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1. Introduction 

Osteogenesis imperfecta (OI) is a congenital, generalized connective tissue disorder 

characterized by severe osteoporosis and bone fragility. Other features of the disease include 

dentinogenesis imperfecta, scoliosis, short stature, blue sclerae, hearing loss, and skin and 

ligament laxity (Cheung and Glorieux, 2008; Rauch and Glorieux, 2004). It is the most 

commonly inherited connective tissue disorder with a prevalence in the United States of 

about 25,000-50,000 cases (Martin and Shapiro, 2007). Molecular defects in type I collagen 

genes, COL1A1 and COL1A2, were first associated with OI in the early 1980’s (Chu et al., 

1983). Since then, although OI is most commonly an autosomal dominant disease, it became 

evident that in certain pedigrees with recurrence of OI in children of unaffected parents, 

other mechanisms of inheritance were at play. While germline mosaicism for a type I 

collagen mutation was demonstrated in some rare cases (Cohn et al., 1990; Edwards et al., 

1992), in others where no collagen primary sequence defects were evident, the existence of 

recessively inherited forms of OI had to be postulated. It is known that 10-15% of all OI 

cases are not caused by type I collagen mutations and some of these can be distinguished 

from others based on specific bone histological features (Glorieux et al., 2002), clinical 

features (Glorieux et al., 2000), or because they are linked to a genetic region not 

containing type I collagen genes (Labuda et al., 2002). It took about a quarter of a century 

to identify the first gene responsible for some cases of recessive OI, i.e. CRTAP (encoding 

Cartilage-associated protein) (Morello et al., 2006). This initial discovery led the way to the 

identification of several novel genes whose mutations cause recessive forms of OI. It has 

rapidly become evident that while dominant forms of OI are caused by mutations in type 

I collagen genes, recessive forms of OI are almost always caused by mutations in genes 

encoding for proteins involved in the type I collagen synthetic pathway and often residing 

in the rough endoplasmic reticulum (rER). Thus, all direct and indirect collagen 

interactors, either in the rER or Golgi apparatus or involved in intracellular collagen 
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trafficking, have become new candidates for recessive or atypical forms of OI. This 

chapter will provide the reader with an update on the latest developments in the OI field, 

including description of new genes causing OI, mechanisms of disease and novel 

therapeutic approaches. 

2. Classification of OI, clinical features and differential diagnosis 

Osteogenesis imperfecta was classified several years ago into four types based on clinical, 

radiological and genetic features (Sillence, 1988; Sillence et al., 1979). Type II OI is the 

perinatal lethal form followed by types III, IV and I, in decreasing order of severity with 

type I OI being the mildest form. The mode of inheritance is not unique to each type with at 

least types II (further sub-classified into IIA, IIB and IIC) and III that could be inherited in a 

dominant or recessive fashion. More recently, out of the more heterogeneous group of type 

IV patients, novel types V, VI and VII OI were described based on unique clinical and/or 

histological features and linkage to loci where no type I collagen genes were mapped 

(Glorieux et al., 2000; Glorieux et al., 2002; Labuda et al., 2002). 

The nosology of OI has been a subject of discussion and revision in light of recent 

discoveries of novel genes causing recessive forms of the disease. Plotkin (Plotkin, 2004) 

proposed to classify as OI all those cases in which a mutation in either COL1A1 or 

COL1A2 can be identified. Cases resulting from mutations in other genes would be 

classified as syndromes resembling OI. Others have proposed to adopt a revised Sillence 

classification of OI type I through VI but removing types VII and VIII which are due to 

mutations in CRTAP and LEPRE1, respectively, but have clinical and radiological features 

indistinguishable from types II-IV (Van Dijk et al., 2010). A more genetically oriented 

classification has also being proposed (Forlino et al., 2011). Here the classical Sillence OI 

types I-IV are maintained (all due to either COL1A1 or COL1A2 defects), followed by the 

previously described types V, VI and VII, and then in increasing order new types of OI 

(the latest is number XI) where each new type (from types V-XI) is due to a mutation in a 

different gene (Table 1). Conversely, the 2010 Revision of the Nosology and Classification 

of Genetic Skeletal Disorders (Warman et al., 2011) has agreed to retain the Sillence 

classification as the universally accepted way to classify the degree of OI severity but to 

free it from any direct molecular reference. 

Because the original Sillence classification has been in use for over 30 years and instantly 

refers to the clinical severity of the disease, it is likely that physicians will continue to use it 

at least until the underlying genetic mutation of a patient has been clearly determined. The 

strictly genetic classification could be quite useful though as it is indeed possible that 

different genetic etiology and hence mechanism of disease may require a different 

therapeutic approach. This is beginning to emerge for instance in patients with SERPINF1 

mutations who have not shown beneficial effects from bisphosphonate treatment (Homan et 

al., 2011). 

Although there remains a great deal of difficulty making a definitive diagnosis in many of 

the children, recognition that there are recessive forms of osteogenesis imperfecta has 

clarified a historically confusing differential diagnosis. Utilization of these modified 

classifications also assists in identifying individuals without the classic types I – IV from 

normal children with nonaccidental trauma and other unrelated metabolic bone diseases. 
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OI 
type 

Inheritance Clinical features Gene defect Protein 

I AD Mild COL1A1 (null alleles) a1(I) 

II AD Lethal  COL1A1 or COL1A2 a1(I) or a2(I) 

III AD Severe, deforming COL1A1 or COL1A2 a1(I) or a2(I) 

IV AD Moderate COL1A1 or COL1A2 a1(I) or a2(I) 

V AD 

Hypertrophic callus, dense 
metaphyseal band, 

calcification of radio-ulnar 
interosseus membrane 

Unknown Unknown 

VI AR 
Severe: mineralization defect, 

'fish scale' bone lamellae, 
slightly elevated AP 

SERPINF1 PEDF 

VII AR 
Very severe to lethal, 

rhyzomelia 
CRTAP CRTAP 

VIII AR Severe to lethal, rhyzomelia LEPRE1 P3H1 

IX AR Moderate to severe PPIB CYPB 

X AR Severe SERPINH1 HSP47 

XI AR 
Moderate to severe with joint 

contractures  
(Bruck syndrome 1?) 

FKBP10 FKBP10 

     

NC AR 
Moderate to severe with joint 

contractures and pterygia, 
Bruck syndrome 2 

PLOD2 LH2 

NC AR 
Ocular form of OI, 

osteoporosis pseudoglioma 
syndrome 

LRP5 (null alleles) LRP5 

NC AR Moderate to severe SP7 OSX (Osterix) 

Table 1. Genetic classification of OI (AD = autosomal dominant; AR = autosomal recessive; 
NC = not classified) 

Type I: These individuals typically do not have major bone deformity and have a significant 

variability in terms of number of fractures, even within the same family. Fractures typically 

begin when the children start to ambulate. Plain radiographs often are normal in 

appearance. These individuals may have blue sclera and hearing loss, although this may not 

occur before the second or third decade. Dentinogenesis imperfecta is not typically a major 

component of Type I. There may be subtle dental findings. There are no long-term studies to 

determine if the collagen defect might lead to later dental problems. Growth and stature are 

typically mildly decreased in type I OI (Forlino et al., 2011; Sillence et al., 1979). 

