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1. Introduction  

In this work we would like to review some concepts developed over the last few years: that 
the gravitational vacuum has, even at scales much larger than the Planck length, a peculiar 
structure, with anomalously strong and long-lasting fluctuations called “zero-modes”; and 
that these vacuum fluctuations are virtual particles of negative mass and interact with each 
other, leading to the formation of weakly bound states. The bound states make up a 
continuum, allowing at each point of spacetime the local excitation of the gravitational 
vacuum through the coupling with matter in a coherent state. The spontaneous or 
stimulated decay of the excited states leads to the emission of virtual gravitons with spin 1 
and large p/E ratio. The main results on the zero-modes and their properties have been 
given in (Modanese, 2011), but in this work we expand and discuss in physical terms several 
important details concerning the zero-mode interactions, the dynamics of virtual particles 
with negative mass and the properties of virtual gravitons. 

Technically, our approach is based on the Lorenzian path integral of Einstein gravity in the 
usual metric formulation. We take the view that any fundamental theory of gravity has the 
Einstein action as its effective low-energy limit (Burgess, 2004). The technical problem of the 
non-renormalizability of the Einstein action is solved in effective quantum gravity through 
the asymptotic safety scheme (Niedermaier & Reuter, 2006; Percacci, 2009). According to 
this method, gravity can be nonperturbatively renormalizable and predictive if there exists a 
nontrivial renormalization group fixed point at which the infinite ultraviolet cutoff limit can 
be taken. All investigations carried out so far point in the direction that a fixed point with 
the desired properties indeed exists.  

An important feature of the path integral approach is that it allows a clear visualization of 
the metric as a dynamical quantum variable, of which one can study averages and 
fluctuations also at the non-perturbative level. It is hard, however, to go much further than 
formal manipulations in the Lorenzian path integral; after proving the existence of the zero-
modes we resort to semi-classical limits and standard perturbation theory. This method is 
clearly not always straightforward. At several points we proceed, by necessity, through 
physical induction and analogies with other interactions. 
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The outline of the work is the following. In Section 2 we show the existence of the zero-

modes and discuss their main features, using their classical equation and the path integral. 

This Section contains some definitely mathematical parts, but we have made an effort to 

translate all the concepts in physical terms along the way. Section 3 is about the pair 

interactions of zero-modes: symmetric and antisymmetric states, transitions between these 

states, virtual dipole emission and its A and B coefficients. Section 3.3 contains a digression 

on the elementary dynamics of virtual particles with negative mass. Section 4 is devoted to 

the interaction of the zero-modes with a time-variable -term. We discuss in detail the 

motivations behind the introduction of such a term and compare its effect to that of 

“regular” incoherent matter by evaluating their respective transition rates. Finally, in 

Section 5 we discuss in a simplified way the properties of virtual gravitons; the virtual 

gravitons exchanged in a quasi-static interaction are compared to virtual particles 

exchanged in a scattering process and to virtual gravitons emitted in the decay of an excited 

zero-mode. 

2. Isolated zero-modes: Non trivial static metrics with null action 

Our starting point is a very general property of Einstein gravity: it has a non-positive-
definite action density. As a consequence, some non trivial static field configurations 
(metrics) exist, which have zero action. We call these configurations zero-modes of the 

action. The Einstein action is 
4

4

8
E

c
S d x gR

G
    (plus boundary term; see Sect. 3) and the 

zero-mode condition is 

 
4 0d x gR   (1) 

This condition is, of course, satisfied by any metric with R(x)=0 everywhere (vacuum 

solutions of the Einstein equations (28), like for instance gravitational waves). But since the 

density gR  is not positive-definite, the condition can also be satisfied by metrics which do 

not have R(x)=0 everywhere, but regions of positive and negative scalar curvature. The non-

positivity of the Einstein action has been studied by Hawking, Greensite, Mazur and 

Mottola and others (Greensite, 1992; Mazur & Mottola, 1990). Wetterich later found that also 

the effective action is always un-defined in sign (Wetterich, 1998). 

We are interested into these zero-action configurations because, in the Feynman path 

integral, field configurations with the same action tend to interfere constructively and so to 

give a contribution to the integral distinct from the usual classical contribution of the 

configurations near the stationary point of the action. Let us write the Feynman path 

integral on the metrics ( )g x  as 

    exp E

i
I d g S g

   
    (2) 

Suppose there is a subspace X of metrics with constant action. The contribution to the 

integral from this subspace is simply 
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    ˆ ˆexp expX E E

X

i i
I S d g S X       

    
 (3) 

where ˆ
ES  is the constant value of the action in the subspace and  X  its measure. The 

case ˆ 0ES   is a special case of this. 

 

Fig. 1. Subspace X of metrics with constant action. All the metrics (spacetime configurations) 

in X have the same action ˆ
ES . In particular, there exist a subspace whose metrics all have 

zero action. 

The zero-modes can only give a significant contribution to the path integral if they are not 
isolated configurations (like a line in 2D, which has measure zero), but a whole full-
dimensional subset of all the possible configurations. They are “classical” fields, not in the 
sense of being solutions of the Einstein equations in vacuum, but in the sense of being 
functions of spacetime coordinates which are weighed in the functional integral with non-
vanishing measure. 

2.1 Classical equation of the zero-modes 

Now let us find at least some of these configurations. It is not obvious that eq. (1) has 
solutions with R not identically zero, because it is a difficult non-linear integro-differential 
equation.  

In some previous work we used, to solve (1) in the weak field approximation, a method 
known as “virtual source method” or “reverse solution of the Einstein equations” 
(Modanese, 2007). According to this method, one solves the Einstein equations with non-

physical sources which satisfy some suitable condition, in our case 0vdx gg T
  . Since 

for solutions of the Einstein equations one has (trace of the equations) 
4

8 vG
R g T

c





 , it 

follows that such solutions will be zero-modes. The expression 0vdx gg T
   is far 

simpler in the linear approximation. In that case the source must satisfy a condition like, for 

instance, 00 0dxT   (supposing Tii is vanishing) and is therefore a “dipolar” virtual source. 

