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1. Introduction 

The repair of critical-size bone defects resulted from severe traumatic injury, infection, 
surgery for bone cancer or congenital malformation remains a continuous challenge for 
orthopedists. Currently, autogenous bone grafting is a clinical gold standard for bone repair, 
and provides excellent osteoconduction, osteoinduction, high-healing rate and absence of 
immunogenic reaction after surgery. However, autogenous bone grafts are associated with 
the morbidity of donors, additional surgical procedures for harvest, and limitations in the 
quantity and available bone size. Bone tissue engineering has become a new and promising 
alternative approach for the repair of bone defects. Moreover, the clinical application of 
these advanced technologies in the field of tissue engineering seldom leads to satisfactory 
results. Increasing evidences have demonstrated that the key factor for the poor repair with 
tissue-engineered bone is poor vascularization (Nakasa et al. 2005; Kawamura et al. 2006). 
Bone is a highly vascularized tissue that relies on the supply of essential nutrients and 
oxygen from blood vessels for maintaining skeletal integrity (Kanczler and Oreffo 2008). 
Under the circumstance of a well-developed vascular network, the osteoblasts can produce 
osteoid tissues, differentiate to osteocytes, and form healthy bone. In order to provide 
sufficient oxygen for survival, osteoblasts must reside within 150-200 mm of a capillary 
lumen and no cells are greater than 0.2 mm from a blood vessel (Kannan et al. 2005). 
Without the perfusion of blood supply, the osteoblasts in the middle of tissue-engineered 
constructs will be necrosis due to ineffective transportation of oxygen, nutrients and 
metabolites (Smith et al. 2004; Rouwkema et al. 2008). Insufficient vascularization can often 
restrain the formation of new bones and delay the healing of bones. Therefore, 
vascularization plays a key role in bone regeneration. The rate and range of vascular growth 
are the determinants of the efficiency and consequence of new bone formation. 

2. The role of angiogenesis in bone development 

Besides providing nutrients and removing waste products, intraosseous vasculature also 
can accomplish other important functions including bone development and remodeling. 
Bone formation and development occurs through two distinct processes: intramembraneous 
and endochondral ossification. The vascularization is the prerequisite of two different 
processes of ossification (Clarkin et al. 2008). In intramembranous bone formation, 
mesenchymal stem cells (MSCs) can be transported through capillaries and differentiate 
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directly into mature osteoblasts. These osteoblasts then deposit bone matrix and lead to 
bone formation. On the other hand, during the endochondral ossification, the chondrocytes 
secret angiogenic growth factors promoting the invasion of blood vessels, which then bring 
along a number of highly specialized cells and replace the cartilage mold with bone and 
bone marrow (Chung et al. 2004). Vasculature also plays a key role in bone formation by the 
production of growth factors that control the recruitment, proliferation, differentiation and 
function of various cells including osteoblasts and osteoclasts. These growth factors are 
secreted by endothelial cells (ECs) (Red-Horse et al. 2007). 
During the bone remodeling, the osteoblasts play an important role in the balance of 
resorption and bone deposition by secreting osteoprotegerin that is an inhibitor of osteoclast 
activity. However, the mature osteocytes lose the capability to produce this molecule (Marx 
et al. 2007). Blood vessels transport osteoprogenitor cells for the deposition of new bones 
(Barou et al. 2002). The invading vasculature, thus, serves as both a reservoir and a conduit 
for the recruitment of essential cells involved in bone remodeling, and provides critical 
signals necessary for bone morphogenesis (Brandi et al. 2006). 

