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1. Introduction 

Proteomics was developed in the early 1990s to allow proteins expressed by cells and tissues 
to be systematically studied (Celis et al., 1999; Arrell et al., 2001). The word proteome was 
coined by Marc Wilkins et al (Wilkins et al, 1996) from the words “protein and genome”. It 
is therefore defined as protein equivalent of the genome. Generally, unique spectrum of 
proteins is only synthesized by specific cell types, for example amylase is secreted by the 
parotid gland, insulin by the pancreas and thyroxin by thyroid follicles. Protein synthesis is 
a complicated process formed by the different combination and length of the 20 unique 
amino acids found in our body (Arnstein, 1965). For example, following the transcription of 
genes encoded in the DNA, the mRNAs translocate into the cytoplasm where they are 
translated into a specific type of protein by the ribosomes (Lengyel, 1966). This is then 
followed by post-translational modification of the peptide chain to configure the protein so 
that it becomes biologically active. Post-translational modifications of proteins involve 
glycosylation, alkylation, methylation and sulfation (Blundell et al., 1993, Fleischer, 1983). 
The co- and post-translational modifications allow the protein to be transported and 
secreted during cellular homeostasis (Finnerty et al., 1979; Mao et al., 2011). In this chapter, 
we have described the comparative 2-dimensional electrophoresis (2-DE) proteomics 
workflow for protein identification by mass spectometry. Comparative proteomics was used 
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to identify proteins that were differentially expressed in the tissues after treatment with 
various small molecules and siRNAs. 

2. Proteomics research and applications 

Protein properties are diverse and complex. They are dynamically influenced by 
physiological change in their environment, such as hormones, factors present in 
inflammatory response and enzymes activated by the presence of drugs. Proteomics is 
founded on three basic procedures: (1) the isolation and separation of proteins from cells 
and tissues, (2) the identification of the proteins by mass spectrometry and (3) the resolution 
of analyzed protein peptides by bioinformatics. Advancement in proteomic technologies has 
allowed researchers to investigate the proteome of many diverse biological systems – 
allowing breakthroughs to be made in biomedical and biological sciences. Proteomics has 
also enabled the identification of important biomarkers of many human diseases and allows 
the discovery of novel targets for drugs. In this section, we will to discuss how proteomic 
technologies have been applied in biomedical sciences research and the limitations 
encountered. 

2.1 History of protein research 
Swedish biochemist Pehr Victor Edman first developed the technique called Edman 
Degradation which allowed the amino acid sequence in peptides to be elucidated (Edman, 
1950). Determination of the protein structure could be performed under micro scale. Pehr 
Victor Edman also developed an instrument, the protein sequenator, which allowed the 
amino acids sequence to be determined following Edman degradation reaction (Edman and 
Begg, 1967). This sequenator was commercialized by the company Beckman. The discovery 
popularized the studying of protein chemistry. However, there are several disadvantages 
associated with this method. Firstly, the technique can only accurately determine amino acid 
sequences up to 50-60 residuals after using Edman reagent, phenyl isothiocyanate for 
degradation. Secondly, the peptide N-terminal, with NH2-group, has to react with the 
Edman reagent. Thirdly, sequencing can only work on a single pure peptide and not a 
protein mixture. Finally, only the primary peptide structure can be determined but not 
information on the secondary structure, such as the position of disulfide bridge. 
Nevertheless, it has the advantage that only small quantity (10-100 pico-moles) of peptide is 
needed for the Edman reaction and can be performed directly from PVDF membranes. For 
its time, it was a pioneering and sophisticated method for studying protein chemistry, 
allowing the important amino acid sequence of hormones to be discovered (Niall et al., 1969 
and Birr and Frank, 1975). 
In the early 1970s, mass spectrometry was used to try and resolve all the peptide sequences 
derived from a protein mixture (Lucas et al., 1969; Morris et al, 1971). This early work has 
now developed leaps and bounds and protein mixtures can routinely be analyzed by 
computer aided high resolution mass spectrometry (MS). Consequently, John Fenn was 
awarded the 2002 Nobel Prize for his work in developing the electrospray ionization for 
mass spectrometry which provided a new platform for protein research (Fenn et al., 1989, 
2002). The electrospray ionization mass spectrometer can rapidly, accurately and sensitively 
analyze peptide sequences from recombinant proteins, large biomolecules, protein mixture 
and body fluids (Chowdhury et al., 1990; Andersen et al., 1996; Bergquist et al., 2002). The 
parallel development of protein databases, search engines and new softwares has made it 
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now even easier to conduct proteomic studies. Protein databases are essential tools that 
allow the matching and identification of peptides from peak spectrums obtained from MS 
studies. In particular, the Protein Prospector (Chalkley et al., 2005) and Mascot (Perkins et 
al., 1999) databases are user-friendly and contain many years of interpreted MS data for 
protein identification.  

2.2 New era in studying the protein profile 
Protein chemistry has now shifted to studying the proteome which permits a better 

understanding of interaction between cells, hormones with cells and bioactive molecules with 

cells. Profiling of protein mixtures is still difficult, despite recent development in using a 
partial enzyme digestion strategy and advancement in instrumentation - such as electrospray 

ionization tandem (triple quadrupole) and mass spectrometry (ESI-MS/MS) (Ceglarek et al. 
2009), quadrupole ion trap MS (Schwartz and Jardine, 1996) and Matrix-assisted laser 

desorption/ionization-time of flight mass spectrophotometer (Maldi-TOF MS) (Hillenkamp et 
al., 1991; Andersen et al., 1996). Studying the proteome also depends on the use of two 

dimensional electrophoresis (2-DE) (O’Farrell, 1975). This technique allows complex mixture of 
proteins found in cells to be separated into individual protein spots by isoelectrical focusing 

(IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteinase 
inhibitors are always added to protein lysates freshly prepared from cells or tissues to prevent 

protein degradation. Contaminants such as phospholipids, nucleic acid and ionic molecules 
are also present and can be removed by gel filtration, dialysis and protein precipitation. 