A much more interesting class of zero-modes is obtained, however, in strong field regime, 
starting with a spherically-symmetric Ansatz. In other words, let us look for spherically 
symmetric solutions of (1). Consider the most general static spherically symmetric metric 

www.intechopen.com



 
Quantum Gravity 

 

4 

 2 2 2 2 2 2 2( ) ( ) ( sin )d B r dt A r dr r d d        (4) 

where A(r) and B(r) are arbitrary smooth functions. We add the requirement that outside a 
certain radius rext, A(r) and B(r) take the Schwarzschild form, namely 

 
1

2 2

2 2
( ) 1 ; ( ) 1 for ext

GM GM
B r A r r r

c r c r


          
   

 (5) 

This requirement serves two purposes: (1) It allows to give a physical meaning to these 
configurations, seen from the outside, as mass-energy fluctuations of strength M. For r>rext 
their scalar curvature is zero. (2) More technically, the Gibbons-Hawking-York boundary 
term of the action is known to be constant in this case (Modanese, 2007).  

Even with only the functions A and B to adjust, the condition (1) is very difficult to satisfy. 
We do find a set of solutions, however, if we make the drastic simplification g00=B(r)=const. 
The scalar curvature multiplied by the volume element becomes in this case  

 
2

1
8 | | 1

rA
L gR BA

AA


      
 

 (6) 

Apart from the constant c4/8G, L is the lagrangian density of the Einstein action, computed 
for this particular metric. Let us fix arbitrarily a reference radius rext, and introduce reduced 
coordinates s=r/rext. Define an auxiliary function =A-1. Regarding L(s) as known, eq. (6) 
becomes an explicit first-order differential equation for : 

 
| |1

8 | |

L

s s s B




     (7) 

The boundary conditions (5) are written, in reduced coordinates 

 

1

( 1) 1 ; ( 1) 1
M M

B s A s
s s


   

        
   

 
 (8) 

where M  is a free parameter, the total mass in reduced units: 22 / extM GM c r . In the 

following we shall take 0M  , in order to avoid singularities. For extr r , we have 

(1) 1B B M    . 

It is interesting to note that putting L=0 in eq. (7) we can easily find an exact solution, ie a 

non-trivial static metric with R=0. Namely, if 1->0, then =1-econst/s, which does not satisfy 

the boundary condition; if 1-<0, then =1+econst/s, implying coste M   . The resulting grr 

component has the same form on the left and on the right of s=1, namely 

 

1
| |

1rr

M
g

s


 

  
 


 (9) 

while g00 is constant and equal to (1 | |)M   for s<1, and is equal to (1 | |/ )M s   for 1s  . 

Note that grr goes to zero at the origin. 
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Fig. 2. Metric of an elementary static zero-mode of the Einstein action. Inside the radius rext 
(region I) the g00 component is constant, and the grr component goes to zero. On the outside 
(region II) both components have the form of a Schwarzschild solution with negative mass. 

Now we can look for metrics close to (9), but with scalar curvature not identically zero. For 

large M  and small L, the last term in eq. (7) is a small perturbation. Since  never diverges 

and -1 does not appear in the equation, the perturbed solution is not very different from (7). 

For values of M  of order 1 or smaller, the equation can be integrated numerically. If we 

choose a function L(s) with null integral on the interval (0,1), we obtain a metric which is a 

zero-mode of the action but not of the lagrangian density. One can take, for instance, 

L(s)=L0sin(2ns), with n integer. 

In conclusion, we have found a family of regular metrics with null scalar curvature, 

depending on a continuous parameter M . Furthermore, we have built a set of metrics close 

to the latter, by solving eq. (7) with L arbitrary but having null integral. These metrics do not 

have zero scalar curvature, but still have null action. They make up a full-dimensional 

subset of the functional space (see proof in (Modanese, 2007)). 

Our solutions of the zero-mode condition are, outside the radius rext, Schwarzschild metrics 

with M<0. The quantity Mc2 coincides with the ADM energy of the metrics. At the origin of 

the coordinates the component rrg  goes to zero, the integral of gR  is finite and also the 

volume dx g  is finite. The volume inside the radius rext is smaller than the volume of a 

sphere with the same radius in flat space. 

According to our previous argument on the functional integral, these metrics give a 
significant contribution to the quantum averages, although they are neither classical 
solutions nor quantum fluctuations near the classical solutions. In the vacuum state, there 
exists a finite probability that the metric at any given point is not flat, but has the form of a 
zero-mode, i.e., seen from a distance, of a pseudo-particle of negative mass. In the language 
of Quantum Field Theory this could be called a vacuum fluctuation. Vacuum fluctuations 
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are created spontaneously and at zero energetic cost at any point of spacetime, in a 
homogeneous and isotropic way. Usually vacuum fluctuations have a very short life, as can 
be shown through the Schroedinger equation (time-energy uncertainty principle) or through 
a transformation to Euclidean time (when the action is positive-definite). These arguments 
on the lifetime of the fluctuations can not be applied here, because quantum gravity has 
neither a local Hamiltonian, nor a positive-definite action. Our fluctuations, if they were 
completely isolated, would be independent of time; in fact, their interaction causes a finite 
lifetime (Sect. 2.3). In Sect. 5 we shall give a comparison between this kind of vacuum 
fluctuations and other fluctuations present in quantum gravity, like the virtual gravitons 
which transmit the gravitational interactions. 

In order to avoid a large global curvature, the total average effect of the virtual masses of the 
zero-modes must inevitably be renormalized to zero. This is, in our view, guaranteed by the 
“cosmological constant paradox”: nature appears to be endowed with a dynamical 
mechanism which relaxes to zero any constant positive or negative contributions to the 
vacuum energy density, coming from particle physics or even from gravity itself. So, even 
though such contributions are formally infinite, in the end they do not affect the curvature 
of spacetime. The full explanation of this mechanism can only be achieved within a 
complete non-perturbative theory of Quantum Gravity. Some partial evidence of the 
dynamical emergence of flat spacetime has been obtained in the lattice theory, and in 
effective field theory approaches (Hamber, 2004, Dolgov, 1997).  

Therefore we shall not be concerned with the global effect of our massive vacuum 

fluctuations on spacetime. We shall instead consider their interactions, which result in a 

novel pattern of purely gravitational excited states, above a ground state in which all 

fluctuations pairs with equal mass are in a symmetrical superposition. Freely speaking, it’s a 

bit like studying the local effects of pressure variations, without worrying about how the 

total force due to atmospheric pressure affects the Earth. 

2.2 Zero-modes in the explicit functional integral 

The zero-modes equation (plus the argument of non-interference) tell us that relevant run-

away configurations of vacuum exist, in which the metric is locally very different from its 

classical value .We shall now consider an explicit path integral of Einstein gravitation, in 

order to evaluate the functional average of certain metric components and confirm this 

supposition.  