Type II: Type II is historically described as perinatally lethal, typically from pulmonary 

failure related to the severe involvement of the chest cavity with small volume, deformity, 

and recurrent rib fractures. There may also be some involvement of the intrinsic collagen of 

the lung parenchyma (Forlino et al., 2011; Sillence et al., 1979). 

These children are frequently diagnosed in prenatal ultrasounds with short, severely bowed 
long bones with multiple fractures. Radiographically, at the time of birth, they have severe 
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bowing of the long bones, multiple fractures in different stages of healing, poorly defined 
cortices, and crumpling or wrinkling of the bones in an accordion-type fashion. There is 
poor tubulation with wide medullary canals. There is typically severe wedging deformity of 
the vertebrae. The skull is usually quite soft and large (Forlino et al., 2011; Sillence et al., 
1979). Some of these children, including some treated with bisphosphonates, have survived 
for several years. 
Type III: These patients are also frequently diagnosed on prenatal ultrasound. They also 
have relative shortening of the long bones, significant bowing, and multiple prenatal and 
postnatal fractures. These children continue to have fractures even with gentle handling. 
This is the most severe non-lethal form. They may have a very typical triangular facies, blue 
sclerae, dentinogenesis imperfecta, vertebral fractures, and frequently scoliosis. Without 
treatment with bisphosphonates, this OI type frequently demonstrates classic “popcorn 
epiphyses” of the long bones and patients have significant short stature (Forlino et al., 2011; 
Sillence et al., 1979).  
Type IV: Traditionally, this classification has included children with phenotypes that did 
not fit into Sillence type I or III. These children typically have multiple fractures, varying 
degrees of deformity, as well as a great deal of variation in terms of color of the sclera, 
cranial settling, dentinogenesis imperfecta, and stature. With the recognition of recessive 
forms, many of these children previously classified as having type IV are now recognized as 
having one of these other, less common forms (Forlino et al., 2011; Sillence et al., 1979). 

Type V: These individuals have increasing bone fragility and a moderately severe 
phenotype of OI. They also have calcification of the interosseous membrane which can be 
noted in the first year of life. This causes a significant decrease in pronation and supination. 
The radial head dislocates anteriorly, and long bone fracture can result in a very 
hypertrophic callus. There can be a radio-dense band at the end of the metaphysis. There is a 
unique mesh-like pattern of lamination histologically under polarizing light. (Arundel et al., 
2011; Glorieux et al., 2000). 

The clinical features of the recessive types of OI are described in section 4 (Molecular 
genetics of dominant and recessive OI). 

3. Management and treatment 

A team approach is vital to care for children with OI because many of them have not only 
recurrent fractures and severe bowing deformities, but also lax joints and connective tissue-
associated problems. Long-term, individuals may develop other significant health issues, 
including cardiac, pulmonary, and joint problems. Unfortunately, to this point there is no 
good long-term data to determine what types of problems individuals with OI develop, 
their frequency, and appropriate treatment, or whether present medical management will 
improve long-term function. There is also very likely a significant difference in long-term 
function and the rate of deterioration that is dependent upon the specific genetic defect, but 
this has not been studied.  
Bisphosphonates have been utilized extensively over the past decade in the treatment of 
osteogenesis imperfecta and other disorders with brittle bones and have been shown to 
clearly increase cortical thickness (Arikoski et al., 2004; Rauch and Glorieux, 2006). They 
improve comfort and function (Land et al., 2006a) but they do not lead pre-existing bony 
deformity and bowing to remodel (Astrom et al., 2007; Forin et al., 2005; Land et al., 2006a; 
Plotkin et al., 2006) (Figure 1). Decreases in fracture rates have been difficult to document. 
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Centers that treat large numbers of these children however have anecdotally noted a 
marked increase in activity level and ambulation, even in children with severe type III OI. 
Present indications for treatment with bisphosphonates in children with the more severe 
forms of OI include marked bowing, which is interfering with comfort and function, and 
recurrent fractures (de Graaff et al., 2011; Forin et al., 2005; Glorieux, 2007; Glorieux et al., 
1998; Plotkin et al., 2006; Rauch and Glorieux, 2006). 
 

 

Fig. 1. A, B: 15-month old with type III OI. Note the relatively normal physis, and reasonable 
bone development following treatment with pamidronate since infancy. However, the 
significant bowing will not remodel, and as these children begin to pull up to stand they will 
predictably fracture at the apex of the bow. C: untreated 17 year old also with type III 
demonstrating popcorn epiphysis and signs of recurrent fractures. 

The greatest improvement in areal bone density occurs in the first year of treatment. 
Pamidronate has been studied the most extensively, and has been shown to improve 
vertebral height and development in children with compressed vertebral bodies (Land et 
al., 2006b). Infants and young children with more severe OI with bowing and recurrent 
fractures have been safely treated with pamidronate (Astrom et al., 2007; Land et al., 
2006a; Plotkin et al., 2006). The DEXA scan is the most frequent test utilized to help 
determine the relative severity of the OI, and the Z-score has ben utilized to monitor the 
response to treatment. However, there is not data suggesting that the goal of treatment is 
to develop a bone density in the normal range. At the present time, the clinical parameters 
of improved comfort, decreased fracture rate, and progression of normal developmental 
milestones offers the best clinical assessment of effective treatment. Zoledronic acid is a 
more potent bisphosphonate, which requires only one intra-venous treatment per year. It 
is presently being studied, but this data and results are not yet available (Shapiro and 
Sponsellor, 2009). 
Initial treatment protocols with pamidronate were for a set number of years depending on 
the treating center. However, it has been noted that if the treatment is discontinued in a 
growing child, the bone that is developing at the proximal and distal end of the long bones 
is not treated. This gives rise to a stress riser between the treated bone of the shaft and the 
relatively soft bone at either end of the long bones (Breslau-Siderius et al., 1998; Rauch et al., 
2006). Theoretically, this is a concern with the longer acting agents, which may be given only 

A B C
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once per year (Rauch et al., 2007; Rauch et al., 2006; Ward et al., 2007). The ideal treatment 
protocol is not universally agreed upon and it is recognized that other forms of treatment in 
the future will improve the lives of these individuals (Devogelaer and Coppin, 2006; 
Glorieux, 2007; Glorieux et al., 1998; Plotkin et al., 2006; Rauch and Glorieux, 2006).  

There are a number of recent review papers dealing with the evaluation and treatment of 

osteogenesis imperfecta. These papers very nicely demonstrate the impact of the team 

approach, early medical management with bisphosphonates combined with prudent 

surgical management, address the questions that remain to be answered, and address the 

differences in approach between centers (Esposito and Plotkin, 2008; Forlino et al., 2011; 

Shapiro and Sponsellor, 2009). 

It is less clear when to treat children with type I OI. Many centers recommend that treatment 

with bisphosphates be withheld unless the children are having recurrent fractures. Whether 

or not the bone density as measured on DEXA results as an isolated parameter has a role in 

determining treatment in this patient population with type I OI is unclear. Bone density has 

been correlated with disease severity, and may be predictive of long-term function (Plotkin 

et al., 2006). 