Although O’Farell improved the IEF procedure, he used non-equilibrium pH gradient 
electrophoresis which cannot be reproducible from batch to batch - as the pH gradient is 

difficult to maintain during IEF. However, Bjellqvist et al. (1982) developed the immobilized 
pH gradients (IPG) method which replaced the use of the carrier-ampholyte. Development of 

the IPG strip was a milestone in proteomics and is now widely used in resolving individual 
proteins from complex protein mixtures (Weiss and Görg, 2009). In the IPG strip, proteins 

migrate under a high electrical field (up to 5000V) but always stop at same pI point. If several 
protein spots co- exist within the same pI, then a wider range of IPG strip could be flexibly 

used. SDS-PAGE is used to separate the protein spots according to their molecular weight. The 
limitation with this method is that it can only resolve proteins ranging from 120 kDa to 10 kDa. 

The protein spots resolved in the 2-DE gel need to be stained before it can be analyzed. Gels 
are most commonly stained with coomassie blue because it is inexpensive, and compatible for 

MS analysis. However, the sensitivity of this staining method is limited and cannot stain-up 

protein spots lower than 30 g. Silver staining is also another method widely used for 

revealing the resolved protein spots in the gel and only need 1 g of protein. Fluorescent dyes 
(CyDyes) have now been developed to label protein samples for Difference Gel 
Electrophoresis (DIGE). The DIGE technique is very sensitive, with protein detection range 

down to 125 pg per spot, giving it high precision in terms of protein quantification and use in 
comparative proteomics (Conrotto and Souchelnytskyi, 2008; Larbi and Jefferies, 2009). 2-

DE/MS is now a well-established technique for large-scale protein expression studies. 
However, there are drawbacks with the method which hold it back from being developed for 

clinical diagnosis. Drawbacks such as the high abundance of plasma and albumin present in 
biofluids which interfere with detection of lower abundant proteins. Resolving hydrophobic, 

very acidic and basic proteins is also a major deficiency with the 2-DE/MS technique (Altland 
et al., 1988;  Görg et al., 2009). 
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3. Breakthroughs in proteomics 

Proteins are separated according to their isoelectrical points and molecular weights by 2-DE. 

In addition, their m/s ratio and peptide sequences in MS can resolve up to 2,000-4,000 single 

protein spots at a time (Görg et al., 2004). Moreover, proteins that cause abbreviated changes 

in normal tissues may be identified and use as potential biomarkers in medical diagnosis. 

This is especially important in oncology where early detection of the cancer could be 

properly treated and not metastasize. In the last decade, advancement in 2-DE, mass 

spectrometry and bioinformatics has allowed potential cancer biomarkers to be identified in 

serum and biofluids in the blood (Voss, et al., 2001; Gioia et al., 2011), colon (McKerrow et 

al., 2000), breast (Sauter et al., 2002; Lau et al., 2007; Galvão et al., 2011), ovaries (Zhang et 

al., 2004; Tung et al., 2008) and prostate (Ornstein et al., 2004; Ornstein and Tyson, 2006). 

However, the 2-DE technique still has its limitation – where proteins with extreme 

isoelectric point and molecular mass are not resolvable and identified. Also, it is very 

difficult to resolve membrane proteins and non-water soluble proteins by 2-DE. Another 

approach is to use non-gel based proteomic techniques (for example, ionic exchange affinity, 

reverse-phase and liquid chromatography) followed by MS/MS provide a novel platform 

for identifying proteins and therefore it can resolve the disadvantage of 2-DE technique. 

Now, the development of laser capture micro-dissection and MALDI-MS has allowed 

proteomics to be performed on a specific cell population isolated from heterogeneous 

tissues (Marko-Varga, 2003). It is possible to surgically isolate cancer tissue from normal 

tissues in histological sections of biopsies for proteomic analysis. This will accelerate the 

discovery of cancer biomarkers as the laser capture micro-dissection will remove 

“background noise” generated by normal tissues. 

4. Comparative proteomics 

Comparative Proteomics is the identification of the differentially expressed proteins from 
comparison of two or more 2-DE protein profiles, for example, isolated from cells that were 
treated and untreated with a drug. This method allows proteins that are differentially 
expressed to be identified and quantified. It is a very powerful technique for identifying the 
molecular targets of drugs and understanding the function of novel genes. The comparative 
proteomic technique is schematically summarized in Figure 1. Basically, it involves image 
analysis of 2-DE by matching different sets of gels together; identifying and isolating of 
proteins which are differentially expressed; mass spectrometry and bioinformatics. The 
proteome of a wide variety of biological systems can be investigated that includes cells, 
tissues, organs, fractionated cell lysates, and immuno-precipitated cell lysates. Since the 
technique only requires micrograms of materials to create a complex protein profile, the 
proteomes of bacteria, yeast and insect have also been investigated (Chen and Snyder, 2010; 
Han et al., 2011; Novak et al., 2011; Sirot et al., 2011).  