Let us choose a spherical coordinate system. We integrate only over a sector X of the 
functional space, namely over the spherically-symmetric metric configurations with 
constant g00. If we obtain a null quadratic vacuum average in X, namely 

 

[ ]exp [ ] (0)

(0) 0

[ ]exp [ ]

rr

X
rr X

X

i
d g S g g

g
i

d g S g

 
 
 

 
 
 
 









 (10) 

this allows us to reach our conclusion: at any point there is a finite probability for a zero-
mode to occur. 
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For these metrics the Einstein action is written (Sect. 2.1) 

 
4 4

4
2

0

4 ' 1
( ) ( ) 1

8
E

c c rA
S d x g x R x dt dr BA

G G AA




       
     (11) 

 ( )g x    

where rrA g  and 00B g  are functions of r. Define a radius extr , the “external radius” of 

our configurations, on which we impose boundary conditions as in Sect. 2.1. This means that 

we integrate over configurations which outside the radius extr  appear like Schwarzschild 

metrics with mass M. In order to avoid singularities, we suppose 0M  . We can re-write 

the action as an integral on r with upper limit rext, because the scalar curvature of the 
Schwarzschild metric is zero. We can also add the Gibbs-Hawking-York boundary term, 

which in this case takes the form HGYS M dt   . For a fixed time interval, we can regard the 

integral dt  as a constant. 

Supposing B constant ( 1B M   ), the path integral over these field modes is written 

 

   

 
1

2
0

exp

4 ' 1
exp 1 exp

E HGY

i
d A S S

Bi sA i
d A dt ds A M dt

G AA



   
 
            

     



   



 

 (12) 

The second exponential can be disregarded in the functional averages, because it cancels 
with the normalization factor in the denominator. In the first exponential, let us define a 

constant factor  
41 B

dt
G


  

 and discretize the integral in ds. We divide the integration 

interval [0,1] in ( 1)N   small intervals of length   and replace the integral with a sum, 

where the derivative is written as a finite variation. We obtain 

 
 1

1

2
00

1
[ ] exp 1

E
i N NS j j

i j
jjj j

j A A
d A e dA i A

AA






 



           
   (13) 

The presence of the square root and of the fractions with jA  makes the integrals very 

complicated. Let us change variables. Suppose 0A  , which is physically a widely justified 

assumption (and remember we are looking for a sufficient condition, i.e. we want to show 

that there exist a set of gravitational configurations for which the functional average of a 

quadratic quantity is different from the classical value). Define 1 / A  . This gives the 

new path integral 

 
 1

1

3
000

2 1
exp 2

N N
j j

j j
jjj j

d i j
 

   
 

  



           
  (14) 
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(Note that  1 2j j j     in the continuum limit.) We want to use this to compute the 

average 2
m , where m is a fixed intermediate index. This is the average of the squared field 

2  at the point s m , therefore in the continuum limit it gives the average of 2  at the 

origin. We know that the system has zero-modes for which 0A   at the origin, and 

therefore   . So we would like to show that 2
m   for 0  . This can indeed be 

done (Modanese, 2011), and implies in turn that (10) is true. One can also check that this is 
not an artefact of the continuum limit. 

2.3 Zero-modes as quantum states 

The explicit calculation of the average (0)rr X
g  in a sector of the functional integral is 

conceptually important, but in practice it does not help much in giving a quantum 

representation of the zero-modes and their interactions. The properties of the zero-modes as 

“classical” metrics are more useful for that purpose. We shall suppose that each zero-mode 

corresponds to a quantum state |i  and that 2
ii H i c M  (see below for the meaning of 

the gravitational Hamiltonian H in this context). The states |i  are localized and mutually 

orthogonal. Different |i  correspond to field configurations centered at different points. In 

the following we shall also suppose for simplicity that their Schwarzschild radii are always 

much smaller than their distance. 

According to this line of thought, the “true non-interacting ground state” of the 

gravitational vacuum is obtained in principle as the limit of an infinite incoherent 

superposition of flat spacetime (Fock vacuum) plus single zero-mode wavefunctions: 

 |0 |0 |Fock i
i

i      (15) 

This definition of the ground state is clearly difficult to put on a rigorous basis. We are 

mainly interested, however, into the excitations with respect to this ground state. The most 

relevant among these excitations are those resulting from pair interactions of zero-modes, as 

we shall see. 

Note that fixing i H i  amounts to a much weaker statement than giving a gravitational 

quantum Hamiltonian operator H, because i H i  is only a matrix element and a classical 

limit of the total energy for an asymptotically flat configuration (ADM energy (Murchada & 

York, 1974)). So whenever we write here the full gravitational Hamiltonian H, in fact we 

only exploit some properties of its matrix elements, like in a Heisenberg representation of 

quantum mechanics. This is consistent with our path integral approach to the full-

interacting case. 

In other words, in the following we use neither the “full” gravitational Hamiltonian 
operator H, nor eigenvalue relations. (Interaction Hamiltonians on a background metric like 
that employed in Sect. 4 do not suffer from these limitations.) In fact, the Hamiltonian H is 
very difficult to define in quantum gravity. Even classically, there exists no generally 
accepted expression for the gravitational energy density. Furthermore, assuming the 
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validity of eigenvalue operator relations would lead to contradictions. For instance, by 
applying the full Hamiltonian to the vacuum state (15) and supposing for a moment that 

2
iH i M c i , we would obtain, only formally  

 “ 20 i i
i

H M c i ” (16) 

From this we would conclude that |0  is not an eigenstate! Nevertheless the property 

0 0 0H   is true, considering that the coefficients i  have random phases. 

We could call the states |i  “purely gravitational, long-lived virtual particles”. They are 

long-lived in the following sense. The classical equation for isolated zero-modes gives 

configurations independent from time. Adding to the pure Einstein action the boundary 

Gibbs-Hawking-York term, the latter takes the form GHYS M dt   , i.e. it is a constant for 

any fixed time interval, and does not cause interference in the path integral. However, when 

the zero-modes are not isolated but interact with each other, the boundary term causes their 

lifetime to be finite. 

In the next section we shall discuss the simplest interaction of the zero-modes (pair 
interaction). This displays one of the typical amazing features of virtual particles (compare 
Sect. 5): they are created from the vacuum “for free”, but after that they follow the usual 
dynamical rules. When computing the amplitude of a process involving virtual particles, we 
do not need to take into account the initial amplitude for creating the particles at a given 
point of space and time, but we do compute (Sect.s 3 and 4) the amplitudes for their ensuing 
propagation and interaction. 