The role of bisphosphonate treatment with non-union fractures is also unclear. Non-unions 

have been noted in 15% of children with osteogenesis imperfecta even prior to treatment 

with bisphosphonates (Agarwal and Joseph, 2005). There is one report of delay in healing 

following osteotomies but not fractures (Pizones et al., 2005). Non-unions have been 

reported post surgically (Cho et al., 2011). There are other reports that patients receiving 

bisphosphonates did not have issues with bone healing. El Sobky et al reported that children 

treated with pamidronate prior to surgery and afterwards function better than children 

treated with surgery alone (el-Sobky et al., 2006). In our experience with a large OI clinic 

population, when pamidronate is discontinued, some of the children have increased bone 

pain, which decreases after treatment is restored, and an increase in fracture rate, although 

this is not reported definitively in the literature.  
Bisphosphonate treatment has clearly been shown to improve vertebral height even after 
significant wedge compression deformity of the vertebrae (Land et al., 2006b). However, 
there is no report of whether this treatment changes the incidence or severity of scoliosis. 
One recent spine x-ray review of a large osteogenesis imperfecta clinic population showed a 
significant increase in spondylolysis and spondylolisthesis above the incidence reported in 
otherwise normal children. The vast majority of these children had type III and type IV OI, 
and were ambulatory following treatment with bisphosphonates (Hatz et al., 2011). The long 
term implications are unclear. 

3.1 Surgical treatment 

Preoperative assessment and planning are critical to successful surgical outcomes in these 
individuals. The indications for surgical realignment include recurrent fractures and 
severe deformities in children with severe osteogenesis imperfecta who are making 
attempts to stand. Children with type I may also benefit from telescoping percutaneous 
intramedullary nailing to avoid the necessity of spica casting. Children with severe OI 
who sustained fractures in areas of pre-existing deformity very consistently have had 
increase in the deformity from muscle pull even though they are casted. This leads to a 
repetitive cycle of fracture and progressive deformity. The children with significant 
bowing who are beginning to stand will predictably fracture. This cycle of recurrent 
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fracture very clearly interferes with their psychomotor development. There is rarely an 
indication for operative treatment prior to the children attempting to stand as most of the 
fractures are low energy and can be splinted for a brief period of time. Age is not 
necessarily a major factor in determining when to perform the surgery but may have an 
impact on the type of fixation utilized (Fassier et al., 2006; Fassier and Glorieux, 
2003).Lower extremities are typically more severely involved than the upper extremities 
and interfere with psychomotor development more significantly than upper extremity 
deformities early in life. However, there are some children who benefit from upper 
extremity surgery, especially of the humerus, because of the use of arms for weight 
bearing to a much greater extent than their peers in the normal population (Amako et al., 
2004; Gargan et al., 1996; Montpetit et al., 2003; Sulko and Radlo, 2005). 

3.2 Principles of surgery 

The goal of surgery in a child who is attempting to bear weight or has recurrent fractures, 

which interfere with his or her ability to ambulate comfortably even in a wheelchair, is to 

obtain anatomic mechanical alignment while load sharing with the bone and intramedullary 

device. Surgery should not be performed for deformity until bone density has been 

optimized medically. Fractures may require operative treatment prior to medical treatment 

if a child presents with a disabling injury and the surgeon’s assessment is that the bone 

structure is adequate to allow for fixation. Ideally, this device will telescope and grow with 

the child. The principles include minimizing injury to the soft tissue envelope of the bone 

and to the adjacent joints. The most frequently utilized device is the Fassier-Duval nail, as 

this has been shown to be a safe and effective means of treatment and may increase the time 

to revision surgery (Esposito, 2010; Fassier et al., 2006; Turman et al., 2006). This device also 

decreases the need for arthrotomies. However, other intramedullary devices continue to be 

used with good results (Boutaud and Laville, 2004; Cho et al., 2007; Cho et al., 2011; Joseph 

et al., 2005; Luhmann et al., 1998). Treatment of younger children and toddlers may require 

earlier revision because the length of the rods are short initially because of the size and 

length of the child’s one. However, the toddler years are a vital time of growth and 

development in the ability to stand, transfer, and ambulate. This technique also allows for 

the treatment of multiple bones simultaneously without the necessity of prolonged spica 

casting.  

Osteotomies can be performed in the majority of children through a small incision 

percutaneously. This minimizes the injury to the soft tissue envelope and allows for some 

inherent rotational stability. The Fassier Duval technique also decreases the need for 

arthrotomies (Boutaud and Laville, 2004; Cho et al., 2007; Esposito, 2010; Fassier et al., 2006; 

Fassier and Glorieux, 2003; Joseph et al., 2005; Luhmann et al., 1998; Turman et al., 2006). 

Although most frequently utilized to correct femoral and tibial deformities, it is quite 

effective in the humerus (Figure 2A, B). There are specific deformities such as true coxa vara, 

which must be differientiated from the more common apparent coxa vara caused by 

anterolateral bowing of the proximal femoral diaphysis, which now can be effectively 

treated (Fassier and Glorieux, 2003). Femoral neck fractures can also be treated but the 

diaphysis must be protected with an intramedullary nail (Fassier and Glorieux, 2003; Tsang 

and Adedapo, 2011) (Figure 2C). True coxa vara can develop post surgical rodding but can 

also be seen to develop after trivial trauma or without known trauma. 

www.intechopen.com



 
Osteogenesis 230 

 

Fig. 2. A, B: 5-year old child with type III OI - 2 years post-op bilateral humeral osteotomies 
for recurrent fractures and severe bowing that were interfering with weight bearing 
function. C: 12 year old female with type I OI with sub-trochanteric fracture on the left and 
femoral neck fracture on the right side. The Fassier Duval percutaneous technique is not 
only useful in younger children with corrective osteotomies, but is very useful in dealing 
with adolescents with fractures. These children typically have small canals and need 
protection until at least skeletal maturity regardless of the age at initial surgery. 

3.3 Pitfalls 

Rigid devices should be avoided as some of the children will develop resorption of bone 

around the device because of this rigidity and stress shielding. Plates and screws not 

combined with an intramedullary device are stress risers and very clearly and predictably 

will develop bowing and fracture at the ends of the plates (Enright and Noonan, 2006). 

Careful evaluation for associated problems such as cranial settling on the cervical spine 

must be undertaken (Forlino et al., 2011). Maintaining gentle longitudinal traction and 

supporting the neck greatly assists the anesthesiologist during intubation process and may 

prevent neurologic or bony spinal injury.  

The majority of these children tend to have an elevated temperature because of their 

underlying metabolism. However, malignant hyperthermia is not associated with 

osteogenesis imperfecta. With the percutaneous techniques, significant bleeding is rarely 

encountered. However, when multiple bones are treated at one surgical setting, cumulative 

bleeding may necessitate transfusion.  