3. Interaction between osteoblasts and endothelial cells 

The intercellular signaling between vessel-forming cells and bone-forming cells plays a critical 
role in bone integrity. The cell-to-cell communication is crucial to coordinate cell behavior, 
which is necessary for the development and remodeling of bones (Rivron et al. 2008). Several 
models have been established for studying cellular interactions between osteoblasts (OBs) and 
ECs in two-dimensional culture dishes (Guillotin et al. 2008 and Grellier et al. 2009), three-
dimensional (3D) scaffolds (Choong et al. 2006 and Unger et al. 2007), or 3D spheroids 
(Wenger et al. 2004 and Stahl et al. 2005). The OBs and ECs can communicate through a couple 
of mechanisms such as indirect cell contact (Guillotin et al. 2004) through the secretion of 
diffusible factors with paracrine and autocrine action, and gap junction communication 
mediating direct cytoplasmic connections between adjacent cells (Villars et al. 2002). 
Many diffusible factors released from ECs and OBs that affect the growth and differentiation 
of both cell types has been identified. Some diffusible factors secreted by ECs include 
platelet-derived growth factor AB (PDGF-AB), transforming growth factor β1 (TGF-β1), 
transforming growth factor β2 (TGF-β2), fibroblast growth factors-2 (FGF-2), epidermal 
growth factor (EGF), osteoprotegerin (OPG), and bone morphogenetic protein 2 (BMP-2) 
(Bouletreau et al. 2002), which can affect the migration and proliferation of OBs and the 
differentiation of osteoprogenitor cells. In contrast, vascular endothelial growth factor 
(VEGF) secreted by OBs can promote the proliferation of ECs, and stimulate the 
differentiation and angiogenesis through the activation of specific receptors (Clarkin et al. 
2008 and Clarkin et al 2008). 
Gap junction is another mechanism for direct cell-to-cell communications. Some special 
membrane domains composed of aqueous intracellular channels provide direct cytoplasmic 
connections between cells, and allow for the passage of ions or small molecules between 
adjacent cells, thus ECs and OBs can communicate and exchange information (Dbouk et al. 
2009). Several predominant gap junction proteins including Cx43, Cx37 and Cx40 have been 
identified to express in ECs and OBs (Yeh et al. 2006). Similarly, the communication via 
Cx43 gap junctions can promote the expression of osteoblastic differentiation markers such 
as alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein in OBs (Guillotin et 
al. 2008).  
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4. Strategies for improving vascularization 

Several strategies for improving vascularization have been proposed. These strategies 
include the modification of scaffold design, the delivery of angiogenic factors, cell-based 
techniques, and microsurgery strategies (Rouwkema et al. 2008; Phelps et al. 2010). 

4.1 Modification of scaffold design 

Biomaterial scaffold, a key component in the bone tissue engineering, serves as a template 
for cell interactions and the formation of extracellular matrix in bones. The scaffolds should 
match certain criteria including biocompatibility, biodegradability and mechanical 
properties similar to the bone repair site. However, the scaffold itself should also be 
engineered to promote rapid and effective vascularization, and the architecture and design 
of a scaffold is the key factor for controlling the rate of vascularization after implantation. 
Currently, the effect of pore size and interpore distance on the scaffolds during the growth 
of endothelial cells has been evaluated (Narayan and Venkatraman 2008). The growth of 
endothelial cells can be improved by a smaller pore size (5-20 μm) and lower interpore 
distance. However, the growth of blood vessels is more extensive in scaffolds with larger 
pore size (> 250 μm) than those with smaller pore size (Druecke et al. 2004). Other in vivo 
studies have also confirmed that a higher porosity and pore size can result in extensive 
osteogenesis and sufficient vascularization (Bonfield, 2006), which can be explained by the 
fact that large pores facilitate vascular ingrowth and osteoblastic cell migration into the 
scaffold and promote the vascularization and osteogenesis. Porosity also plays an important 
role in the vascularization of scaffolds. The high porosity allows for the maximum space of 
vascularization, osteoblast migration and bone deposition (Karageorgiou and Kaplan 2005). 
In addition, high porosity has a beneficial effect on the diffusion of nutrients and oxygen, 
transportation and vascularization (Park et al. 2009). The scaffold for bone tissue 
engineering must possess interconnecting open pores for the maximum potential of 
vascularization; otherwise, it will be inhibited (Karageorgiou and Kaplan 2005). The 
interconnected pores facilitate cell migration and vascularization (Jovanovic et al. 2010). This 
strategy for promoting vascularization still relies on the vessel ingrowth from the host. 
Limited benefits can be achieved due to the single use. Therefore, it is strongly 
recommended to combine the scaffold design with other strategies.  