3. Pair interactions of zero-modes 

We have introduced the concept of ground state in an effective theory of Quantum Gravity as 
given by the Fock vacuum plus a random superposition of zero-modes. In this Section we 
show that non-interacting zero-modes with equal mass are coupled in degenerate symmetric 
and anti-symmetric wavefunctions. The introduction of interaction removes the degeneration. 
The excited states form a continuum and the interaction of the vacuum with an external 
coherent oscillating source leads to transitions, with a probability which we shall compute in 
Sect. 4. As in Sect. 2, we denote with a capital M a zero-mode mass (virtual and negative). 

3.1 Pairs in symmetric and antisymmetric states 

Consider a couple of states |1  and |2  with masses 1M  and 2M . We have 

 2 2
1 21|H|1 c , 2|HM M|2 c , 1|2 0          (17) 

Putting now M1=M2=M and taking the interaction into account, the degenerate non-

interacting levels are splitted. Define the symmetrical and anti-symmetrical superpositions 

   and   : 

 
1 1

| (|1 |2 ) | (|1 |2 )
2 2

           (18) 
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Fig. 3. Symmetric and antisymmetric bound states of zero-modes with equal mass M. (We 
assume that the wavefunction is much more localized near the masses than depicted – 
compared to their distance.) 

The energy splitting E  is given, as known, by 

 | | | | 2 1| |2E E E H H H      
               (19) 

Note that the matrix element 1| |2H   can be taken to be real without loss of generality. 

Suppose that 1| |2H  can be computed to a first approximation through its classical limit. 

The ADM energy integral at spatial infinity for the Schwarzschild-like field of two positive 

masses can be analytically continued to negative masses. We then obtain 

 
2

2
GM

E
r

   (20) 

being r the distance between the symmetry centers of the states |1 and |2 . This procedure 

reminds the computation of the bound states of two atoms in a molecule: the “internal 

states” of the atoms are not relevant and each atom is described by a single vector 

coordinate; the relevant Hamiltonian is the interaction Hamiltonian, although the full 

Hamiltonian of the system comprises in principle the forces inside the atoms and even 

inside the nuclei. 

Let us consider the transitions between    and   . We shall see that they are mainly of 

two types: (a) excitation     due to the interaction with a local -term dependent on 

time (variable vacuum energy density, associated with coherent matter - compare Sect. 4); 

(b) decay     with emission of a virtual graviton. We look for a relation between the 

frequency of the transition and the virtual mass of the excited states. In the ground state, all 

couples with equal mass will be in their symmetric superposition state. Any transition of 

one couple from its symmetric to its antisymmetric state gives an excited state with energy 

(20). Since there exist zero-modes with any (negative) mass, at any distance, there is actually 

a continuum of excited states. 

For the same energy, in principle, there are transitions to excited levels involving different 

masses at different distances, provided the ratio 2 /M r  is the same. In practice, however, 

there is an upper limit on the scale r, because the time-variable -term has a typical spatial 
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extension (coherence range) of the order of 10-9 m, and typical frequency 106-109 Hz. This 

fixes the maximum virtual mass involved, by eq. (20), to M10-13 kg. This is small, but 

definitely much larger than any atomic scale mass, and implies that also the gravitational 

interaction in the pairs of virtual masses is much larger than the usual gravitational 

interactions at atomic scale.  

We are confronted here with a very unusual situation and we should check that our 

description is consistent, at least at the energy scale we are considering. (In principle the 

zero-mode fluctuations exist at any scale, but since they are an emergent phenomenon, 

computed in an effective theory, it is fair to concentrate on the scale which we deem most 

realistic.) First, one can easily check that the supposed localization of the zero-modes is well 

compatible with the Heisenberg position-momentum uncertainty principle. Second, one can 

prove that their interaction, though strong on the atomic scale, is much weaker than the 

interaction in a hypothetical gravitational bound state formed by two masses of this size. 

This can be easily checked, for instance, by computing the corresponding Bohr radius: this is 

of the order of 2 3 19/ 10  mGm  , while the zero-modes in the states    and    are 

separated by a distance of the order of 10-9 m. So the acceleration of each zero-mode due to 

the presence of the other is very small, if compared to accelerations due to atomic or 

molecular forces. It follows that in these “weakly bound states of heavy quasi-particles” the 

distance r varies slowly and there is plenty of time for the transitions    to occur at 

frequency 106-109 Hz, as we shall describe in detail later.  

On a longer time scale, the interaction itself causes the zero-modes to fade out slowly as 
vacuum fluctuations. This is a subtle point that completes our analysis of the isolated zero-

modes given in Sect. 2. As we have seen, the boundary term M dt  in the action is constant for 

an isolated zero-mode, for any time interval, and therefore an isolated zero-mode will persist 
indefinitely in time. For interacting zero-modes the situation is more complicated, because  

1. The superposition of their metrics is not necessarily a zero-mode. 

2. Their total ADM mass-energy is still constant, as long as radiation is negligible; this 

total mass-energy comprises their masses plus potential and kinetic energy. But when 

the emitted radiation becomes a sizeable fraction of the total mass, the ensuing change 

in the boundary term in the action of the zero-modes begins to cause a destructive 

interference in the functional integral between the metrics  1,g x t ,  2,g x t … at 

subsequent times. So the quantum amplitudes of these metrics tend to vanish and the 

result is that the zero-modes, as vacuum fluctuations, acquire a finite lifetime as they 

begin to emit dipolar or quadrupolar radiation. 

3.2 Virtual dipole emission, A and B coefficients 

In this Section we compute the lifetime of an excited state   . The decay of the excited state 

occurs with the emission of an off-shell graviton with spin 1. This happens because the 

dominant graviton emission process in the decay of an excited zero-mode is oscillating-

dipole emission. Quadrupolar emission, which is the only process ensuring conservation of 

energy, momentum and spin in the emission of  on-shell gravitons, can in this case be 

disregarded. Since we are only interested into a lowest-order perturbative estimate (tree 
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diagrams) we can use the linearized Einstein theory in the form of the “Maxwell-Einstein” 

equations 

 

2 2

· 4

· 0

4 1

G m
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G m
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

 


   


E

B
E

B

E
B j

 (21) 

Here GE  is the gravito-electric (Newtonian) field, GB  is the gravito-magnetic field, and mj , 

m  are the mass-energy current and density. The elementary quantization of the field 

modes in a finite volume V follows the familiar scheme used for the computation of 

spontaneous and stimulated electromagnetic emission of atoms in a cavity. We have 

discussed in (Modanese, 2011) the conditions for applicability of the Einstein-Maxwell 

equations to plane waves in vacuum. 