The entire operative team must be educated in the care and handling of these children. It is 

not mandatory in all of the children to utilize an arterial line, monitor blood pressure, if they 

have been treated with bisphosphonates and had a good response to that treatment. Setting 

the blood pressure cuff to neonatal pressures only in children with reasonable bone density 

and structure can allow for safe monitoring. This is especially true if the cuff is placed over a 

bone that has previously had an intramedullary nail placed. Obviously in a child with 

severe bone weakness and deformity, an arterial line may be indicated. 

A B C
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Post operative pain can be a difficult problem, with spasm necessitating treatment such as 
diazepam. Recent experience in one of our centers with epidural technique has shown that 
this can be done safely and has made a significant improvement in comfort and has 
enhanced post operative rehabilitation. Post operative casting or splinting is necessary only 
for a brief period of time if the surgeon determines that it is necessary to control rotation or 
to provide comfort. In some series and in our ongoing experience, splinting for 3-4 weeks is 
adequate. Protected weight-bearing can then begin, minimizing muscle atrophy, joint 
stiffness and osteoporosis from immobilization. Correcting as many deformities as 
necessary at one episode may decrease the number of fractures and total time of 
immobilization for these children.  

4. Molecular genetics of dominant and recessive OI 

Osteogenesis imperfecta is commonly an autosomal dominant disease; however, about 10-
15% of all OI cases are due to a recessively inherited mutation in a non-collagen coding 
gene. 

4.1 Dominant OI 

Dominant forms of osteogenesis imperfecta are always associated with mutations in the 
COL1A1 or COL1A2 gene encoding the a1(I) or a2(I) chain of type I collagen, respectively. 
COL1A1 mutations causing a reduced synthesis of type I collagen via haploinsufficiency are 
referred to as ‘quantitative mutations’ and usually result from nonsense substitutions or 
frameshifts that cause a premature termination codon and subsequent degradation of the 
transcript by the nonsense-mediated RNA degradation mechanism. These mutations 
typically result in mild forms of OI (i.e. type I OI) where each cell produces less collagen but 
of normal quality and structure. Patients with these mutations have short to normal stature, 
little to no deformities, bluish sclerae and increased susceptibility to fractures (Forlino et al., 
2011; Rauch and Glorieux, 2004). In contrast, missense mutations in the a1(I) or a2(I) chain, 
especially glycine (Gly) substitutions in the Gly-X-Y repeat along the triple helical domain, 
as well as splice mutations causing in-frame deletions or exon skipping are usually referred 
to as ‘qualitative or structural mutations’ and cause lethal (OI type II), severe (type III), or 
moderate (type IV) disease. These mutations significantly impact the normal structure and 
assembly of the procollagen heterotrimer and may trigger a cascade of deleterious events at 
both the intracellular level, including abnormal collagen post-translational modification, 
folding, trafficking and ER-stress, and extracellular level, including reduced collagen in the 
matrix, abnormal mineralization and altered matrix-to-cell signaling. Although well over 
1000 different dominant mutations in COL1A1 or COL1A2 have been described, it has been 
quite difficult to establish a genotype-phenotype correlation among the many different 
structural mutations and that could explain the spectrum of clinical severity ranging from 
moderate to lethal (Byers et al., 1991). Some general rules though have held true. 1) Because 
the trimer assembly and the winding of the triple helical domain proceed in a zipper-like 
manner from the C- terminus to the N-terminus, mutations closer to the C-terminus cause a 
more severe phenotype. 2) A greater proportion of lethal mutations affect the a1(I) versus 
the a2(I) chain. 3) One third of all Gly substitutions in the triple helical domain are lethal, 
especially when Gly is replaced by a charged or a branched side chain amino acid. 4) Two 
and eight lethal regions in the helical domain of a1(I) and a2(I), respectively, have been 
identified and align with major ligand binding sites such as those for integrins, matrix 
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metalloproteinases and various matrix molecules including proteoglycans (for a review see 
(Marini et al., 2007)). 
In conclusion, it is also important to remember that some rare mutations in either COL1A1 

or COL1A2 can cause a form of Ehlers-Danlos syndrome (EDS) (reviewed in (Beighton et al., 

1998)). 

4.2 Recessive OI due to mutations of Leprecan family members 

The recently identified family of proteins called Leprecans includes five members: cartilage-

associated protein (CRTAP), synaptonemal complex 65 (SC65 or No55), prolyl 3-
hydroxylase 1 (P3H1 or Leprecan, encoded by the LEPRE1 gene), prolyl 3-hydroxylase 2 

(P3H2, encoded by the LEPREL1 gene), and prolyl 3-hydroxylase 3 (P3H3, encoded by the 
LEPREL2 gene). Initial studies showed that Crtap loss of function in mice causes an 

osteochondrodysplasia characterized by short stature, kyphosis, shortening of the first 
segment of the limb (i.e. rhizomelia), and severe osteopenia (Morello et al., 2006). The 

osteoclast counts and function were normal with absence of a hyper-resorptive phenotype. 
However, bone histomorphometry showed functional osteoblast defects with reduced 

mineral apposition rate (MAR) hence, decreased bone formation rate (BFR). Osteoid 
surfaces and volumes were reduced and mineralization showed a shorter lag time. 

Transmission electron microscopy studies of mouse skin fibroblasts showed that type I 
collagen fibrils formed in the extracellular matrix although they had, on average, a 

significantly increased diameter. Although CRTAP has no enzymatic activity, it can bind to 
P3H1 in the rough endoplasmic reticulum (rER) and somehow facilitate its activity. 

Biochemically, the Crtap-/- mouse phenotype is associated with lack of conversion of Pro986 
into the 3-hydroxy-proline normally found at that position in the triple helical domain of 

a1(I), a1(II) and a2(V) chains (Baldridge et al., 2010; Morello et al., 2006). Severely decreased 
CRTAP expression due to a hypomorphic mutation with residual expression of normal 

protein is associated with “rhizomelic” recessive osteogenesis imperfecta type VII, described 
by Ward et al. (Ward et al., 2002) in a unique First Nations Community pedigree of 

Northern Quebec. Instead, complete absence of CRTAP (mostly due to loss of function 
mutations) causes lethal to severe recessive OI in humans (Barnes et al., 2006; Morello et al., 

2006). Although initially classified as type IIB-III, also these cases are tentatively classified as 
type VII OI. Because Crtap can form a trimeric complex (so called prolyl 3-hydroxylation 

complex) together with prolyl 3-hydroxylase 1 (P3h1, encoded by LEPRE1) and cyclophilin 
B (CypB, encoded by PPIB) (Morello et al., 2006) in the rER, the genes encoding these 

interactors became new candidates for causing recessive OI. Mutations in LEPRE1 were then 
identified in probands affected with recessive OI (tentatively classified as type VIII OI) and 

negative for mutations in COL1A1, COL1A2 or CRTAP (Cabral et al., 2007). It has been 
estimated that CRTAP and LEPRE1 mutations contribute to about 5 to 7% of all severe 

recessive OI cases (Barnes et al., 2010). This number may be higher in certain populations or 
geographic regions. In fact, recurrent pathogenetic LEPRE1 alleles have been described in 

populations of West African origin (Cabral et al., 2007) or Ireland (Irish Travelers) 
(Baldridge et al., 2008). Clinically, newborns with either CRTAP or LEPRE1 mutations are 

indistinguishable and characterized by multiple healing fractures, short tubular femurs due 
to lack of modeling, and extreme low bone mineralization (Baldridge et al., 2008; Marini et 

al., 2010; Willaert et al., 2009). Their sclerae are usually white. P3H1 is the enzyme 
responsible for the conversion of proline into 3-hydroxy-proline (3-Hyp) (Vranka et al., 
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2004) and decreased/lack of this modification at Pro986 in the triple helical domain of type I 
collagen also characterizes these patients (Cabral et al., 2007). More recently, it was 

demonstrated that in tissues as well as fibroblast cultures, loss of CRTAP protein was 
associated with loss of P3H1 protein and loss of P3H1 was associated with loss of CRTAP 