5. As an example of the usefulness of comparative proteomics in identifying 
gene function, a gene called BRE which has anti-apoptotic properties, was 
analyzed 

We have been interested in genes that are responsive to DNA damage (Li et al., 1995; Dong 

et al., 2003), and identified a novel human gene which we named BRE in this context. The  
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Fig. 1. The principle and workflow involved in comparative proteomics. 

gene is highly Expressed in Brain and Reproductive organs and that is why we named it, 
BRE. The gene is down-regulated after treatment of cells with DNA damaging agents such 
as ultraviolet light (UV), 4-nitroquinoline-1-oxide and all-trans retinoic acid (Li et al., 1995). 
The BRE gene encodes a 1.7-1.9 kb mRNA which give rise to a protein with 383 amino acid 
residues and a molecular weight of 44 kDa. Using the yeast two-hybrid assay, it was 
reported that BRE interacts with the juxtamembrane (JM) region of p55-TNFR, but has no 
affinity for the p75-TNFR, Fas or p75-NGFR of the TNFR family (Gu et al., 1998). 
Meanwhile, over-expression of BRE in the human 293 embryonic kidney cells that was 
treated with TNF-ǂ could inhibit the activation of the transcriptional factor NF-B (Gu et al., 
1998). Since NF-B is known to induce the survival pathway associated with TNF receptor, 
it is likely that BRE can modulate the cell death process. The expression of the BRE gene has 
been investigated in various biological models including adrenal glands (Miao et al., 2001), 
testis (Miao et al., 2005) and hepatocellular carcinoma cells (Chan et al., 2008), but the 
function of BRE has still not been clarified - the protein structure of BRE do not have 
identifiable functional domain. It has been suggested the BRE contained 2 ubiquitin-
conjugating enzyme family-like regions (Hu et al., 2011). However, these regions lacked the 
critical Cys residues required for ubiquitination but retain the ability to bind ubiquitin. The 
multifunctional nature of BRE and the lack of positive identifiable functional domains on 
BRE, make it an ideal candidate for study using proteomics. We therefore used comparative 
proteomics to examine the function of this novel gene in different cell types and also in vivo.  
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5.1 Materials and methods 
5.1.1 Tissue cultures 
All of the cell cultures were maintained at 37oC and 5% CO2 in a humidified cultured 
chamber. C2C12 myoblasts (ATCC) and D122 Lewis lung carcinoma cells (gift from Lea 
Eisenbach) were cultured in DMEM medium supplemented with 10% FBS and 
penicillin/streptomycin. Two stably transfected cell lines were produced from D122 using a 

pcDNA3.1 expression vector. D122v3B harbor the empty vector, while D122a4 cells over-

express the full length BRE (Chan et al., 2005). D122v3B and D122a4 were maintained in 
DMEM plus 10% FBS and 400 mg/mL of G418 (Invitrogen), Immortalized human 
esophageal epithelial (SHEE) cell line and the malignantly transformed esophageal 
carcinoma cell line (SHEEC) were cultured in DMEM medium plus F-12 Nutrient Mixture 
(1:1) supplemented with 10% FBS (GibcoBRL) and penicillin/streptomycin (Shen et al., 
2000). Chang cells (ATCC, CCL-13) were cultured in Minimum Essential Medium Eagle plus 
10% FBS.  

5.1.2 Transgenic mice 
The transgenic mice were generated carrying the full-length BRE gene and the transthyretin 

(TTR) promoter. The TTR promoter is specifically expressed in hepatocytes in the liver 

(Ching et al, 2001). All mice were maintained in the Laboratory Animal Services Centre, 

Chinese University of Hong Kong. Ethical approval has been obtained from the animal 

ethics committee, Chinese University of Hong Kong before performing the animal 

experiments. 

5.1.3 Subcellular fractioning of soluble proteins 
SHEE and SHEEC cells were extracted in lysis buffer (8M Urea, 2M Thiourea, 2% CHAPS, 
0.01% TBP, 0.01% NP-40) containing protease inhibitors (GE Healthcare). After extraction, 
the lysates were incubated on ice for 30 min and then centrifuged at 8000 rpm for 15 min to 
remove all cell debris. The fractions (cytosol, membrane, and nucleoplasm) were obtained 
using a ProteoExtract Subcellular Proteome Extraction Kit (Calbiochem) following 
instructions provided by the manufacturer. The total protein concentration for each fraction 
was determined using a Bio-Rad Protein Assay kit (Bio-Rad, Richmond).  

5.1.4 BRE gene silencing analysis 
Two BRE-specific siRNAs were designed corresponding to 5’-
TCTGGCTGCACATCATTGA-3’ (nucleotides 124–142, nucleotide position number 1 being 
the start of the initiation codon), and 5’-CTGGACTGGTGAATTTTCA-3’ (nucleotides 491–
509). siRNA sequence 5’-AAGCCUCGAAAUAUCUCCU-dTT-3’ with no known mRNA 
targets was used as a control. 

5.1.5 Semi-quantitative RT-PCR analysis 
The total RNA was isolated and purified by using TRIzol solution (Invitrogen Corporation, 
United States). 1 µg of the total RNA was used for reverse-transcription to synthesize the 
complementary DNA (cDNA) according to the procedures of ImProm-II™ Reverse 
Transcription System. cDNA was used as the template for PCR amplification. 20 μl of PCR 
mixture containing 1 μl of cDNA, 2.5 μl of PCR 10X buffer (Bio-firm, Hong Kong), 0.75 μl of 
magnesium chloride solution (25 mM, Bio-firm, Hong Kong), 1 μl of dNTP mix (10 mM, 
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Promega Corporation, United States), 1 μl of forward primer, 1 μl of reverse primer, 0.25 μl of 
Taq polymerase (Bio-firm, Hong Kong) and DEPC-treated water in a PCR microcentrifuge 
tube was placed into the thermal cycler for PCR amplification. All of the primers used in this 
study were manufactured and desalted by Invitrogen Corporation. The primers’ sequences 
and the annealing temperature and duration shown in Table 1 were designed with Primer3  

 

Primers Sequences 
Annealing temp & 

duration 

mouse β-actin Forward: 5’-TGAGACCTTCAACACCCCAG-3’ and 
Reverse: 5’-TTCATGAGGTAGTCTGTCAGGTCC-3’  
or 
forward: 5’-TGAGACCTTCAACACCCCAG-3’  
reverse: 5’-TTCATGAGGTAGTCT GTCAGGTCC-3’ 