The Einstein A-coefficient of spontaneous emission turns out to be related to the B-
coefficient and to the mass dipole moment by the relation 

 2
3 2 3

8 8ˆ| |
G

A B
 
 

         
   

 


d  (22) 

where the electromagnetic coupling constants have been replaced, up to an irrelevant 

adimensional factor, by the gravitational constants, according to eq.s (21). The operator d̂  is 

the mass-dipole moment and the matrix element is taken between the initial and final state 

of interest. 

 

Fig. 4. Emission of a virtual graviton with spin 1 in the spontaneous decay    . The 

matrix element of the mass-dipole moment operator between    and    has module Mr/2. 

It is straightforward to check that there is an oscillating mass dipole between the states    

and   : 
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 (23) 

where 1

1

2
r r , 2

1

2
 r r ; here r  is the displacement between the masses M1 and M2, which 

in the end are taken to be equal. The origin of the coordinate system is in the center of mass. 

This mass dipole moment has purely quantum origin, because in our system there are no 
masses of different signs, and it is known that in this case the classical mass dipole moment 
computed with respect to the center of mass is zero. We could say that the non-zero matrix 

element (23) is due to the quantum tunnelling between the states and |2 . This corresponds 

to a mass oscillation.  

Eq. (22) gives the lifetime   of the excited level    by spontaneous emission. With the 

values of M and r found in Section 3.1 supposing an excitation frequency of the order of 1 

MHz, one finds 1210B  m3/Js2 for the stimulated emission coefficient and 1 1A    s for 

the lifetime for spontaneous emission (taking 1f  m/s: compare discussion in 

(Modanese, 2011) and Sect. 5). The general dependence of B on the frequency  and on the 

length r of the dipoles is easily obtained from eq.s (20), (22) and (23): 

 
31

B r
  (24) 

Note that B is independent from the Newton constant G. 

3.3 Digression: Elementary dynamics of virtual particles with negative mass 

Real particles with negative mass cannot exist, because they would make the world terribly 

unstable, popping up spontaneously from the vacuum with production of energy. In this 

work, however, we hypothesize the existence of long-lived virtual particles with negative 

mass, whose creation from the vacuum does not require or generate any energy. We 

recognize that these virtual particles have negative mass by looking at their metric at 

infinity, which is Schwarzschild-like, but with negative M and negative ADM energy. We 

know that the dynamics of virtual particles, after their creation, is similar to that of real 

particles, and we have computed quantum amplitudes involving them.  

We do not know any general principle about the “classical” dynamics of virtual particles 

with negative mass. Actually, virtual particles of this kind are an emergent phenomenon 

guessed from the path integral and can only be observed in a very indirect way. It is 

interesting, nonetheless, to make some reasonable hypothesis and check the consequences. 

Our basic assumption will be the following: for an isolated system comprising particles with 

positive and negative mass, the position of the center of mass, defined by 

 CM i i
i

Mr r  (25) 
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is invariant in time. From this assumption one can prove in a straightforward way several 
strange properties of particles with negative mass. These properties can be summarized by 
saying that in the usual dynamical rules their mass really behaves like a negative number, 
namely: (a) The acceleration of the virtual particle is opposite to the applied force. (b) The 
momentum is opposite to the velocity. (c) The kinetic energy is negative. The kinetic energy 
is defined as usual through the work of the applied force, in such a way that the sum 
Ekin+Epot is conserved.  

Applying these rules one obtains a bizarre behaviour in the scattering processes and in the 
dynamics. For instance, although the gravitational potential energy of two virtual particles 
with negative mass is negative, Epot =-GM1M2/r (compare Sect. 3.1), the two particles 
experience a repulsion, due to Property (a). They tend to run away from each other; while 
their distance increases, their Epot decreases in absolute value, and their (negative) Ekin 
increases in absolute value. If the particles were initially at rest at some distance r0 (Fig. 5), 
when their distance goes to infinity they gain a Ekin equal to their initial Epot. 

 

Fig. 5. “Classical” motion of two virtual particles with negative mass initially at rest at 
distance r0. Although their potential energy is negative, they feel a repulsion and their 
(negative) kinetic energy increases in absolute value as their distance goes to infinity. 

In the decay     (Sect. 3.2) the momentum of the emitted graviton is balanced by the 

recoil of the zero-modes (in the same direction of the emission). The conservation equations 

give 

 

2

2 0

r g

r g

Mv E E

Mv p

   


 
 (26) 

where E is the energy gap, Eg and pg are the graviton energy and momentum, vr is the 

recoil velocity of the zero-mode and 2M-10-13 kg is the zero-mode mass. After replacing 

pg=Eg, the system (26) leads to the equation 

 2
2

1
0g gE E E

M
     (27) 
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which has a positive solution EgE, independently from . Furthermore, the recoil velocity 
vr turns out to be always non-relativistic. This means that the recoil of the zero-modes can 
always ensure conservation of momentum, independently from the value of the graviton 

energy-momentum ratio .  

4. Interaction of the zero-modes with a variable -term 

In Sect. 3 we have computed the probability of the decay process     with emission of 

a virtual graviton. The excitation process     (transition of a zero-modes pair from a 

symmetric to an anti-symmetric state) can occur by absorption of a virtual graviton or by 
coupling to an external source. It is easy to show (Sect. 4.3) that the coupling of zero-modes 

to “ordinary” matter with energy-momentum 
dx dx

T m
d d

 
  

  is exceedingly weak.  

(Note that certain interactions between zero-modes and massive particles vanish exactly for 
symmetry reasons. For instance, a particle in uniform motion can never “lose energy in 
collisions with the zero-modes”, because in its rest reference system the particle will see the 
vacuum, zero-modes included, as homogeneous and isotropic. There are possible exceptions 
to this argument: accelerated particles, or particles in states with large p uncertainty.) 

The coupling to a (t) term, or local time-dependent vacuum energy density, can lead to a 

significant transition probability. This is due to the presence of the non-linear g  factor in 

the coupling, and corresponds physically to the fact that such a  term does not describe 

isolated particles, but coherent, delocalized matter. 

4.1 Summary of conventions and of some previous results 

The Einstein equations with a cosmological constant, or vacuum energy term, are written 

 
4

1 8

2

G
R g R g T

c
   


      (28) 

The corresponding action (without the boundary term) is 

 
4 4

4 4

8 8
E

c c
S d x gR d x g

G G 


     (29) 

In this paper with use metric signature (+,-,-,-). With this convention, the cosmological 
(repulsive) background experimentally observed is of the order of c4/G=-10-9 J/m3. 

