basically, different proteome samples are mixed with isobaric or stable 
isotope chemical tags, digested with proteolytic enzymes such as trypsin and then loaded 
together into MudPIT, enabling quantitative comparisons (Aebersold & Mann, 2003). 
ICAT (Isotope-Coded Affinity Tags), SILAC (Stable Isotope Labeling with Amino acids in 
Cell culture) and iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) are the main 
quantitative-labeling methods for gel-free methodology, permitting comparisons between 
different samples (2 to ~4) within the same experiment, as well as increasing the amount of 
quantitative proteome data that can be gathered by making the final process of peptide MS 
identification easier (Lovell et al., 2005; Jin et al., 2007; Meany et al., 2007). Each of these 
labeling techniques has its own peculiarity; for instance, the SILAC method is based on the 
incorporation of “light” or “heavy” isotope agents (2H, 13C, 15N) within distinct cell cultures, 
which will further synthetize labeled proteins for proteomic comparisons. SILAC was first 
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described by Ong et al., (2002) to quantify protein expression differences from mammalian 
cells through a differentiation process. This method is also known as metabolic stable-
isotope labeling and has been used to investigate thousands of mitochondrial proteins 
identified by a variety of studies in pathology, such as Parkinson’s treatment (Jin et al., 
2007), human cytomegalovirus infection (Zhang et al., 2011) and diabetic sensory 
neuropathy etiology (Akude et al., 2011).  
Another well-established labeling method, ICAT, was first described by Gygi et al., (1999) to 
quantify proteome modulation of yeast metabolic function under glucose-repressed 
stimulus. The ICAT technique labels cysteine (Cys) side chains with “light” or “heavy” 
isotope tags, permitting intensity pair comparison from peptide ions from distinctly labeled 
protein samples. This labeling technique has also been well implemented in mitochondrial 
analysis (Jiang et al., 2005; Lovell et al., 2005), but ICAT fails to identify non-cysteine-
containing proteins, which is its major technical limitation.  
A vital property of gel-free methods (2D-MSMS) is the generation of a great number of MS 
spectra, which may be further quantified by several peptide tagging methods (e.g. ICAT, 
SILAC, iTRAQ). Nevertheless, the identification and analysis of proteins from marked 
peptide spectra is usually time-consuming. Overcoming this limitation, the ultimate labeling 
method is iTRAQ, which has made the entire process less laborious. Another major 
improvement brought by this method is the ability to analyze up to four different protein 
samples in the same experiment, leading to a single MS spectrum peak (Ross et al., 2004). By 
labeling the peptides’ N-termini iTRAQ is a successful tool in mitochondrial proteome 
development, principally within quantitation research design (Jullig et al., 2007; Kavazis et 
al., 2009; Glancy & Balaban, 2011). Gel-based and gel-free methods for mitochondrial 
analysis are schematically represented in Figure 2. Undoubtedly, mitochondrial proteomic 
research still leaves several gaps. It is clear that the classic proteomic approach alone will not 
be enough to fill these gaps. The two strategies together are likely to be the most complete 
and secure path to successful mitochondrial proteome research. 

3. Proteomic tools applied to understanding mitochondria: The effects of 
drugs 

The mitochondrion plays a key role in normal and healthy cells. However, under 
abnormal conditions this organelle can also be involved in cell dysfunction and death. 
Mitochondrial dysfunction may be implicated in a large number of diseases, such as 
cancer, neurodegenerative diseases (such as Alzheimer's), diabetes, ischemia-reperfusion 
injury and aging (Wallace, 1999). The identification of mitochondrial proteins may 
therefore be a beneficial tool in drug development and also to diagnose targets for such 
diseases. The treatment of these illnesses involves the drug-mitochondrial interaction that 
acts in the three main mitochondrial functions: energy production, reactive oxygen 
species fabrication, and cell death control via both apoptotic and necrotic pathways 
(Green & Reed 1998; Kristal & Brown 1999). These organelles have a superoxide radical 
anion source, which arises from oxidative phosphorylation and can produce reactive 
oxygen species and also their precursors. Although protective mechanisms are known to 
regulate these molecular species, reversible and irreversible oxidative damage to proteins, 
nucleic acids and lipids may occur. Under elevated oxidative stress conditions, such as 
cell aging or disease, these oxidative lesions can be accumulated and have drastic 
consequences for cellular function, leading ultimately to senescence, environmental  
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Fig. 2. Proteomic tools for mitochondrial analysis. Schematic workflow of the gel-based (red) 
and gel-free (green) proteomic tools used to compose the mitochondrial proteome after 
extraction process (blue).  

modification, for example in the S-nitrosylation process or the oxidation of cysteine to 

sulfenic acid, and also to cell death (Gibson, 2004).  