59 oC , 45s 
55 oC , 60s 

mouse BRE Forward: 5’-CTAGTCGCCGGTTACTGA-3’ 
Reverse: 5’-TTCATGAGGTAGTCTGTCA-3’ 
or 
Forward: 5’-CCACATTCCCACATACCTTCTC-3’  
Reverse: 5’—GCCATTTCATTTCCATCCCATC-3’ 

56 oC, 45s 
 
55 oC, 60s 

mouse Mdm4 Forward: 5’-CTCCAAGCAAGAGGTACTG-3’  
Reverse: 5’-AATGACCTGGTCCTCCTAG-3’ 

54 oC, 60s 

Mouse Akt-3 Forward: 5’- CTGGCACCAGAGGTATTAGA-3’ 
Reverse: 5’-AGGAGAACTGAGGGAAGTGT-3’ 

56 oC, 60s 

Mouse 26S Proteasome Forward: 5’-TGATCTGTAACCTGGCCTAC-3’ 
Reverse: 5’-GTTACCCTCAGTGTCTTGGA- 

57 oC, 60s 

mouse Prohibitin Forward: 5’-TGAGTGATGACCTCACAGA-3 
Reverse: 5’-CAGTCTGCATAGGCACTTG-3’ 

54 oC, 45s 

mouse p53 Forward:5’-ACTCTCCTCCCCTCAATAAG-3’  
Reverse: 5’-CTGGAGTCTTCCAGTGTGAT-3’ 

54 oC, 60s 

human β-actin Forward: 5’-ATGGATGATGATATCGCCGCG-3’  
Reverse:  5’-CTCCATGTCGTCCCAGTTG GT-3’ 

55 oC, 45s 

human BRE Forward: 5’-ATCTTGCCTCCTGGAATCCT-3’ 
Reverse: 5’-CACGTACTGCACCTTGTTGG-3’ 

57 oC, 60s 

human Prohibitin Forward: 5’- CGGAG AGGACTATGATGAGC-3’  
Reverse: 5’- GGTAGGTGATGTTCCGAGAG-3’ 

57 oC, 60s 

human cyclin A Forward: 5’-TCCTGTCTTCCATGTCAGTG-3’  
Reverse: 5’- TAGGTCTGGTGAAGGTCCAT-3’ 

57 oC,60s 

Human TNF-R1 Forward: 5’- ACCAAGTGCCACAAAGGAACC -3’ 
Reverse: 5’-TACACACGGTGTTCTGTTTCTCC -3’ 

56 oC, 60s 

human p53 Forward: 5’-GCCTGACTCAGACTGACATT-3’ 
Reverse 5’-GACAGCTTCCCTGGTTAGTA-3’ 

54 oC, 60s 

mouse TUSC4 Forward: 5’-CTGGTATCC ATCCTCCAGTA-3’ 
Reverse: 5’-GTCTTGCAGCAGATCTCATC-3’ 

53 oC, 60s 

mouse ENO1 Forward: 5’-CTACGAGGCCCTCTAAGAACTCC-3’ 
Reverse: 5’-TCCTTCCCGTACTTCTCCTT-3’ 

58 oC,  60s 

mouse DPF2 Forward: 5’-TCCTTGGCGAGC AATACTAC-3’  
Reverse: 5’-GCTGCCATCCTGAGAGATAA -3’ 

53 oC, 60s 

mouse HSPA7 Forward: 5’-GCAGTCGGATATGAAGCACT-3’ 
Reverse: 5’-CTCCTCCCAAGTGGGTATCT-3’ 

58 oC, 60s 

mouse HSPA2 Forward: 5’-GACGAATGTCAGGAGGTGAT-3’ 
Reverse: 5’-CTAAGTTGTTGCACCTCTCC-3’ 

58 oC, 60s 

Table 1. Primers used in the study. 
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software (version 0.4.0, Rozen and Skaletsky; http://frodo.wi.mit.edu). The PCR mixtures 

were reacted in a PTC-100 thermal cycler (MJ Research, Watertown, MA, USA) set under the 

following amplification conditions: initial denaturation at 95°C for 2 min, followed by a total of 

35 cycles of denaturation at 95°C for 1 min, annealing at different temperature according to the 

primer’ conditions as shown in Table 1 and extension at 72°C for 1 min. An additional 7 min 

extension step at 72ºC was performed at the end of the last cycle. After the electrophoresis, the 

PCR products were analyzed on a 1.5% agarose gel with ethidium bromide staining, the 

intensities of the PCR products were visualized and determined using the GelDoc-It imaging 

system (UVP, BioImaging System, USA). ǃ-actin was used as a house keeping gene for internal 

control and normalization. The experiments were  repeated three times. 

5.1.6 Western blot analysis 
Control and treated cells were lysed in 200 μl of lysis buffer (50 mM NaCl, 20 mM Tris, pH 
7.6, 1% NP-40, 1 X protease inhibitor mixture) for 60 min. The lysates were cleared by 
centrifugation at 16 000×g at 4 oC for 10 min. Crude protein concentration was measured by 
using a protein assay kit (Bio-Rad). 30 to 50 μg of total protein lysate were resolved on 10 to 
12% SDS-PAGE, with Rainbow molecular weight markers and electroblotted onto Hybond 
NC membranes (GE Healthcare). The blots were incubated with Akt-3 (1:100, sc-11521 Santa 
Cruz Biotechnology), Bre (1:500 to 1000, Chan et al,. 2008), mdmX (1:100, sc-14738, Santa 
Cruz Biotechnology), prohibitin (1:000, sc-18196, Santa Cruz Biotechnology),p53 (1:000, sc-

6243, Santa Cruz Biotechnology) or -tubulin (1:1000 to 1500, Zymed Laboratories), -
tubulin (1:1500, Zymed Laboratories), cyclin A (1:1000, sc-11521, Santa Cruz Biotechnology), 
prohibitin (1:600, sc-18196, Santa Cruz Biotechnology), TNF-R1 (1:800, sc-8436, Santa Cruz 
Biotechnology), CDK2 (M2) (1:800, sc-163 Santa Cruz Biotechnology). Bound antibodies 
were detected using the appropriate horseradish peroxidase-conjugated secondary 
antibodies (Southern biotechnology), followed by development with an ECL Western 
blotting Detection kit (GE Healthcare). The blots were analyzed using Quantity One 
software (Bio-Rad) and the intensity of the bands produced for each antibody was 
normalized against the tubulin band (internal control) produced from each sample. Three 
replicates of each sample were studied. 