In perturbative quantum gravity on a flat background, this value of  corresponds to a small 
real graviton mass (Datta et al., 2003, and ref.s). Actually, in the presence of a curved 
background the flat space quantization must be replaced by a suitable curved-space 

quantization (Novello & Neves, 2003). The limit m0 of a theory with massive gravitons is 

tricky, so this global value of  still represents a challenge for quantum gravity (besides the 
need to explain its origin; compare Sect. 2.1).  

In our previous work we introduced the idea that at the local level, the coupling of gravity 
with certain coherent condensed-matter systems could give an effective local positive 
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contribution to the cosmological constant and therefore generate instabilities in the field 
(imaginary graviton mass (Modanese, 1996)). This early argument was not very compelling, 

but was reinforced after considering the effects of the -term on the weak-field dipolar 
fluctuations mentioned in Sect. 2.1. Still such effects were predicted to be very weak and 

dependent on the sign and value of the background  at the scale of interest. After the 
discovery of the strong-field zero-modes of the action, in (Modanese & Junker, 2007) we 

computed the effect of a -term on such configurations, but it still turned out to be very 
small. 

4.2 Time-dependent  and zero-modes transitions 

A substantial progress was made in (Modanese, 2011), where we showed that the effect of a 

high-frequency (t)-term can be quite large and independent from its sign and from the 

background . This was obtained considering the interactions between the zero-modes, as we 

detail in the following. Our latest computations also allow us to recognize more clearly the 

difference between the gravitational effect of coherent matter mediated by the -term and the 

(negligible) gravitational effect of the classical T of the same matter. After writing the total 

Lagrangian Lgrav+Lmatter, we split Lmatter into an “incoherent particles” part (Sect. 4.3) and a 

coherent matter part, described by a scalar field . Only the latter part contains a nonlinear 

factor  g , which can have non-vanishing matrix elements already to first order in . 

We suppose that the scalar field  which describes the coherent matter has in flat space an 
action of the standard form 

 2 2 41 1

2 2
S dxL dx m k
             

    (30) 

The gravitational coupling introduces a g  volume factor. The dynamics of  is driven by 

external forces, so this coupling can be regarded as an external perturbation H , a local 

vacuum energy density term due to the presence of coherent matter described by a 

macroscopic wavefunction equivalent to a classical field: 

 
1 1

( , ) ( , ) ( , ) ( , ) ( , )
8 8

H t g t t g t L t
G G

    x x x x x  (31) 

The  term in coherent matter turns out to be much larger than the cosmological 

background: for instance, one typically has c4/G=106-108 J/m3 in superconductors, 

depending on the type, while the currently accepted value for the cosmological background 

is of the order of c4/G=10-9 J/m3. The value above for superconductors is the result of a 

complex evaluation of the relativistic limit of the Ginzburg-Landau Lagrangian, which 

yields the following expression for  in terms of the pairs density  (Modanese, 2003): 

 2 2 2 2 41
( , ) ( )

2
t m

m
            x  (32) 

where  is the second Ginzburg-Landau coefficient and m is the Cooper pair mass. This 

energy density has strong variations in space and time, following the behaviour of the 
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macroscopic wavefunction. In order to obtain high-frequency oscillations in time, one can 

induce in the material Josephson currents (Modanese & Junker, 2007). Spatial variations 

have a typical scale of 1 nm, so we take this as the size of the volume V where the 

perturbation is spatially constant and the transition probability is computed. For this reason 

we shall leave only the time dependence in  and write henceforth 

 
1

( , ) ( , ) ( )
8

H t g t t
G  x x  (33) 

 

Fig. 6. A time-dependent -term can be quite efficient in exciting transitions + -, because 

it enters the matrix elements to first order in . The denomination “Volume coupling” refers 
to its mathematical form and to the fact that it is due to de-localized coherent matter 
described by a macroscopic wavefunction. 

For the evaluation of the density of final states we refer to (Modanese, 2011) and give here 

only the final result on the probability of transitions +- under the action of an external 

perturbation with oscillation frequency  in resonance with the energy difference (20). 
Given the large number of available states, the resonance occurs for any frequency, and also 
if the perturbation is not exactly monochromatic. 

In accordance with the Fermi rule and considering a volume V10-27 m3 and a frequency 

107 Hz (compare Sect. 3), we obtain 

 
2

34 38 27 23 11
( ) 10 10 10 10 s

dP
H E

dt
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  


 (34) 

This implies that the excitation time of the zero-modes in the presence of a suitable local -

term is very short (10-23 s). It is likely, actually, that this excitation process is limited by the 

energetic balance rather than by the transition probability. 

4.3 Comparison with the effect of incoherent matter 

The action of free incoherent particles is 

 ( )a a a a
a

S m g x dx dx 
   (35) 
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The index "a" denotes the sum over particles and will be omitted in the following, 
considering for simplicity one single particle. The corresponding field/particle interaction 
Hamiltonian density is 

 ,

1
( , )

2
ji

particle ijH h t p p
m

x x  (36) 

where m is the particle mass, ij ij ijh g    and i,j are spatial indices. This holds to lowest 

order in p and for fields h which describe a plane wave (on-shell or off-shell, see proof in 

(Modanese, 2011)). 

Suppose to apply eq. (36) to our case, i.e. to compute a transition probability +- due to 
the coupling of gravitation to single particles in ordinary matter. In this case, the particle 

momentum is a given numerical function of time, while ( , )ijh t x  is a quantum operator 

which acts on the Fock vacuum creating or destroying a graviton. (In the following we shall 

often denote the field operator as ĥ  and omit the indices.) The numerical factor 
2

jip p

m
 is of 

the order of the kinetic energy of the particle 
2

2

p

m
, i.e. of the order of 10-19 J for an atomic 

system. This is also the magnitude order of the (t) term. But while the interaction 

Hamiltonian ,H x  can have non-vanishing matrix elements also when acting linearly 

between the states + and -, because it is proportional to the non-linear function 

1 Tr( ) ...g h   , the Hamiltonian ,particleHx  has non-vanishing matrix elements only to 

second order. 