In this context, mitochondria are a pharmacological target for drugs that modulate oxidative 
stress (Murphy & Smith, 2000). There are various compounds that can target oxidative stress 
in mitochondria. Coenzyme Q and vitamin E are natural compounds that are both used as 
dietary supplements. MitoQ and MitoVitE are based on triphenylphosphorium 
modifications of coenzyme Q and vitamin E, respectively. They are more potent than their 
natural sources and have been suggested for treating Friedreich’s ataxia, since they prevent 
cell death (Jauslin et al., 2003). Another pharmacological example is flupirtine, a nonopioid 
analgesic drug with mitochondrial antioxidant activity, which acts as a free radical 
scavenger (Schluter et al., 2000). Flupirtine has been shown to inhibit ischemic injury 
(Osborne et al., 1996) and apoptosis, and may be protective against Alzheimer’s and prion 
disease (Perovic et al., 1998). 
In spite of the role of mitochondria in different diseases and their potential target for some 
disease treatments, there is little information about the proteome associated with drug-
mitochondrial interaction and target biomarker drugs for treatment design. Based on 
proteome analysis, with 2D-gel analysis followed by MALDI TOF MS or ESI MS/MS for 
protein identification, Arrell et al., (2006) analyzed  pharmacologically mimicked ischemic 
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preconditioning. This pathology is characterized by resistance to ischemia reperfusion 
injury in response to previous short ischemic episodes. In this study, the authors mimicked 
preconditioning, treating isolated rabbit ventricular myocytes with adenosine or diazoxide. 
They observed a distinctive pattern of affected proteins consistent with specific perturbation 
of mitochondrial metabolism through changes to a selected number of mitochondrial 
protein complexes, with specificity and complexity of the drug response. Compared to the 
vehicle-treated controls, expression of 28 significantly altered proteins was observed and 19 
of them were identified. The majority of these proteins are involved in mitochondrial 
energetics, including subunits of enzymes from the tricarboxylic acid cycle and oxidative 

phosphorylation complexes. Among these changed proteins, the -subunit of ATP synthase 
was adenosine-phosphorylated after 60 min of treatment. These results prove that adenosine 
and diazoxide treatment acts in different cell parts, especially in the mitochondria (Arrell et 
al., 2006). 
Regarding the anti-inflammatory agents that target mitochondria, the proteome-related 

literature has reported some data about simvastatin. Simvastatin is a 3-hydroxy-3-

methylglutaryl coenzyme A reductase inhibitor that provides neuroprotection, acting 

against cell loss resulting from strokes (Law et al., 2003), Alzheimer’s disease (Vega et al., 

2003), Parkinson’s disease (Rajanikant et al., 2007) and traumatic brain injury (Lu et al., 

2004), all of which are pathologies that target mitochondria. In the same line, Pienaar et al., 

(2009) compared rat mitochondrial proteins pre-treated with simvastatin for 14 days, 

followed or not by a unihemispheric injection of a mitochondrial complex S inhibitor. The 

authors identified 24 different mitochondrial proteins by mass spectroscopy, which 

represented many facets of mitochondrial integrity, with most of them forming part of the 

electron transport chain machinery (Pienaar et al., 2009). These results demonstrated that the 

simvastatin-mitochondrial interaction may contribute to beneficial effects, especially when 

associated with statin use.  

Research with cancer has shown that cancer cells are adapted to fast growth and 

proliferation in acid pH conditions and low oxygen tension (Griffiths, 2001). Cancer cells 

have a mitochondrial defect in oxidative phosphorylation, and this can be reversible. 

Therefore, mitochondrial-drug interaction in cancer pathology should divert energy 

production from the anaerobic path to oxidative phosphorylation. The effect is to decrease 

nuclear ATP, leading to a consequent reduction in cell proliferation, so that the tumor cells 

begin cellular differentiation and subsequently undergo cell death and apoptosis (Harris et 

al., 2000).  