5.1.7 In situ hybridization 
All of the procedures performed were according to Lee et al. (2001).  The liver samples were 
fixed in 4% paraformaldehyde (w/v, Sigma, United States) for 24 hrs.   The fixed samples 
were washed in Dulbecco’s Phosphate Buffered Saline (DPBS, Invitrogen Corporation, 
United States) for 15 min with three changes. The samples were then dehydrated, cleared 
and embedded in paraffin wax. Finally, the specimens were sectioned at 7 μm and mounted 
onto TESPA treated slides. The riboprobe was prepared from pGEM-T plasmid containing 
1,205 bp encoding BRE sequence. The plasmid cDNA was linearized by EcoRI and in-vitro 
transcribed to generate digoxigenin (DIG)-labeled sense and antisense BRE riboprobe using 
a DIG RNA labeling kit (Roche Applied Science, United States). After dewaxing the paraffin 
sections, the specimens were rehydrated and equilibrated in DPBS for 10 min. The sections 
were digested with 10 μg/ml of proteinase K (Fermentas Life Science, Canada) for 7 min 
and post-fixed in 2% paraformaldehyde for 5 min. After washing in DPBS for 10 minutes 
twice, the samples were incubated in pre-hybridization buffer (2X SSC, 1X Denhardt’s 
reagent, 5mM EDTA , 0.1% sodium dodecyl sulfate, 10X Dextran sulfate (Chemicon, United 
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States), 50 μg/ml salmon sperm DNA and 50% formamide) for 2 hrs.  The samples were 
then added and hybridized in 0.5 μg/ml of DIG-labeled antisense riboprobe. The sense 
probe was used as a negative control. The hybridization temperature was 55oC and the 
incubation time was 16 hrs. Following hybridization, the samples were washed in 2X SSC at 
42oC for 20 mins with two changes, 0.1% SDS (w/v) in 0.2X SSC buffer for 15 min and then 
0.2X SSC buffer for 10 mins.  The alkaline phosphatase-conjugated digoxigenin antibody 
(1:50, Roche Applied Science, United States) was added to the specimens for 2 hrs and then 
washed in DPBS for 10 min with four changes. Nitroblue tetrazolium salt and 5-bromo-4-
chloro-3-indolylphosphate (NBT/BCIP, Roche Applied Science, United States) were used as 
the color substrates. After color development, the sections were mounted in 50% glycerol 
(v/v, USB, United States).  The experiment was performed in triplicates.  

5.1.8 BrdU (Bromodeoxyuridine) labeling assay 
Chang liver cells were cultured in 8-well glass slide (Nalge Nunc international, Naperville) 
with Minimum Essential Medium Eagle plus 10% FBS.  After 80% confluent, the cultures 
were transfected with Ctl-siRNA or BRE-siRNA respectively according to maufacturers’ 
instructions.  Forty-eight hours after transfection, BrdU was added into the cultures to a 

final concentration of 20 M and incubated at 37oC for 4 hrs.  The treated cultures were then 
fixed with 2% paraformaldehyde for 24 hr. The fixed cultures were processed for 
immunohistochemistry by using mouse BrdU antibodies (1:1000, Sigma-Aldrich, United 
States).  The BrdU positive and negative cells were counted and analysed by Spot Digital 
Camera & Carl Zeiss Microscope Axiophot 2 Integrated Biological Imaging System.  

5.1.9 First dimensional separation of samples – Isoelectric focusing 
The cell lysate for the first DE was performed on an IPGphor IEF system using 11-cm long 
IPG electrode strip with 4-7 pH gradient (Amersham Biosciences, United Kingdom) and an 
Ettan IPGphor Strip Holder (Amersham Biosciences, United Kingdom). 150 μg of protein 
was applied for each IPG strip. The total volume of protein sample and rehydration buffer 
(8M Urea, 2% CHAPS (w/v), 1% IPG buffer (v/v, Amersham Biosciences, United 
Kingdom), 40 mM DTT loaded onto the strip holder was 210 μl. 1ml of IPG Cover Fluid 
(Amersham Biosciences, United Kingdom) was applied to each strip so as to minimize 
evaporation and urea crystallization. The rehydration step was done under voltage and 
followed by a separation process. The electrophoresis condition for step 1 was 30 V for 13 
hrs; step 2 was 500 V for 1 hr; step 3 was 2000 V for 1 hr and step 4 was 5000 V for 20 hrs. 
The program was stopped when the total volt-hours reached 40000.  