Namely, we can write a matrix element of the form ˆIn h Out  as 

 ˆ ˆ0, 0,z m z mIn h Out In h Out   (37) 

where z mIn   and z mOut   denote the zero-mode components of the initial and final 

states, and 0  denotes the Fock vacuum, without gravitons. The matrix element is clearly 

zero, because it contains a single field acting between two Fock vacuum states. In other 

words, we can say that since neither in the initial state nor in the final state there are 

gravitons, the standard vertex (36) can have non-zero matrix element only when it is taken 

twice (Fig. 7) and is therefore proportional to  22 /p m ; but this is of magnitude order 10-38 

in S.I. units, as seen, and gives a factor 10-76 after insertion in the transition probability (34).  

On the other hand, the ˆ ˆhh , ˆ ˆ ˆhhh  , … terms in the expansion of H can give non-zero matrix 

elements already to first order in . We are not able to compute these matrix elements 
without a complete theory, because inside the Schwarzschild radius of the zero-modes the 
weak field expansion is not valid. The situation resembles that of early nuclear physics, 
where the nuclear matrix elements were largely unknown, apart from some general 
properties or magnitude orders; this did not prevent researchers from obtaining important 
data on the processes, based on the available information and on the crucial knowledge of 
the final states density. 
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Fig. 7. Zero-mode excitation by double interaction with incoherent matter. A single massive 
particle can cause such an excitation by emitting and re-absorbing a virtual graviton, but the 
probability of this process is very small. 

5. Properties of virtual gravitons 

The aim of this final section is to give a simplified yet consistent physical picture of how 

virtual gravitons mediate the gravitational interactions. This is necessary in order to 

understand the link between virtual gravitons and the other kind of vacuum fluctuations 

studied in this paper, the zero-modes. 

Note that virtual gravitons respect the usual time-energy uncertainty principle; their are not 
“long-lived” vacuum fluctuations like the zero-modes. This is because we consider 
gravitons as the particles obtained in the perturbative quantization of gravity on a flat 
background. It is known that the theory is not renormalizable at higher orders, but we use 
only tree diagrams in this work and suppose that the renormalization problem will be 
solved or is already solved in an effective quantum field theory of gravity (compare Sect. 1). 

The concept of virtual particles mediating an interaction is not simple, and it is sometimes 

used improperly. In some treatments the virtual particles are seen as purely formal 

representations of perturbative diagrams. Instead, it is important to understand in which 

sense they can be regarded as particles or not.  

For a real particle of given mass m, kinematics allows to connect the three quantities E, p, v 

through the two relations 

 2 2 2 2 4E p c m c   (38) 

 
2

2 21 /

mc
E

v c



 (39) 

Therefore when one of the tree quantities is known, we can find the other two. Note that 

from (38) and (39) one can prove the relation 2/ /p E v c , which connects E and p and 

(unlike (39)) also holds for v=c. So we can as well consider as basic relations between E, p, v 

the couple 
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 2 2 2 2 4E p c m c   (40) 

 
2

     
p v

E c
  (41) 

These formulas all hold when the quantities m, E, p, v are well defined, thus for particles 
which are either stable or have a sufficiently long lifetime. For virtual particles the situation 
is more vague and one finds a range of statements in the literature. For instance, there is a 
simple textbook argument showing that the exchange of virtual photons gives rise to a 1/r2 
force between two charges q1 and q2. The argument is based on the time-energy uncertainty 

relation. One writes Eth, where E is the energy of the exchanged virtual photon and t 

its lifetime. Supposing that the virtual particle travels with light speed, its range is r=ct. 

Therefore if the charges q1 and q2 are at a distance r, the “exchanged energy” is E1/r and 
the corresponding force will be proportional to 1/r2. One must add the assumption that the 
number of exchanged photons is also proportional to the product q1q2 of the charges of the 
interacting particles. A weak point in this argument is the identification of the exchanged 
energy with the potential energy of the interaction. In fact, the exchanged energy depends 
on the velocities of the charged particles and can even be zero for static sources or in cases 
like that of the protons observed in their center of mass system (Fig. 8, Sect. 5.1). Apart from 
this, the assumption that the virtual particle has an energy uncertainty and that it 
propagates with light speed looks reasonable. 

5.1 Example: Scattering process 

Let us consider, however, another simple example: the electromagnetic scattering of two 
protons with the exchange of a single virtual photon. To fix the ideas, we choose a definite 

energy of the two protons as seen in their center of mass system, for instance E=10-13 J  1 
MeV. (Magnitude orders are important in these considerations, in order to estimate the 
wavelength and the number of the exchanged particles, as we shall see below in the case of 
gravitons.) In this reference system the exchanged energy is zero and the exchanged 

momentum is of the order of 202 10pm E   kg m/s (non-relativistic approximation). 

 

Fig. 8. Proton-proton scattering through the exchange of a single virtual photon, as seen 
from the center of mass reference system. 
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Suppose that this momentum is carried by one single virtual photon . The photon is off-

shell, with imaginary mass m2<0: m2c2=E2-p2c2  m2=-p2/c2. The virtual photon energy 

and momentum are exactly defined and their ratio E/p is exactly zero in this reference 

system (it is not Lorentz-invariant). The wavelength of the photon, defined as =h/p , is of 

the order of 10-14 m. One can estimate, classically, that the minimum distance reached by the 

protons is of the order of 10-16 m. If the virtual photon is emitted at this point, its 

wavefunction can clearly not be regarded as a plane wave. Its propagation velocity v is 

hardly observable and relation (41) appears to suggest that v is very large; if we assume v=c, 

it is only by analogy with the familiar retarded classical effects.  

The situation appears, in conclusion, to be very different from the previous example. It 

seems reasonable to draw a clear distinction between a scattering process, which can be 

described as the exchange of a single virtual particle, and the inter-particle force in static or 

quasi-static conditions, which is in general equivalent to the exchange of a large number of 

virtual particles. 

5.2 Photons or gravitons vs. static force 

Let us now consider a different situation (Fig. 10): a massive particle (for instance, a proton) 

in free fall in the gravitational field of the Earth. Suppose the particle is initially at rest. 

There is an exact quantum formula which allows to find the static interaction potential 

energy in field theories like QED, QCD etc. The generalization to quantum gravity was 

given by (Modanese, 1995). In this formula the graviton propagator appears explicitly, as 

well as the G constant and the masses m1m2 of the sources (showing that the amplitude of 

virtual gravitons generation is proportional to both these masses; this property was also 

discussed by (Clark, 2001)). The potential energy is written as 
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This equation describes the exchange of gravitons, for an ideally infinite time, between two 

static masses ( 1 2 r r r ; see Fig. 9). In our case the masses are the Earth and the particle. 