4.2 Delivery of angiogenic factors 

It is well understood that the local and controlled release of growth factors from a tissue-
engineered scaffold can effectively enhance the vascularization of engineered tissues (De 
Laporte et al. 2010; Zhu et al. 2008). Many angiogenic factors such as vascular endothelial 
growth factor (VEGF) (des Rieux et al. 2011; Anderson et al. 2011), fibroblast growth factor 
(FGF) (Kim et al. 2010; Zhu et al. 2008), TGF-β (Lee et al. 2006) and angiopoietin 1 (Ang1) 
(Chiu and Radisic 2010) have been used for promoting the vascularization of scaffolds. 
VEGF has gained considerable attention due to its central role in physiology and 
neovascularization of endothelial cells. The VEGF diffused from the scaffolds or released as 
the scaffold degrades can stimulate local vessels to sprout towards the implanted tissue-
engineered constructs. Current reports have demonstrated that the controlled release of 
FGF-1 from alginate microbeads can result in an increase of initial vessel invasion into the 
collagen scaffolds and a longer persistence of vascular network formation (Moya et al. 2010; 
Uriel et al. 2006). However, the dosage must be tightly controlled because excessive amounts 
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of VEGF and FGF can cause high permeability and poor long-term stability (Ozawa et al. 
2004; Zisch et al. 2003). Growth factors including TGF-β and Ang1 for the stabilization of 
new vessels are also important because subsequent stabilization of newly-formed vessels is 
critical for the generation of functional vascular networks within tissue-engineered 
constructs. TGF-β can stimulate the mobilization and recruitment of endothelial cells, and 
thus accelerating vascularization. Ang 1 plays a key role in regulating vessel homeostasis 
and stabilization of newly-generated capillaries (Fiedler et al. 2006; Zisch et al. 2003). The 
neovascularization requires the temporal and spatial expression of multiple angiogenic 
growth factors, which stimulates different stages of blood-vessel formation to enhance the 
vascularization of tissue-engineered bones. More and more researchers are investigating the 
delivery of two sets of factors to mimics under in vivo conditions (Tengood et al. 2010; Sun et 
al. 2011). The combinatorial application of angiogenic factors for stimulating new blood-
vessel formation and maturation is highly necessary for the optimal vascularization of 
tissue-engineered constructs. 

4.3 Cell-based techniques 

Regardless of the approach adopted to improve vascularization, all of these strategies 

include endothelia cells. Previous studies have shown that the addition of endothelial cells 

to tissue cultures can result in the formation of vascular structures in vitro and can 

anastomose to the vessels of the host after implantation (Tremblay et al. 2005; Levenberg et 

al. 2005). Another approach to accelerate the vascularization of tissue-engineered graft is the 

co-culture with endothelial cells based on the principle that the transplanted ECs will 

interact with host ECs and vasculature to establish faster blood supply. The sources of ECs 

used in the promotion of vascularization in bone tissue engineering included mature ECs, 

endothelial progenitor cells (EPCs) and MSCs-derived ECs.  

Mature ECs can be isolated from a wide variety of sources such as umbilical cords, kidney 

vasculars, fat tissues and saphenous veins. Previous studies have revealed the 3D pre-

vascular network formation when the human umbilical vein endothelia cells are co-cultured 

with human mesenchymal stem cells in a spheroid co-culture model. After implantation, the 

pre-vascular network can be developed further and the structures containing lumen can be 

observed regularly (Rouwkema et al. 2006). The co-culture of rat bone marrow MSCs with 

kidney vascular ECs on 3D scaffolds exhibits a pre-vascular network-like structure after in 

vivo implantation and results in the increased amount and size of new bone formation when 

compared with the control group (Sun et al. 2007). These results suggest that mature ECs 

can efficiently enhance the vascularization of the tissue-engineered grafts. However, the low 

availability and proliferation capability will severely restrict its large-scale applications (Kim 

and Von Recum, 2008). 

An alternative source of ECs to promote vascularization in tissue engineering is endothelial 

progenitor cells. The EPCs are enriched in bone marrow, peripheral blood and umbilical 

cord blood. EPCs have greater proliferation capability than mature ECs (Lin et al. 2000) and 

can differentiate into ECs in vitro, thus contributing to the formation of vascular networks 

(Rafii and Lyden 2003). Physical and biochemical interactions between EPCs derived from 

bone marrow and MSCs in a co-culture system in vitro. These studies suggest the co-culture 

of EPCs derived from bone marrow and MSCs can induce endothelial phenotype and 

angiogenesis without the addition of exogenous growth factors (Aguirre et al. 2010). The co-

culture of MSCs and peripheral blood EPCs in Matrigel with 2-3 mm of biphasic calcium 
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phosphate particles for the analysis of bone formation at 6 weeks after implantation in nude 

mice has demonstrated that co-implantation of EPCs isolated from peripheral blood can 

significantly enhance osteogenic differentiation in vitro and support bone formation in vivo 

(Fedorovich et al. 2010). The influence of EPCs combined with mesenchymal stem cells on 

early vascularization and bone healing in critical-size defect in vivo has also been evaluated 

to reveal an improvement of early vascularization in the combinatorial group of EPCs and 

MSCs. Meanwhile, more bony bridges also can be observed in the combinatorial group 

between EPCs and MSCs at 8 weeks after implantation. These studies suggest that the 

combinatorial delivery of MSCs and EPCs can support early vascularization and accelerate 

bone healing. 