5.1.10 Second dimensional separation – Sodium dodecyl sulphate polyacrylamide-gel 
After first DE was completed, the IPG strips were removed from the strip holders. Each strip 
was then treated with 1% DTT in 6.5 ml of equilibration buffer (50 mM Tris, 6M of urea, 30% 
glycerol, 2% SDS, 0.1% bromophenol blue) for 30 min. The strips were further treated with 
1% iodoacetamide (IAA, w/v, Sigma-Aldrich, United States) dissolved in the 6.5 ml of the 
same equilibration buffer. The strips were treated in the solution for 30 min. The 
equilibrated strips were then loaded on the 12% SDS-acrylamide separating gels. The 2-DE 
was performed in an ISO-DALT apparatus (Hoefer Scientific Instruments). Prestained 
protein molecular weight marker (Fermentas Life Science, Canada) with the range of 20 to 
120 kDa was used to determine the sizes of the proteins on the gel.  
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5.1.11 Gel to gel matching 
The gels were stained and scanned by using a GS 800 Densitometer (Bio-Rad Laboratories, 

United States) and images were captured for further analysis. The protein spots on the gel 

were analyzed by the discovery series, PDQuest 2D Analysis Software (Bio-Rad 

Laboratories, United States) version 7.13 PC. The experiment was performed in triplicate. 

5.1.12 Protein identification by mass fingerprinting 
All protein spots of interest were isolated from the gel and processed for destaining. The gel 
pieces were first washed in MilliQ water, immersed in 200 μl of destaining solution (15 mM 

potassium ferricyanide and 50 mM sodium thiosulphate) and then incubated at room 
temperature until they turned into colorless. Each gel piece was then washed with 400 μl of 

MilliQ water for 15 min, three times. The destained gel pieces were equilibrated in 200 μl of 
10 mM ammonium bicarbonate/50% acetonitrile each for about 15 min. The solution was 

discarded and the equilibrated gel pieces were dehydrated by incubating in 200 l of 
acetonitrile for 15 min. The solution was then poured off and the spots were dried in an 
incubator at 30ºC for 5 min. Fifteen μg/ml trypsin working solution in 40 mM ammonium 

bicarbonate/50% acetonitrile (v/v) was used for in-gel digestion. Twelve μl of the working 
solution was added to each gel sample. The samples were then incubated at 35ºC for 16 hrs. 

After trypsinization, 3 μl of extraction solution (50% acetonitrile (v/v) and 5% trifluoroacetic 

acid (Fluka Chemika, Switzerland) were added to each gel piece to stop the reaction.  
They are then centrifuged at 3,000 rpm for 2 min at room temperature. Three μl of  

reaction mixture from each sample was mixed with ǂ-cyano-4-hydroxycinnamic acid  
matrix and then spotted onto a sample plate (Applied Biosystems, United States) for  

the MALDI-TOF mass spectroscopy. The mass spectrums generated were analyzed using  
the software Data Explorer Version 4.0.0.0 (Applied Biosystems, United States) and by  

mass fingerprinting search using the search engine provided by Protein prospector 
(http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm). To determine the significance of 

variance in the experiments, data were analyzed using the two-tailed, paired student’s t-test. 
P<0.05 was considered to be statistically significant. All statistical analysis was performed 

using the SPSS software.  

5.2 Results and discussions of the comparative proteomic analysis of BRE 
5.2.1 Comparative proteomic analysis reveals BRE regulates prohibitin and p53 
expression 
BRE gene encodes a highly conserved stress-modulating protein. To gain further insight into 
the function of this gene, we used comparative proteomics to investigate the protein profiles 
of C2C12 and D122 cells resulting from small interfering RNA (siRNA)-mediated silencing 
as well as overexpression of BRE. It was found that silencing BRE expression in C2C12 cells 
would up-regulate Akt-3 and carbonic anhydrase III expression. In contrast, 26S proteasome 
regulatory subunit S14 and prohibitin expressions were down-regulated as shown in 
Figures 2 (2-DE gel) and 3 (semiquantitative RT-PCR and Western blot analyses). It has been 
reported that prohibitin is normally expressed in different cellular compartments involved 
in regulating cell proliferation, mitochondrial activities and protein processing (Mishra, 
2010). Prohibitin can apparently directly interact with p53 in response to stress (Fusaro et al., 
2003; Joshi et al., 2007). We established that cell proliferation was significantly increased 
after silencing BRE expression and this was accompanied by a reduction in p53 and  
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Fig. 2. Representative 2-DE gel of protein extracts from C2C12 cells that had been 
transfected with CTL- or BRE-siRNAs. Four differentially expressed proteins were identified 
(Swiss-Prot accession number provided). Silencing BRE expression up-regulated protein 
spots Q9WUA6 and P16015, but P6778 and Q9Z2X2 were down-regulated. pI 4–7 (x-axis) 
and MW in kDa (y-axis) (Tang et al., 2006). 

 

 

Fig. 3. Semiquantitative RT-PCR (A) and Western blots (B) analyses confirming the 
comparative proteomic results that silencing BRE, down-regulated prohibitin and 26S 
proteasome regulatory subunit S14 expression, while Akt-3 expression was up-regulated. β-
actin and ǂ-tubulin serve as internal controls (Tang et al., 2006). 

www.intechopen.com



 
Proteomics – Human Diseases and Protein Functions 

 

120 

prohibitin expression. We also identified Akt-3 that was affected by BRE silencing which 
suggests BRE might be involved in the P13/AKT signaling pathway (Madhunapantula et al., 
2009). We observed that cell proliferation was suppressed when BRE was overexpressed in 
the D122a4 cell line as shown in Figure 4. This was accompanied by an increase in p53 and 
prohibitin expression as shown in Figure 5. It has been reported that in the nucleus BRE is  
 

 

Fig. 4. MTT assay of D122, D122v3B and D122ǂa4 cell lines. The chart shows BRE 
overexpression in D122ǂa4 inhibited cell proliferation. Values = means +SEM, P, ≤0.01, * 
D122ǂa4 significantly different from D122 and D122v3B (Tang et al., 2006). 