Neoplastic drugs that target different mitochondrial proteins are already on the market for 

the treatment of various types of cancer. One of these, doxorubicin, also known by the 

trademark name Adriamycn, is an anthracycline antibiotic and extremely effective 

antineoplastic agent used in a wide variety of solid cancers and hematological malignancies 

since the early 1960’s (Di Marco et al., 1969). Hammer et al., (2010) analyzed proteomically 

the doxorubicin-induced changes in a hepatocellular carcinoma cell model, using 2D DIGE, 

liquid chromatography coupled with electrospray ionization and a hybrid quadrupole 

linear ion-trap and Fourier-transform ion-cyclotron-resonance mass spectrometry (LC-ESI-

LTQ-FTICR-MS) and nano-LC coupled offline to MALDI-TOF/TOF-MS (LC-offline-

MALDI-TOF-TOF-MS.) These methods identified 155 different proteins that could be 

assigned to a wide variety of biological processes, compared to non-treated control cells. 

Functional analysis revealed major influences of doxorubicin on proteins involved in 
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protein synthesis, DNA damage control, electron transport/mitochondrial function and 

tumor growth.  
Further, as regards mitochondrial proteins, the authors above observed that doxorubicin 
increases the Bax level (apoptosis regulator), which is involved in cytochrome C release 
from mitochondria and in turn caspase activation and decreased expression of Bcl-2. 
Oxidative stress induction was also shown by the enhanced levels of ferredoxin reductase 

and transferring receptor protein 1 and decreased levels of ERO1-like protein-. Proteins 

involved in -oxidation, such as acyl-CoA dehydrogenase, acetyl-CoA carboxylase 1 and 
hydroxymethylglutaryl-CoA synthase, were also increased in the doxorubicin-treated 
group. These results demonstrated that application of doxorubicin led to up-regulation of 
proteins involved in adaptation to oxidative stress and maintenance of cell integrity 
(Hammer et al., 2010).  
Doxorubicin is widely used in drug combination strategies for non-Hodgkin lymphoma 
therapy (Multani et al., 2001). Jiang, Sun et al., (2009) used 2D-DIGE in combination with 
ESI-MS/MS to analyze changes in mitochondrial protein expression in controlling Raji 
(lymphoblast-like cells) and doxorubicin-treated Raji cells. Defects in the mitochondrial 
antioxidant defense system, DNA repair, and oxidative phosphorylation may be the main 
mechanisms involved in the effect of doxorubicin on the mitochondria of Raji cells. 
Imperfections in the mitochondrial antioxidant defense system have dual effects on the 
anticancer mechanism and cardiac toxicity. The authors also found numerous proteins 
associated with significant chemo-resistance to doxorubicin, including heat shock protein 
(HSP) 70, prohibitin and ATP-binding cassette B6 transporter isoform. The reported results 
identified several biomarkers with the potential to enable prediction of anticancer therapy 
response (Jiang et al., 2009). 
Another example of a highly potent chemotherapeutic drug that interacts with mitochondria 
is cisplatin, commonly used for a variety of human malignancies, such as testicular, 
prostate, ovarian, cervical, lung, and colon cancers (Wang & Lippard, 2005). Cisplatin 
cytotoxicity is primarily mediated by its ability to cause DNA damage and apoptotic cell 
death (Siddik, 2003). Zhang et al., (2009) demonstrated, by different experimental methods, 
together with proteome analysis, that the induction of phospholipase A2-activating protein 
(PLAA) promoted cisplatin-associated apoptosis in cervical carcinoma HeLa cells by four 
pathways: activation of phospholipase A2 and accumulation of arachidonic acid, which 
causes mitochondrial damage; down-regulation of clusterin, a cytoprotective protein which 
promotes chemoresistance; upregulation of IL-32, which causes apoptosis in HeLa cells; and 
activation of JNK/c-jun signaling, which is an established inducer of Fas ligand expression 
and apoptosis mediated receptor (Zhang et al., 2009). 
Analgesics also interact with mitochondria. The literature has reported the widely used 
analgesic acetaminophen and its mitochondrial interaction, including the fact that 
acetaminophen overdose may cause severe centrilobular hepatic necrosis in experimental 
animal models and humans (Davidson & Eastham, 1966). Ruepp et al., (2002) explored 
acetaminophen overdose effects in mitochondria from animal model liver by genomic and 
proteomic tools. Proteomics showed that protein changes in mitochondria were present at 
15 min post injection, thus preceding most of the gene regulations. The decrease in ATP 