(Baldridge et al., 2010; Chang et al., 2009; van Dijk et al., 2009). This evidence indicated that 
CRTAP is required for P3H1 stabilization and activity in vivo and vice versa, suggesting a 

common pathogenetic mechanism and thus providing an explanation for the very similar 
clinical findings in probands with mutations in these two genes. The generation of Lepre1 

null mice was recently reported and the phenotype is highly similar to that of Crtap-/- mice 
(Vranka et al., 2010). 
Further characterization of the phenotype of Crtap-/- mice demonstrated primary subtle 
defects in the lung and kidney with increased cell proliferation and also skin laxity with 
reduced thickness, stiffness, and overall strength (Baldridge et al., 2010). This is consistent 
with a generalized connective tissue disease, but it may also indicate the existence of a 
primary defect in the OI lung; respiratory distress and failure have been documented in OI 
patients with CRTAP or LEPRE1 mutations (Baldridge et al., 2008). 

4.3 Recessive OI due to mutations of peptidyl-prolyl cis-trans isomerases 

At least three structurally distinct families of proteins have been linked by their ability to 

catalyze the bond preceding a proline residue between its cis and trans forms: the Cyclophilins 
(cyclosporine A binding proteins), the FKBPs (FK506-binding proteins), and the Parvulins 

(Gothel and Marahiel, 1999). The peptidyl-prolyl cis-trans isomerases (PPIase), also known as 
immunophilins, were initially identified as the intracellular receptors of the 

immunosuppressive drugs cyclosporine A and FK506/rapamycin (Gothel and Marahiel, 
1999). They are widely distributed in all eukaryotes, prokaryotes and archaea and are present 

in all major cell compartments indicating that their function is required in several cellular 
processes. The cis-trans isomerization of peptidyl-prolyl bonds that they catalyze is a protein 

conformational change occurring during protein folding and thought to be rate limiting for 
type I collagen which contains about 20% proline residues (Gothel and Marahiel, 1999). Unlike 

most Cyclophilins which are predicted to localize either in the nuclear or cytosolic 
compartment, Cyclophilin B is localized in the ER (Pemberton and Kay, 2005) or secreted 

extracellularly (Yao et al., 2005). Because of its interaction with Crtap and P3h1 to form the 
prolyl 3-hydroxylation complex in the ER, Cyclophilin B became the next logical candidate 

potentially implicated in recessive forms of OI. Mutations in Ppib (encoding CypB) were first 
identified in hereditary equine regional dermal asthenia (HERDA) (Tryon et al., 2007), a 

recessive condition affecting Quarter Horses with features resembling those of Ehlers Danlos 

and Epidermolysis Bullosa syndromes. However, more recently PPIB mutations were also 
associated with recessive OI in three distinct families (Barnes et al., 2010; van Dijk et al., 2009). 

It is important to note that lack of PPIB causes shorter, undertubulated, bowed and fractured 
long bones but without rhizomelia. The degree of severity seems variable and is, perhaps, 

dependent upon the location of the mutations. One report described 4 probands with severe 
type IIB/III OI and frameshift mutations in either exon 4 or 5 (van Dijk et al., 2009), while 

another report described two siblings with a moderately severe OI who were able to reach 
independent ambulation. They had a mutation in the first coding triplet modifying the initial 

methionine into arginine with apparent lack of protein (Barnes et al., 2010). These patients are 
sometimes classified as having type IX OI. 
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A controversy also exists regarding the modification status of type I collagen chains in 

probands’ fibroblasts with PPIB mutations. Those affected with severe OI were shown to 

have over-modification of type I collagen chains and a significantly reduced level of Pro986 3-

hydroxylation (but higher than those observed in patients with mutations in either CRTAP 

or LEPRE1) (van Dijk et al., 2009) while those with moderate OI showed normal levels of 

collagen modification and prolyl 3-hydroxylation (Barnes et al., 2010). The description of 

additional families with PPIB mutations will help to clarify this important aspect. Absence 

of Cyclophilin B only moderately affected expression levels of either CRTAP or P3H1 

protein, indicating its higher degree of independence from the prolyl 3-hydroxylation 

complex (van Dijk et al., 2009). Due to the fact that the whole 3-hydroxylation complex was 

previously shown to possess, besides prolyl 3-hydroxylase and peptidyl-prolyl isomerase 

activity, a collagen chaperone function (Ishikawa et al., 2009), it is still unclear what 

independent contributions these activities have to the phenotype of OI when they are 

impaired. Mice deficient in Cyclophilin B have been shown to have severe recessive OI 

phenotype with collagen over-modification, absence of Pro986 3-hydroxylation, and also 

reduced levels of P3h1 (Choi et al., 2009). 

Mutations in a second immunophilin molecule, called FKBP65/FKBP10 (encoded by the 
FKBP10 gene), have been initially detected in a few Turkish families and a Mexican-
American family (Alanay et al., 2010). FKBP65 resides in the rough ER and is a protein 
known to interact with nascent matrix molecules, including tropoelastin and type I collagen, 
and have a molecular chaperone activity (Ishikawa et al., 2008; Patterson et al., 2005). 
Patients with mutations in FKBP10 were described as having a progressive severe form of 
OI. Born with normal length and weight, they had an early history of long bone fractures 
leading to progressive deformities of the limbs and eventually were wheelchair bound. 
Progressive kyphoscoliosis with flattening and wedging of the vertebral bodies is a 
distinctive feature of this recessive form of OI with absence of dentinogenesis imperfecta or 
hearing loss (Alanay et al., 2010). The procollagen chains synthesized by these patients’ 
fibroblasts were not over-modified and prolyl 3-hydroxylation of Pro986 was normal, 
suggesting a downstream defect in the collagen synthetic pathway compared to this earlier 
modification. Further analyses showed a delayed secretion of type I collagen chains with 
dilation of the rER and evidence of abnormal intracellular collagen trafficking (Alanay et al., 
2010). A second report described additional mutations in FKBP10 in patients affected with a 
recessive form of OI who also had contractures of the large joints, thus reminiscent of Bruck 
syndrome (Kelley et al., 2011). FKBP10 maps on chromosome 17q21 and further 
investigations are required to understand if FKBP10 is indeed the causative gene for Bruck 
syndrome type I (recessive OI with large joint contractures –MIM ID#259450) whose critical 
region, however, had been originally mapped to 17p12 (Bank et al., 1999). These patients are 
sometimes classified as having type XI OI. 