 

 

Fig. 5. Semiquantitative RT-PCR (A) and Western blot (B) showing that D122a4 cells 
overexpressed prohibitin, p53 and mdm4. ǃ-actin and ǂ-tubulin serve as internal controls 
(Tang et al., 2006) . 
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one of the components of BRCA1 A complex that is essential for tumor suppression (Harris 
and Khanna, 2011). BRE peptide has an ubiquitin E2 variant domain which has been 
determined to bind ubiquitin in co-immunoprecipitation experiments (Hu et al., 2011; Li et 
al., 2004). Coincidently, a 26S proteasome regulatory subunit S14 was one of the proteins 
found to be down-regulated by BRE over-expression. It is now known that the ubiquitin-
proteasome pathway plays an important role in regulating the proteolytic processes that 
occur during signal transduction, transcriptional regulation and cell-cycle progression 
(Clague and Urbé, 2010). In this context, we speculate that BRE participates in the ubiquitin-
proteasome pathway to regulate protein turnover within cells. In the 2-DE profiling of 
D122ǂ4 cells, where BRE was stably overexpressed, we identified five proteins that were up-
regulated. They were granulin precursor, TNF receptor associated factor 6 (TRAF6), mitogen 
protein kinase 8, Mdm4 and baculoviral IAP repeat-containing protein 4 as shown in 
Figures 6 (2 DE gel) and 7 (semiquantitative RT-PCR and Western blot analyses).  

 

 

Fig. 6. Representative 2-DE gel of protein extracts from D122v3B and D122ǂa4 cell lines. Five 
protein spots (O35618, P28798, Q07174, P70196 and Q60989) were up-regulated in D122ǂa4 
cells (Swiss-Prot accession number provided)  (Tang et al., 2006). 
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Fig. 7. Semiquantitative RT-PCR (A) and Western blot (B) showing that D122ǂa4 cells 
overexpressed prohibitin, p53 and mdm4. ǃ-actin and ǂ-tubulin serve as internal controls 
(Tang et al., 2006). 

Interestingly, TRAF6 is a unique member of the TRAF family of adaptor protein. It is 
associated with a diverse range of cellular responses to pathogens, growth factors or 
intracellular stress (Chung et al., 2007). Recent finding also showed that TRAF6 was 

involved in the RANK-TRAF6-NF-B pathways during osteoclastogenesis (Inoue et al., 
2007). Overexpression of BRE in human 293 embryonic kidney cells has been reported to 

inhibit NF-B activation in response to TNFǂ (Gu et al., 1998). This finding suggests that 

BRE indirectly cross-talk with TRAF6 and NF-ǃ, where it may play a central role in 
regulating cell proliferation, differentiation and survival. BRE may also mediate in post-
translational sumoylation, similar to the action of PML and MO25ǂ proteins (Kretz-Remy 
and Tanguay, 1999). Our results established a crucial function for BRE in regulating key 
proteins of cellular stress-response and provided an explanation for the multifunctional 
nature of BRE. 

5.2.2 Comparative proteomic analysis reveals differentially expressed proteins 
regulated by a potential tumor promoter, BRE, in human esophageal carcinoma cells 
Esophageal cancer is one of the most common malignancies that cause high mortality. 
Esophageal carcinogenesis is a complex and cascading process that involve the interaction 
of many genes and proteins (Kuwano et al., 2005). In this study, we have used 
comparative proteomic approaches to identify proteins that maybe involved in 
esophageal carcinogenesis. Two dimensional electrophoresis (2-DE) and MALDI-TOF-MS 
analyses of esophageal carcinoma, SHEEC and control cells SHEE revealed 10 proteins 
that were up-regulated as shown in Figure 8 of the 2-DE. Additional 10 proteins were 
down-regulated as shown in Figure 9. Interestingly, BRE, prohibitin, cyclin A and p53  
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Fig. 8. Representative 2-DE gel of nucleic proteins extracted from SHEE and SHEEC cells. Ten 
silver-stained protein spots were found to be up-regulated in SHEEC cells (Chen et al., 2008). 

 

 

Fig. 9. Representative 2-DE gel of nucleic proteins extracted from SHEE and SHEEC cells. Ten 
silver-stained protein spots were found to be down-regulated in SHEEC cells (Chen et al., 2008). 
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Fig. 10. Semiquantitative RT-PCR (A) and Western Blot (B) analyses of SHEE and SHEEC 
cells. The results confirmed the proteomic data that BRE, prohibitin and cyclin A were 
highly expressed in SHEEC cells. The SHEEC cells also expressed relatively higher levels of 
TNF-R1 but lower levels of p53, when compared with SHEE cells. β-actin and ǂ-tubulin 
serve as internal controls (Chen et al., 2008). 

expression were up-regulated in the cancer cells and this was confirmed by both 
semiquantitative RT-PCR and western blot analyses (Figure 10). Among these 20 
differentially expressed proteins, BRE protein was identified as a potential tumor promoter. 
Furthermore, we have also determined p53 expression was down-regulated; whereas TNF-
R1 expression was up-regulated in SHEEC cells (Figure 10). It has been reported that BRE 
can interact with the intracellular juxtamembrane domain TNF-R1 and inhibit the TNF-ǂ 

induced activation of NF-B (Gu et al., 1998). Therefore, we propose that BRE plays an anti-
apoptotic role in SHEEC cells. To gain more insight into BRE’s function, we silenced BRE 
expression in esophageal carcinoma cells using BRE-specific small interference RNA. It was 
found that silencing BRE expression corresponds to down-regulated prohibitin expression 
but up-regulated tumor-suppressor gene, p53 as shown in Figure 11. These findings 
contradicted  the results with previous data (Tang, et al., 2006) that may due to 
multifunctional nature of BRE. Besides BRE, cyclin A and CDK2 expressions were 
suppressed in the SHEEC cells. Cyclin A is an important regulator of the cell cycle that rises 
in early S phase and falls in mid M phase (Parwaresch and Rudolph, 1996). Recent finding 
showed the cyclin A might be a prognostic marker in early breast cancer (Ahlin, et al. 2007). 
In summary, these results imply that BRE may be a survival factor and plays a proliferative 
role in esophageal carcinoma.  
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Fig. 11. Semiquantitative RT-PCR analysis of SHEE and SHEEC cells transfected with CTL- 
and BRE-siRNAs. The results showed that our BRE construct can silence BRE expression, as 
well as suppressed prohibitin and cyclin A expressions. β-actin served as an internal control 
(Chen et al., 2008). 