synthase subunits and -oxidation pathway proteins indicated a loss of energy production. 
Since mitochondrial morphology was also affected very early at top dose, they concluded 
that acetaminophen overdose was a direct action of its known reactive metabolite N-acetyl-
p-benzoquinone imine, rather than a consequence of gene regulation (Ruepp et al., 2002).  
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Antipsychotic drugs are another kind of medication that target mitochondria. Psychotic 
brains present anomalies in their mitochondria, including mitochondrial dysfunction or 
abnormal cerebral energy metabolism, which may play an important role in the 
pathophysiology of schizophrenia. Together with this, mitochondrial energy metabolism 
might be disturbed by the antipsychotic drugs used (Modica-Napolitano et al., 2003). 
Various antipsychotic drugs have been available for treatment: chlorpromazine (CPZ), 
was in the first generation and presents serious side-effects (Freedman, 2003); clozapine 
(CLZ), the first atypical antipsychotic drug to present more antipsychotic effects without 
the adverse mobility effects of the first-generation drugs (Freedman, 2003); and quetiapine 
(QTP), an atypical antipsychotic drug that usually acts on both dopamine receptors and 
serotonin receptors (Martorell et al., 2006). Comparative proteomics of all mitochondrial 
proteins from the cerebral cortex and hippocampus of a rat model (Sprague-Dawley rats) 
in response to CPZ, CLZ and QTP antipsychotic medication demonstrated 14 
differentially expressed different proteins. Six of them belong to the respiratory electron 
transport chain of oxidative phosphorylation, showing significant changes in protein 

quantity including NADH dehydrogenase 1  subcomplex 10, NADH dehydrogenase 
flavoprotein 2, NADH dehydrogenase Fe-S protein 3, F1-ATPase beta subunit, ATPase, H+ 
transporting, lysosomal, beta 56/58 kDa, isoform 2 and ATPase, H+ transporting, V1 
subunit A, isoform 1; demonstrating antipsychotic drug-mitochondrial interaction (Ji et 
al., 2009). 
Dietary supplements can also act on the mitochondrial proteome. Epidemiological studies 
suggested that the consumption of soy-containing foods has the ability to prevent or to slow 
down the development of cardiovascular syndromes (Zhang. X, 2003). A systematic review 
suggested that a diet supplemented with soy protein isolate containing isoflavones reduces 
low-density lipoprotein (LDL) and cholesterol (critical risk factor in the development of 
cardiovascular disease), but no effects on triglycerides or high-density lipoprotein 
cholesterol contents were observed (Cassidy & Hooper, 2006). Proteome analysis revealed 
that the LDL-induced alterations of numerous proteins were reversed by the soy extracts 
and also by the combination of genistein/daidzein soy isoflavones. However, both 
treatments regulated only three proteins functionally linked to mitochondrial dysfunction 
and were also connected to reducing the generation of oxidized-LDL-mediated 
mitochondrial reactive oxygen species, which could induce damages.  
Several reports demonstrate the role of specific foods in mitochondrial function (Fuchs. D et 
al., 2007). A nutrient-sensing target of the rapamycin pathway appears to have a conserved 
role in regulating life span. It has been demonstrated that the reduced nutrient-sensing 
target of rapamycin signaling extends yeast’s chronological life-span by increasing 
mitochondrial oxygen consumption, in part by up-regulating mtDNA-encoded oxidative 
phosphorylation subunit translation (Bonawitz et al., 2007). These data demonstrate that 
mitochondrial dysfunction could also be related to aging. Besides, it has been demonstrated 
by 2D DIGE and MALDI MS/MS that the nutrient-sensing target of rapamycin signaling 
has a global role in regulating mitochondrial proteome dynamics and function (Pan & 
Shadel, 2009). 
Another proteomic field that improved the understanding of drug-mitochondria 
interaction is in the elucidation of drug targets and the discovery of mechanisms of 
resistance to different pathogens. Plasmodium falciparum is responsible for approximately 
247 million cases of malaria and one million deaths each year (WHO, 2011). The drug 
doxycycline is currently one of the recommended chemoprophylactic regimens for 
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travellers visiting malaria-endemic areas in southeast Asia, Africa and South America 
(Gras et al., 1993). The emergence of P. falciparum resistance to most anti-malarial 
compounds has highlighted the urgency to develop novel drugs and to clarify the 
mechanisms of anti-malarial medications currently used. In this study, the authors 
analyzed protein expression changes by 2D-DIGE and iTRAQ methods in the schizont 
stage of the malarial parasite, following doxycycline treatment. Although some of these 
proteins have already been described as being deregulated by other drug treatments 
(Lasonder et al., 2008), numerous modifications in protein levels seem to be specific to 
doxycycline treatment, suggesting that apicoplasts and mitochondria are the main targets 
of doxycycline (Briolant et al., 2010).  
Despite the progress made in these combined efforts, human mitochondrial databases have 