4.4 Recessive OI due to mutations of Serpin family members 

The Serpins (serine protease inhibitors) constitute a very large and broadly distributed 

superfamily of protease inhibitors which can be further subdivided into 16 clades (Law et 

al., 2006). They are thought to be important regulators of enzymes involved in proteolytic 

cascades and their role in human disease has clearly emerged (Roussel et al., 2011). 

Although grouped under the same superfamily due to sequence homology and common 

protein structure, two distinct groups can be identified: the first comprises the predominant 
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family of protease inhibitors in mammals and is involved in the modulation of extracellular 

matrix remodeling, inflammation, and blood clotting (van Gent et al., 2003); the second 

includes a number of proteins without protease inhibitor activity and with a diverse array of 

functions, including molecular chaperones. Within the 36 identified human serpins, both 

HSP47 (heat-shock protein 47 or serpin peptidase inhibitor, clade H, member 1 encoded by 

the SERPINH1 gene) and PEDF (pigment epithelium derived factor or serpin peptidase 

inhibitor, clade F, member 1 encoded by the SERPINF1 gene) belong to this second group of 

proteins and have been linked to recessive OI. 

At present, one single proband with severe recessive OI was found to have a homozygous 

missense mutation in the SERPINH1 gene, encoding the collagen chaperone molecule 

HSP47 (Christiansen et al., 2010). Mutations in the Serpinh1 gene had been described earlier 

in a dog breed affected with OI (Drogemuller et al., 2009) while Serpinh1-null mice die in 

utero with multiple collagens defects (Nagai et al., 2000). The proband was born with typical 

OI features with generalized osteopenia, thin ribs with healing fractures, blue sclerae, 

dentinogenesis imperfecta, platyspondyly, short limbs with bowed femora, joint laxity, and 

relative macrocephaly. Additional complications included respiratory distress, pyloric 

stenosis, renal stones, hypotonia; he died at the age of 3 years and 6 months due to sudden 

respiratory failure (Christiansen et al., 2010). Similar to what was described with mutations 

in FKBP10, type I procollagen chains were not over-modified and were normally prolyl 3-

hydroxylated. However, they were noticed to accumulate in the Golgi apparatus and to be 

more susceptible to protease digestion, indicating a compromised helical structure. It 

appears that HSP47 may play a monitoring function for proper triple helical structure 

assembly and, like FKBP65, acts downstream of the prolyl 3-hydroxylation complex 

(Christiansen et al., 2010). This was tentatively classified as type X OI. 

Recently mutations in SERPINF1, encoding the pigment epithelium derived factor (PEDF) 

have been identified in a few cases of recessive OI some of which were originally classified 
as OI type VI (Becker et al., 2011; Glorieux et al., 2002; Homan et al., 2011). Clinically these 

patients are born of normal weight and length, without fractures, limb deformities or joint 

laxity, with gray-white sclerae and normal facial features. Biochemically, they are 
characterized by a slight elevation in serum alkaline phosphatase and bone turn-over and by 

the absence of circulating levels of PEDF. They can begin to fracture early (before the first 
year of life) and progress to experience several other fractures which result in bone 

deformities and usually lack or loss of ambulation. The progressive worsening of the 
symptoms suggests a post-natal early onset of the skeletal phenotype; importantly, at the 

histological level, iliac bone biopsies show a large amount of un-mineralized osteoid on their 
cancellous bone due to a mineralization defect and a ‘fish-scale’ pattern of bone deposition 

instead of normal bone lamellation (Glorieux et al., 2002; Homan et al., 2011). All patients 
identified were homozygous for either nonsense mutations or frameshift mutations leading 

to a premature termination codon and likely to nonsense-mediated RNA decay, resulting in 
null alleles. Of note, PEDF-deficient mice were described earlier and showed increased 

stromal vessels and epithelial cell hyperplasia in both the prostate and pancreas (Doll et al., 
2003). PEDF has been described as a multi-functional protein with roles as a potent inhibitor 

of angiogenesis, neurotrophic factor and collagen-interacting molecule among others 
(Dawson et al., 1999; Filleur et al., 2009; Meyer et al., 2002). It is a protein circulating in 

serum and the pathogenetic mechanisms leading to forms of recessive OI are currently 
unclear. This adds an exciting puzzle to solve about its multiple functions. 
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4.5 Recessive OI due to mutations of other genes 

A second locus responsible for recessive OI with joint contractures (Bruck syndrome type II 
–MIM ID #609220) had been previously identified and mapped at 3q23-q24 (van der Slot et 
al., 2003). Probands had a combination of OI and arthrogryposis, showing osteoporosis, long 
bone deformities, scoliosis and congenital joint contractures (Breslau-Siderius et al., 1998; 
Ha-Vinh et al., 2004). Mutations in the PLOD2 gene, encoding the lysyl-hydroxylase 2 
enzyme which is a collagen telopeptide lysyl hydroxylase, were identified in 2003 (van der 
Slot et al., 2003). 
The ocular form of OI is a recessive condition causing very low bone mass with fractures 
and severe eye defects that can lead to early blindness. These include hyperplasia of the 
vitreous, corneal opacity, secondary glaucoma, and the formation of retrolental masses 
resembling a retinoblastoma (Beighton et al., 1985; De Paepe et al., 1993). It was later 
recognized as the osteoporosis pseudoglioma syndrome (OPPG) (Beighton, 1986; Brude, 
1986; Frontali and Dallapiccola, 1986; Superti-Furga et al., 1986). The OPPG locus was linked 
to the long arm of chromosome 11 (Gong et al., 1996) and the gene responsible for the 
disease was later identified as the LDL-receptor related protein 5 or LRP5 (Gong et al., 2001). 
LRP5 is an important regulator of bone mass accrual during growth and a co-receptor in the 
canonical Wnt pathway: null mutations cause OPPG while heterozygous carriers have also 
low bone mass (Gong et al., 2001). In addition, several missense mutations in the LRP5 gene 
have been associated with other conditions such as recessive and dominant familial 
exudative vitreoretinopathy 4 (Jiao et al., 2004; Toomes et al., 2004), and high bone mass 
phenotypes (Boyden et al., 2002; Little et al., 2002; Van Wesenbeeck et al., 2003). 
 