5.2.3 Livers over-expressing BRE transgene are under heightened state of stress-
response, as revealed by comparative proteomics 
BRE is normally expressed at very low levels in the liver (Chan, et al., 2008). It binds to TNF-
R1 and Fas, and modulates the actions of these cytokines (Li, et al., 2004; Chan et al., 2010). 
In this study, we demonstrated that BRE expression was rapidly induced when the liver was 
insulted with carbon tetrachloride (CCl4) or in human hepatocellular carcinoma (HCC) as 
shown in Figure 12. We produced transgenic mice that specifically over-expressed BRE in 
the liver to determine the effect of high levels of BRE in the liver. The livers of these 
transgenic mice were determined to be histologically normal. Because of the lack of a 
phenotype, we conducted comparative proteomics to determine whether there were any 
differences at the protein level (Figure 13). The 2-DE revealed four up-regulated protein 
spots and nine down-regulated protein spots as summarized in Table 2. It was established 
that several stress responsive proteins were up-regulated in the BRE-transgenic liver 
including: Alpha enolase (ENO 1), Heat shock-related 70 kDa protein 2 (HSPA2), Putative 
heat shock 70 kDa protein 7 (HSPA7), Zinc-finger protein Ubid 4 (DPF2) and Tumor 
suppressor candidate 4 G21 protein (TUSC4) as shown in Figure 14. Recently, it has been 
reported that HSPA7 is a biomarker for early detection of HCC (Park, 2011). In addition, we 
have silenced BRE expression in Chang liver cells and inversely demonstrated that it did not 
affect cell proliferation rate as confirmed by BrdU Labelling assay (Table 3). We have 
previously reported that BRE is not only expressed in the cytoplasm but also in the nuclei of 
HCC cells. BRE also accumulates in the nuclei of esophagus cancer SHEEC cells (Chen, et 
al., 2008). Since BRE is one of the components of BRCA1 A complex, it could be involved in 
DNA repair, as well as responding to environmental stress. We propose that the livers in 
our BRE transgenic mice were under a heighten state of stress response and this may explain 
why the transgenic mice was more resistant to liver toxic drugs. 
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Fig. 12. In situ hybridization (A–D and G–I). BRE is normally expressed at very low levels in 
normal mouse liver (A). CCl4 insult induced increased BRE expression in the affected 
hepatocytes at 6 h (B) and 12h (C). Twenty-four hours after CCl4 insult, BRE expression 
declined. This was probably the result of the affected hepatocytes starting to die off (D). 
Immunohistological staining revealed that BRE expression was strongly induced in the 
affected hepatocytes by CCl4 (E, F). BRE expression remained low in the unaffected cells. 
We also examined BRE expression in HCC cells. BRE was expressed at low levels in non-
tumor human liver tissues (H). In HCC tissues, all the cells strongly expressed BRE (I). Sense 
control (G). Arrows, hepatocytes overexpressing BRE. C, liver central veins (Tang et al., 
2009). 
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Fig. 13. A representative 2-DE gel of BRE transgenic liver. Protein spots 1–15 were identified 
to be differentially expressed when compared with control gels. Protein spots 1–4 were 
downregulated in the transgenic (trans) liver, while protein spots 5–15 were upregulated in 
the wild type (wt) liver. These results were acquired from three independent liver samples 
and 2-DE was correspondingly performed three times (Tang et al., 2009). 
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Fig. 14. Semi-quantitative RT-PCR revealed that the proteins  identified were differentially 
expressed in BRE transgenic livers were also correspondingly affected at the transcriptional 
level. *p<0.05, **p<0.01, denote significant difference in the staining intensity of wt and BRE 
transgenic PCR bands (Tang et al., 2009).  

 

Table 2. Proteins that are differentially expressed in BRE transgenic liver (Tang et al., 2009). 
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Table 3. Effects of silencing BRE expression on Chang liver cell proliferation (Tang et al., 
2009). 

6. Future perspective of proteomics 

Conventional “gel-based” electrophoresis and improved mass spectrometry have 
provided useful tools for revealing molecular changes in cells and tissues that otherwise 
maybe missed by morphological observation alone (Vercauteren et al., 2007). 
Nevertheless, the 2-DE protocol is still to be refined and improved so that 2-DE is more 
reproducible and sensitive. Therefore, it has still some distance to go before it can be 
adopted as a standard “diagnostic tool” in the 21st century (Colucci-D'Amato et al., 2011). 
The “shotgun” methodology has been used as a high-throughput screen to identify 
proteins that are differentially expressed in cells or tissues, as a result of some 
experimental procedure or changes in environmental condition (Lill, 2003; Zhu et al., 
2010). Liu et al. (2011) recently described the SELDI-TOF-MS technology that could be 
used to screen and detect differentially expressed proteins in the serum of patients with 
cancer. Liquid chromatography interfaced plasma mass spectrometry has now been 
developed for absolute quantitation of proteins (Esteban-Fernández et al., 2011). 
Furthermore, latest development of computational tools for analyzing high-throughput 
‘shotgun’ proteomic data also play a vital role in moving proteomic research forward 
(Dowsey et al., 2010). All of these improvements will allow proteomics to be rapidly 
developed as a practical, robust, accurate and inexpensive analytical tool for routine use 
in the clinical setting. The proteomics will also allow many novel disease biomarkers to be 
discovered and also lead to the discovery of new drugs.  
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