not yet been fully exploited to identify or target new candidates for drug development. In 

addition, the proteome of different pathologies and also the interaction between drug-

pathology proteins related to pharmacological action and side effects should be further 

studied. On the other hand, proteomic tools can help to understand this important protein 

relation better, with a view to designing mitochondrial biomarkers that may be useful in 

drug screening, clinical diagnosis, treatment follow-up and in discovering mechanisms of 

drug resistance (Figure 3). 

 

 

Fig. 3. Summary of main pathologies and drugs related to mitochondria, together with the 
main proteomic tools described in the studies above, as well as the proposed targets of this 
triple association. 
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4. Mitochondrial proteomics applied to exercise research 

As reviewed by Lopez and Melov (2002), several studies have shown the characterization 
of complex mixtures of mitochondria proteins expressed in diseased and healthy samples, 
leading to a further understanding of their functions in metabolic or physiological 
processes. This approach has reinforced protein research, leading to important progress in 
the study of mitochondrial functions and cognate molecular signaling. It is well known 
that exercise leads to biological adaptations that are highly specific and directly 
dependent on duration, frequency, intensity and stimulus nature, leading this process to 
require intensified oxygen demand (Hawley et al., 2011). As is recognized, one of the most 
important contributions of mitochondria is ATP synthesis, through oxidative 
phosphorylation (OXPHOS). Therefore, it seems obvious that a large range of decisive 
phenotype modulations associated with exercise occur within mitochondria. Despite the 
great importance of the mitochondrial proteome in several physiologic adaptations, there 
are few data and many questions remaining vis-à-vis molecular signaling, interaction and 
activity following exercise stimulus.  
In this perspective, Bo, Zhang and Ji (2010) indicated that exercise not only raises 
mitochondrial OXPHOS, but also exerts profound influences on mitochondrial morphology 
and biogenesis, being one of the most important influences on the fusion-fission process, 
whose action is responsible for continuous  mitochondrial morphology remodeling. The 
mitochondrion has been seen as a dynamic networking organelle in which fusion and 
fission are intrinsic coupled processes. This process supports deletions of animals’ damaged 
mitochondria according to organelle size (Kowald & Kirkwood, 2011). The complete process 
of mitochondrial fusion-fission has not been thoroughly elucidated, however, because there 
are many proteins involved in execution or modulation that remain to be described. 
Nevertheless, the mitochondrial dynamic appears to be specifically regulated depending on 
cell type or by the given function of certain tissues (Liesa et al., 2009). Mitochondrial fusion 
is a mechanical two-step process, where the outer and inner mitochondrial membranes are 
fused. This process depends on membrane potential and also the presence of GTP 
molecules, and is coordinated by optic atrophy gene 1 (OPA1)  and mitofusins (Mfns), 
which promote the fusion of the lipid membrane (Liesa et al., 2009; Zorzano, 2009; Otera & 
Mihara, 2011). These proteins carry out various activities in promoting fusion and 
modulating the mitochondrial membrane (Zorzano, 2009). Moreover, according to the same 
author, fission is coordinated by dynamin-related protein 1 (Drp1) and Fission 1 homologue 
protein (Fis1) that completes these events. 
Mitochondrial dynamics plays an important role in organelle functionality, contributing 
to an efficient bioenergy supply. The interruption of such processes leads to loss of 
mitochondrial activity and further diminished OXPHOS, suggesting its essentiality for 
mitochondrial function (Misko et al., 2010; Kowald & Kirkwood, 2011) and its 
contribution to the development of some neurodegenerative diseases (Westermann, 2010). 
Dynamic modifications in mitochondrial fusion-fission proteins during a session of 
extended exercise with incremental duration leads to a decrease in mitofusin Mfn1/2 
expression and also an increase in Fis1 expression (Bo et al., 2010). According to the same 
authors, these alterations are related to exercise intensity, suggesting that fission may play 
a compensatory role for OXPHOS injury through improving glucoses and pyruvate 
uptake. This fact could maintain energy supply and prevent lactate accumulation, 
delaying the fatigue process associated with the enhancement of H+ concentration. So it is 