 SERPINF1 CRTAP LEPRE1 PPIB SERPINH1 FKBP10 PLOD2 

Dentinogenesis 
Imperfecta 

 +/-   +   

Rhizomelia + +  
Coxa vara + + +  
Femur 
undertubulation 

 + + +    

Popcorn epiphyses + +/- +/-  

Scoliosis + + + + + + + 
Platyspondyly +  
Vertebral wedging +  

Ligamentous laxity + + + + +  
Joint contractures + + 
Wormian bones + + + + 
White/Grey/Blue 
sclerae 

W/B/G W/G W/G/B W/B B W/G/B W/G/B 

Proptosis + +  
Respirat. distress + + +  
Pterygia + + 

Skin blisters + +  
Elev. alkal. phosp. +  

Table 2. Tentative table for the differential diagnosis of recessive OI forms (+/- may or may 
not be present). 
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Finally, in a unique patient diagnosed with OI a homozygous single base pair deletion 

causing a frameshift and a premature termination codon in the gene SP7/OSX encoding the 

transcription factor Osterix was described (Lapunzina et al.). The mutation eliminates the 

last of three zinc-finger DNA binding domains at the C-terminus of Osterix, likely affecting 

its transactivation function. In mice, Osterix is an essential transcription factor for proper 

osteoblast lineage differentiation and directly or indirectly activates the expression of a host 

of osteoblast genes beyond type I collagen. As a result, considering the importance of 

Osterix for murine skeletal development and homeostasis (Nakashima et al., 2002; Zhou et 

al., 2010), this finding was rather surprising because the predicted human phenotype would 

have been possibly even more dramatic than seen in the described proband. However, the 

molecular consequences and the mechanism behind the emergence of an OI phenotype due 

to OSX mutations are completely unknown, and the description of additional patients with 

OSX mutations will facilitate an understanding of the inherent pathogenetic process. 

A list of clinical features identified in different forms of recessive OI is presented in Table 2. 

5. Mouse models of OI 

Different mouse models showing many of the clinical features of OI have been identified or 

generated in the past years. The phenotype severity of each model has been compared to the 

severity of human OI as classified by Sillence (Sillence et al., 1979). 

5.1 Mouse models due to alterations of type I collagen genes 

One of the most commonly utilized OI mouse models is the oim mouse (osteogenesis 

imperfecta murine) (Chipman et al., 1993). This is a naturally occurring strain of mice with a 

spontaneous nucleotide deletion in the Col1a2 gene that results in a frameshift and the 

alteration of the a2(I) procollagen C-propeptide. The phenotype is recessively inherited and 

homozygous mutant mice have osteopenia, small body size, limb deformity and skeletal 

fractures; it mimics a moderate to severe human OI and thus considered a model for OI type 

III. Interestingly, tissues of homozygous mutant mice accumulate a1(I) homotrimers. 

The Mov13 mouse was instead generated by the germline insertion of Moloney murine 

leukemia virus (MMLV) into intron 1 of Col1a1 (Breindl et al., 1984; Jaenisch et al., 1983; 

Schnieke et al., 1983). The retroviral insertion blocks the initiation of transcription and 

inactivates the Col1a1 allele (Hartung et al., 1986). The insertion is lethal at midgestation in 

homozygous mice (comparable to a type II OI though causing earlier lethality) while 

heterozygous mice are viable and constitute a model for the mild type I OI with increased 

skeletal fragility but also interesting adaptations that lead to improved cortical mechanical 

properties (Bonadio et al., 1993). 

The use of Cre-lox recombination technology made it possible to obtain the first knock-in 

mouse model for OI. An allele harboring a G to T transversion (nt 1546) and causing an a1(I) 

Gly349 to Cys substitution that was initially identified in a type IV OI patient was generated 

(Forlino et al., 1999). Heterozygous mice with this mutation, named Brittle IV (BrtlIV), 

express a tissue-specific balanced ratio of normal and mutant allele, have a dominant 

phenotype and moderately severe skeletal phenotype comparable to a human type IV OI; 

hence they represent a suitable model for the study of the pathophysiology of OI. They 

showed bone deformity, osteopenia, fragility and disorganized trabecular structure with 

phenotypic variability that goes from perinatal lethality to long term survival (Forlino et al., 
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1999). The phenotypic variability was shown to be dependent on the differential expression 

of both extracellular and intracellular proteins (Forlino et al., 2007). Also the BrtlIV mouse 

model undergoes post-pubertal adaptations that increase femoral strength and stiffness 

perhaps by improvement of bone matrix material properties (Kozloff et al., 2004). 

Interestingly, homozygous BrtlIV mice carrying the single base pair substitution on both 

Col1a1 alleles have a near normal phenotype without fractures or altered bone mineral 

density (Forlino and al., 2005). The mechanism behind this phenomenon is currently poorly 

understood. 

Other mice bearing point mutations in the Col1a1 gene were generated. These, for instance, 

include transgenic mice with specific substitution of Gly859 into either Cys or Arg and 

resulting in a dominant lethal phenotype (Stacey et al., 1988). Mice with an ENU-

mutagenesis induced frameshift mutation in the C-terminal domain of Col1a1 (named Aga2 

from abnormal gait 2). The phenotype of these mice was dominant with decreased bone 

mass, fractures, early lethality, increased bone turnover and intracellular accumulation of 

abnormal procollagen chains that triggered an endoplasmic reticulum-associated stress 

response and osteoblast apoptosis (Lisse et al., 2008). Or transgenic mice carrying a mini-

gene version of the human COL1A1 gene and reproducing a lethal in-frame deletion 

identified in an OI patient (Khillan et al., 1991; Pereira et al., 1993). 

5.2 Mouse models due to alterations of other genes 

The fragilitas ossium (fro/fro) mouse is a model for recessively inherited OI and was 

generated by treatment of mice with a chemical mutagen (Guenet et al., 1981). A high 

percentage of mutant pups die in the perinatal period with radiographic findings similar to 

a severe recessive OI type II. The surviving mice have progressive deformity but reduced 

fracture frequency (Sillence et al., 1993). The underlying mutation is a deletion in the 

sphingomyelin phosphodiesterase 3 (Smpd3) gene (Aubin et al., 2005) which was recently 

shown to be a positive regulator of mineralization in in vitro osteoblast cultures 

(Khavandgar et al., 2011). 

Mice carrying genetically engineered mutations in Crtap, Lepre1 and Ppib genes encoding the 

components of the rER heterotrimeric prolyl 3-hydroxylation complex (namely cartilage-

associated protein, prolyl 3-hydroxylase 1 and cyclophilin B, respectively) have been 

generated (Choi et al., 2009; Morello et al., 2006; Vranka et al., 2010). Their phenotype is very 

similar with severe osteopenia, kyphosis, skin laxity, abnormal collagen fibrils at the 

ultrastructural level and lack of collagen prolyl 3-hydroxylation (see more details on the 

phenotypes of these mice in the paragraph on Molecular Genetics of OI). They represent 

useful models for the study of recessively inherited OI and great tools for understanding its 

pathophysiology. 

6. Pathogenesis and disease mechanisms in OI 

As discussed above, COL1A1 null alleles cause dominant OI through a mechanism of 

haploinsufficiency whereby about half normal type I collagen trimers are secreted in the 

extracellular matrix causing a decreased bone mass and an osteoporotic phenotype (Willing 

et al., 1992). Contrary to homozygous COL1A1 null mutations that are most likely 

incompatible with life as seen in the Mov13 mice, patients with homozygous COL1A2 null 

mutations have a phenotype more similar to EDS (Malfait et al., 2006; Nicholls et al., 2001; 
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Schwarze et al., 2004). They synthesize a(I)3 homotrimers which were shown to be 

overmodified, to alter the triple helical structure and to resist collagenases digestion (Deak 

et al., 1985; Han et al., 2010; Kuznetsova et al., 2001). 