The gravitons flux is proportional to both m1 and m2 and the propagator gives the 
amplitude of the propagation of virtual gravitons from r1 to r2, but note that their 
emission and absorption probabilities are equal to 1. If we expand the Feynman 
propagator in four-momentum space, we can see which energies and momenta are 
exchanged. One first finds 
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Changing variables to (t1+t2), (t1-t2) we find that the integral in (t1+t2) cancels the factor 1/T. 

By integrating exp[-iE(t1-t2)] one obtains (E): this selects the static limit, i.e. the exchanged 

gravitons have E0 (note that in eq.s (43) and (44) we use natural units h/2=c=1). Finally we 

have 
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with 'p r p . (A similar reasoning also applies to quantum electrodynamics.) The last 

integral is equal to / 2  and the main contribution to the integration comes from the 

momentum region 'p  , i.e. pr  . This means that in the classical interaction of two 

masses at distance r, the majority of the exchanged virtual gravitons have momentum 

/p r  (restoring  ), or wavelength r  . 

 

Fig. 9. Static potential energy of two masses m1, m2 as the outcome of graviton exchange. 
Virtual gravitons are emitted and absorbed at all possible times t1, t2; the final result is 
obtained by integration over t1 and t2. 

The propagation velocity is not the same for all virtual gravitons, as is seen from the fact 

that their emission/absorption times vary from - to +; correspondingly, their invariant 

masses also vary. Being a static formula, eq. (42) cannot show that the propagation velocity 

of the force is c. For this we need some generalization to moving sources; the formalism of 

Quantum Field Theory will ensure that the retardation effects are accounted for. 

The condition /p r   or r   shows that the wavefunctions of the exchanged virtual 

gravitons are very different from plane waves: these functions do not even make a complete 

oscillation over a distance equal to the Earth radius! Such virtual gravitons can hardly be 

regarded as “particles”. This should actually be expected, because the attractive character of 
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the force can only be understood if we consider the details of the wavefunction (Baez, 1995). 

A naïve particle exchange can only explain repulsive forces. 

 

Fig. 10. The wavefunction of virtual gravitons exchanged in a quasi-static interaction is not a 
plane wave: for most of them, the wavelength is larger than the traveled distance. 

Let us estimate how many gravitons are exchanges between the Earth and a free-falling 

proton or nucleon. To stay close to the static limit, consider a short interval t. The proton, 

initially at rest, acquires in this time a momentum p=mgt. The absorbed gravitons have, on 

the average, individual momentum 41/ 10p r   kg m/s. The number of absorbed 

gravitons is then of the order of  N/t  1015 s-1. 

5.3 Virtual gravitons emitted in the decay     

We have seen that the virtual gravitons exchanged in a quasi-static attractive gravitational 
interaction have very small energy and momentum. Their wavefunctions do not resemble 
plane waves. The propagation of this “stream” composed of a large number of virtual 
gravitons is a collective phenomenon occurring at light velocity. 

The virtual gravitons emitted in the decay     (Sect. 3.2) have completely different 

features. Their energy is much larger (10-27 J). Their momentum is not fixed by the emission 

process, since the recoil of the emitting zero-modes can balance it in any case. One of these 

gravitons can be individually absorbed by a real particle at rest (for instance a proton), in 

such a way to conserve energy and momentum, provided the product f of the graviton 

frequency and wavelength is equal to half the final velocity of the real particle. In fact the 

balance equations are 
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where the suffix “g” denotes the virtual graviton and “p” the real particle. This is a quantum 
process that satisfies the conservation balance, thus it can happen and will in fact happen, 
with a certain amplitude. The amplitude for the final step (absorption by the real particle) is 
unitary, by analogy with the similar process in the static exchange. 
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Supposing that the real particle is a proton, it is easy to check that conservation requires vp 

1 m/s, 10-7 m. If the distance between the real particle and the graviton source is much 

larger than , then the wavefunction of the virtual graviton can be properly described as a 
plane wave. If it is legitimate to apply the kinematical relations of Sect. 5.1 to this plane 
wave, it follows that the virtual graviton propagates like a tachyon (Recami et al., 2000). This 
does not violate the causal principles of special relativity, because the propagation of a 
single virtual particle cannot be modulated to obtain a signal. The existence of such 
tachyonic virtual gravitons would be a consequence of the unique features of their source 

(virtual decay    ). 

6. Conclusions 

In quantum gravity the vacuum fluctuations have a more complex structure than in other 

field theories with positive-definite action. In particular, there are vacuum fluctuations 

which in the non-interacting approximation have infinite lifetime, and seen from the 

outside appear as Schwarzschild metrics with negative mass. These vacuum fluctuations 

behave as pseudo-particles which are created “for free” from the vacuum at any point in 

spacetime. The non-interacting vacuum can in fact be described as an incoherent, 

homogeneous and isotropic superposition of a Fock vacuum plus infinite states of this 

kind (“zero-modes”).  

When the interaction is taken into account, one finds that each pair of zero-modes with 

equal virtual mass M and distance r can be in two states, denoted by + and  -, with energy 

splitting E=E--E+=GM2/r. The excited state  - can decay into the state + by emitting a 

virtual off-shell graviton with spin 1. The energy-momentum ratio E/p of the virtual 

graviton can take in principle any value, being the total momentum preserved by the recoil 

of the zero-modes pair. The A and B Einstein coefficients of spontaneous and stimulated 

emission have been computed in weak-field approximation. The B coefficient turns out to be 

of the order of r2/2h, where  is the frequency corresponding to the gap E. The A 

coefficient depends on the wavelength; for   1 m/s one has A  1 s-1. 

The excitation process +  - cannot occur by interaction with single incoherent particles, 

because the relative amplitude is exceedingly small, involving a double elementary 

particle/graviton vertex. Instead, a sizeable excitation amplitude is obtained in the 

interaction with an external source of the form dxg(t) (local vacuum energy density term, 

due to the presence of condensed matter in a coherent state). By taking into account the 

density of final states one finds, for a length scale of the -term of the order of 10-9 m, an 

excitation time +  - of the order of 10-23 s. 

The virtual gravitons emitted in the decay  - +  are very different from those 

exchanged in the usual gravitational interactions. Consider, for instance, a nucleon in free 

fall near the surface of the Earth. If it was initially at rest, it reaches a velocity of 1 m/s in 

approximately 0.1 s, absorbing 1014 virtual gravitons of very low frequency and large 

wavelength. For comparison, a single virtual graviton of frequency 107 Hz emitted in a 

vacuum decay  - + can transfer the same momentum to the nucleon in a single quick 

absorption process. 
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