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possible that in severe exercise mitochondrial fission may be a powerful indicator of 
muscle damage (Bo et al., 2010).  
The role of exercise in cardiac health promotion has been well described in literature 
(Ascensao et al., 2007). This cardioprotective phenotype, normally associated with 
endurance exercise, seems to be related to increased myocardial antioxidant capacity 
(Kavazis et al., 2009). Oxidative stress resulting from exercise seems to be part of 
physiological adaptation. Severe exercise intensities activate a cascade of intracellular 
sources for reactive oxygen species (ROS) and it is clear that muscle adaptation depends on 
this process. However, it is important to observe that excessive ROS production can 
negatively influence exercise performance and can also lead to long-term health 
consequences (Bailey et al., 2004; Sahlin et al., 2010; Sun et al., 2010). The mechanism of 
increased ROS production during exercise is not totally clear, but experimental evidence 
suggests that mitochondria are the main source of ROS production during exercise (Di Meo 
& Venditti, 2001; Fernstrom et al., 2007). ROS levels are also described as depending on 
oxygen concentrations, and an additional electron accepted during energy production is 
used to create superoxide, a more reactive form of oxygen, which can be converted to 
hydrogen peroxide (H2O2) (Sarsour et al., 2009). Animal cells have additional antioxidant 
enzymes (e.g. catalase, glutathione peroxidase), and the newly identified family of 
peroxidases (e.g. PRDX) to neutralize H2O2 (Chang et al., 2004). Peroxidases are a family 
with at least six isoforms in mammalian cells. One of these is the mitochondrion-specific 
isoform, PRDXIII, which acts in defense against oxidative stress caused by H2O2 produced 
during the mitochondrial respiratory chain process (Kavazis et al., 2009). By using the 
iTRAQ technique, Kavazis et al., (2009) demonstrated a left ventricular remodeling after 
endurance exercise training in preconditioned animals. This study has shown the up-
regulation of PRDXIII in subsarcolemmal mitochondrial subfraction, demonstrating a 
possible role of PRDXIII in heart remodeling. Exercise has also been demonstrated to reduce 
oxidative stress and dysfunction of mitochondria after myocardial infarction. 
ATP production is well described as declining with age (Drew & Leeuwenburgh, 2003; 
Drew et al., 2003; Short, 2005) leading to metabolic impairment, so endurance exercise seems 
to be an important agent in improving and preserving mitochondrial function. Using mass 
spectrometry methods and the iTRAQ approach, Lanza et al., (2008) demonstrated that 
tricarboxylic cycle enzymes and electron transport protein expression were down-regulated 
in older sedentary people when compared to younger subjects. On the other hand, 
endurance-trained elderly men exhibited an up-regulation of those proteins, suggesting that 
the expression level of key mitochondrial proteins may be a primary determinant for ageing. 
Thus, diminished oxidative capacity and regular endurance exercise appear to be beneficial 
in improving ATP synthesis, partially reversing some metabolic impairment caused by 
aging. Recently, Egan et al., (2011) used the 2-D DIGE technique to demonstrate that 
adaptation of skeletal muscle to endurance exercise occurs within only 7 days of training 
with an increase in ATP generation.  
Exercise is therefore recognized as an important agent in improving health, and it is also an 
auxiliary in numerous medical treatments and therapy. These findings about exercise have 
led to a better perception of the plasticity of skeletal muscle, mainly by the modulation of 
the mitochondrial proteome, contributing to understand muscle sensitivity to exercise 
stimulus. All of these results obviously indicate that phenotype changes associated with 
exercise are linked directly to mitochondrial proteome modulation. This fact makes 
mitochondrial research a promising field in sports and medical science. 
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5. Conclusion 

In summary, data reported here clearly show the enormous importance of mitochondria in 
multiple processes such as drug metabolism and exercise. These processes could be better 
understood by the use of genomic and proteomic techniques, which are constantly 
improving. In this view, the use of such technologies could bring real benefits in 
physiological understanding and in the improvement of biotechnological research related to 
drug design and activity. 
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