Collagen structural mutations instead often have a profound impact on procollagen chains 

register and assembly and may slow down the winding of the triple helix resulting in over-

modification of additional proline and lysine residues by ER resident enzymes (i.e. prolyl- 

and lysyl-hydroxylases). In addition, an increase in hydroxylysines can generate an 

abnormal glycosylation and intra/inter-molecular crosslink pattern in the collagen fibril 

(Kivirikko and Pihlajaniemi, 1998). The deceleration of collagen synthesis results in slower 

secretion and accumulation of misfolded procollagen chains in the ER. Indeed OI can be 

considered a conformational disease where stable misfolded procollagen chains assume a 

dominant negative effect. Importantly, depending on the location and the effect of the 

individual mutation the cellular response is different. Those mutations (e.g. those in the C-

terminal propeptide) that interfere with chains association trigger an unfolded protein 

response (UPR) and target the misfolded polypeptides to proteosomes via the ER-associated 

degradation pathway (Chessler et al., 1993; Ishida et al., 2009; Lisse et al., 2008). Whereas 

mutations localized in the triple helix cause only regional misfolding, do not activate the 

UPR but rather autophagy and the autophagic elimination of these stable collagen 

aggregates (Bateman et al., 2009; Ishida et al., 2009; Makareeva et al., 2011). The overall 

cellular consequences of the activation of either pathway are likely to have a significant 

chronic effect on multiple osteoblast functions (Rutkowski et al., 2006; Tsang et al., 2010). 

At the extracellular level, there is an alteration in the quality and quantity of secreted 
collagen. This causes an imbalance in the stoichiometry of matrix components (Fedarko et 
al., 1995) and altered interactions between collagen and non-collagenous proteins and 
between collagen and substrate adhesion molecules (e.g. integrins) (Marini et al., 2007). The 
changes in the matrix and its components affect the mineralization process and, irrespective 
of the type I collagen mutation, cause a shift towards increased mineralization density 
(Bateman et al., 2009; Camacho et al., 1996; Roschger et al., 2008a; Roschger et al., 2008b). 
Based on recent findings, it has become clear that recessive OI can be caused by mutations in 

genes encoding collagen modifier molecules such as prolyl- or lysyl-hydroxylases, prolyl 

isomerases, collagen specific chaperones, and also ‘adapter proteins’ such as CRTAP. Loss of 

function of the prolyl 3-hydroxylation complex caused by mutations in CRTAP, LEPRE1, or 

PPIB causes early post-translational defects in the procollagen synthesis, slowing down the 

triple helical winding with over-modification of prolyl and lysyl residues. With one 

exception (Barnes et al., 2010), the OI phenotype resulting from loss of function of these 

genes is almost invariably lethal to severe and comparable to a type II/III OI according to 

the original Sillence classification. Mutations in either FKBP10 or SERPINH1 do not cause 

procollagen chain over-modification and do not interfere with prolyl 3-hydroxylation, but 

somehow they affect collagen transport between the rER and Golgi. Thus, their effect on 

procollagen appears to be downstream of the prolyl 3-hydroxylation complex, but the 

resulting OI phenotype is still quite severe and similar to a type III/IV OI. Mutations in both 

PLOD2 (Bruck syndrome type II) and FKBP10 genes also cause joint contractures 

suggesting, perhaps, a potential interaction between their encoded proteins. It is still 

unknown how SP7/OSX mutations cause OI other than the simple consideration that type I 

collagen is a target of OSX and, therefore, may be down-regulated with impaired OSX 

function.  
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With a few exceptions, the effects that mutations in genes causing recessive OI have on bone 

quality and bone matrix mineralization is still unclear. While in all cases there is severe 

osteopenia, mouse models for Crtap, Lepre1 and Ppib lack of function have overmodified 

collagen lacking 3-Hyp at Pro986, increased diameter of collagen fibrils, and decreased 

irregular deposition of ECM (Choi et al., 2009; Morello et al., 2006; Vranka et al., 2010). 

Fibroblasts from a patient with null CRTAP mutation were recently shown to depose less 

collagen in the matrix (Valli et al., 2011). Quantitative backscattered electron imaging studies 

on Crtap-null as well as OI-VII bones to determine bone mineralization density distribution 

have shown a higher calcium content of the bone matrix (Fratzl-Zelman et al., 2010); these 

results are similar to what has been observed in classical OI due to mutations in type I 

collagen genes (Boyde et al., 1999; Roschger et al., 2008a). In addition, those studies 

suggested altered mineralization kinetics resulting in an elevated tissue mineralization 

density (Fratzl-Zelman et al., 2010). Taken together these data suggest that any alteration in 

collagen structure or its post-translational modification may result in abnormal protein and 

mineral stoichiometry and likely abnormal mineralization kinetics. 

However, among the different recessive forms of OI, OI VI (due to mutations in SERPINF1) 

shows a unique mineralization defect with persistence of non-mineralized osteoid on the 

cancellous bone and indicating a different pathogenetic mechanism (Homan et al., 2011). 

7. Conclusion 

Mutations affecting a specific collagen chain have a primary impact on tissues with higher 

expression of that chain (e.g. bone for COL1A1 or COL1A2, blood vessels for COL3A1, skin 

for COL7A1, etc…), and cause milder connective tissue abnormalities in tissues which 

express lower levels. These are usually dominant mutations. Instead, mutations affecting 

collagen modifying proteins in the rER or Golgi, or those involved in collagen intracellular 

transport, usually cause recessive conditions; clinically these can be even more severe than 

the former because they have an impact on multiple collagen chains based on the collagen 

chain substrate specificity of the modification being affected. Importantly, the biological 

relevance of that modification will emerge in the most severely affected tissue(s). Hence, the 

clinical signs of mutations in genes encoding either one of the collagen chains or one of the 

collagen modifying proteins often share many similarities and contribute to generate the 

disease spectrum that goes from Osteogenesis Imperfecta to Bruck to Ehlers Danlos to 

Epidermolysis Bullosa syndromes (see Table 2). A careful assessment of the proband’s 

clinical features may provide essential hints toward the underlying molecular defect (e.g. 

joint contractures in case of PLOD2 or FKBP10 mutations), the correct diagnosis and the 

proper therapy and follow-up. 

Additional cases of recessive OI are waiting further elucidation to uncover the yet 

unidentified culprit genes. With the discovery of new genes involved in skeletal dysplasias, 

and specifically OI, our understanding of the underlying pathogenetic processes will 

continue to improve as well as our ability to devise and then test new therapeutic 

approaches. 

At the present time, the ability to care for these individuals, by combining the benefits of 

early bisphosphonate treatment with appropriate surgical techniques, has greatly enhanced 

the comfort and function of these children. Minimizing the soft tissue trauma associated 

with surgery and avoiding long-term and recurrent episodes of immobilization is also a 

www.intechopen.com



 
Osteogenesis Imperfecta 241 

major advance in recent years. Questions clearly remain with regard to the long-term 

implications of the medical and surgical treatments, as well as how to transition treatment 

as the children mature. Clearly, this is an interim approach and the advances in the genetic 

and molecular understanding of these disorders will lead to more appropriate and effective 

treatment of the underlying disease.  
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