Similarly, previous studies have been proved that MSCs can be induced to differentiate into 

ECs and these ECs have more proliferation potential than the terminally-differentiated ECs 

(Oswald et al. 2004). The MSCs-derived ECS should be ideal for pre-vascularized bone 

tissue engineering and the pre-vascularized bone tissue engineering construct can be 

prepared by a single, easily accessible, bone marrow biopsy. ECs and osteogenic cells 

derived from bone marrow have been seeded in an apatite-coated poly(lactide-co-

glycolide)/hydroxyapatite composite scaffolds and then transplanted into critical-size 

calvarial defects in mmunodeficient mice (Kim et al. 2010). The bone regeneration reveals a 

significant enhancement due to the addition of ECs derived from bone marrow. Critical-size 

ulnar defects in the rabbits have also been repaired through vascularized tissue-engineered 

bone (Zhou et al. 2010). The vascularized tissue-engineered bone is constructed with MSCs 

and MSC-derived ECs and then co-cultured in porous β-tricalcium phosphate ceramic. The 

rabbits treated with vascularized tissue-engineered bone exhibit more extensive 

osteogenesis and better vascularization. Therefore, the ECs derived from bone marrow can 

be used as a source for pre-vascularized bone tissue engineering with multiple advantages. 

First, bone marrow aspiration is less invasive. Second, the use of autologous bone marrow 

cell grafts can avoid immune rejection.  

4.4 Microsurgery strategies 

Another promising approach for enhancing vascularization in tissue engineering is the 
hybrid strategy coupled with microsurgery approaches with bone tissue-engineered 
constructs such as flap fabrication and arteriovenous (AV) loop (Kneser et al. 2006). The 
vascularization of tissue-engineered grafts basically consists of a two-stage surgical 
procedure. In the first stage, the scaffolds loaded with cells and/or growth factors are 
implanted into a site of rich vascularization, usually a muscle or the forearm. Then the 
capillaries are grown into the scaffold to form a microvascular network in the engineered 
graft at the initial implantation site after several weeks (Kneser et al. 2006). In the second 
stage, the tissue-engineered construct with microvascular network is harvested and then re-
implanted at the defect site. The microvascular network in the tissue-engineered grafts will 
anastomose with the host vessels and result in instantaneous perfusion of the entire 
construct (Kneser et al. 2006). For example, the studies have been conducted the in situ 
implantation of prefabricated tissue-engineered bone flaps and recombinant human bone 
morphogenetic protein-2 (rhBMP-2) to accomplish the mandible reconstruction (Zhou et al. 
2010). The AV-loop model provides a new approach for the fabrication of axially 
vascularized tissue so that the vascularization of tissue-engineered grafts can be emanated 
from internal vascular pedicle independent of local conditions. This AV-loop approach has 
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applied to induce axial vascularization in a bovine cancellous bone matrix (Beier et al. 2011). 
The micro-CT scans and histomorphometry have showed a significant increase of axial 
vascularization in bovine cancellous bone matrix constructs, and immunohistochemistry has 
confirmed the endothelial linking of newly-formed vessels. Similarly, a vascularized tissue-
engineered bone graft composed of implanted MSCs and a vascular bundle into the 
xenogeneic deproteinized cancellous bone (XDCB) scaffold has also constructed (Zhao et al. 
2011). The histological and biomechanical examinations have showed that the combination 
of MSCs and a vascular bundle implantation can result in the promotion of vascularization 
and osteogenesis in the XDCB graft, and the improvement of new bone formation and 
mechanical properties during the repair of radius defects. These studies suggest that the 
vascular bundle implantation is a promising strategy for promoting vascularization in the 
tissue-engineered grafts. 

5. Conclusion and future directions 

Insufficient vascularization remains one of the major problems in bone tissue engineering. 
The critical factor for the limitation of clinical application of tissue-engineered bone is poor 
vascularization. Multiple approaches such as scaffold design, angiogenic factor delivery, 
cell-based technique and microsurgery strategy have been explored to promote the 
vascularization in the field of tissue engineering. These approaches may generate capillary-
like structures within the tissue-engineered graft, however, the best method for successful 
application in vivo is still uncertain because there is no convincing evidence. Therefore, the 
integration of several strategies for enhancing the repair of bone defects is highly desired in 
the future. 
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