
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Gene Expression in Chronic Fatigue Syndrome 

Ekua W. Brenu1,2, Kevin J. Ashton2, Gunn M. Atkinson2,  
Donald R. Staines1,3 and Sonya Marshall-Gradisnik1,2  

1Faculty of Health Science and Medicine,  
Population Health and Neuroimmunology Unit, Bond University, Queensland, 

2Faculty of Health Science and Medicine, Bond University, Queensland, 
3Gold Coast Public Health Unit,  

Queensland Health Robina, 
 Australia 

1. Introduction  

Chronic Fatigue Syndrome (CFS) is a disorder of unknown origin likely affecting multiple 
physiological processes. CFS is often a diagnosis of exclusion following a history of 6 
months or more where patients may experience partial to full recovery, relapse or a 
worsening in symptoms and hence deterioration in health (Brkic et al., 2011). The clinical 
manifestations include moderate to severe fatigue, muscle pain, swollen lymph nodes, 
headaches, impaired sleep and cognition (Fukuda et al., 1994). A diagnosis of CFS is made 
using questionnaires which include Centre for Disease Prevention and control criteria for 
CFS, the Australian, British and Canadian CFS classifications and the recently developed 
World Health Organisation’s International Classification of Diseases for CFS (Carruthers et 
al., 2011, Carruthers et al., 2003; Fukuda et al., 1994; Lloyd et al., 1990; Sharpe et al., 1991). 
CFS is a heterogeneous and multifactorial disorder. Mechanisms to explain the underlying 
factors and processes that are responsible for disease progression and symptom profile of 
this disorder remains to be established. However, research has demonstrated that CFS 
impacts the endocrine, neurological, immune and metabolic processes resulting in impaired 
physiological homeostasis (Brenu et al., 2010; Demitrack, 1997; Schwartz et al., 1994). While 
these processes are likely compromised and collectively contribute to ill health in CFS 
patients, CFS remains a disorder lacking a clear molecular or biochemical cause. 

Twin studies have revealed that there is no single genetic factor associated with CFS 
(Evengard et al., 2005). Several molecular studies have identified genes that are differentially 
expressed in CFS patients in comparison to non-CFS individuals (Kaushik et al., 2005, Kerr 
et al., 2008; Gow et al., 2009; Light et al., 2009; Saiki et al., 2008). Additionally, these 
expressional differences in CFS may be as a result of the multifactorial nature of CFS. The 
challenge is to understand the relationship between these genetic discrepancies in CFS 
eventuating discovery of its pathomechanism leading to appropriate treatment and 
ultimately a cure. Gene expression studies in CFS have shown possible links between CFS 
and a number of molecular pathways associated with immune, neurological and metabolic 
processes (Kerr et al., 2008). The purpose of this chapter is to review the literature focusing 
on gene expression changes and their role in the pathophysiology of CFS.  
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2. Molecular studies 

2.1 Candidate gene studies 

Candidate gene studies are mainly employed to address the biological characteristics of 

known genes that predispose them to have an involvement in CFS. The advantage of this 

approach is that it allows for the detection of common alleles with some effect on the disease 

presentation. Comparisons between CFS patients and non-fatigue controls on measures of 

allele and genotype frequencies of identified markers have shown significant differences 

between these groups. This method has been used to investigate the human leukocyte 

antigens (HLA) markers and killer cell immunoglobulin-like markers of NK receptors in 

CFS patients. In some CFS patients significant increases in HLA alleles, HLA-DQA1*01 and 

HLA-DQB1*06 have been observed compared to control participants (Smith et al. 2005). 

Among the killer cell immunoglobulin-like receptors (KIRs), high levels of KIR3DS1 with 

loss of HLA-Bw4lle80 ligands is common among CFS patients compared to control 

participants (Pasi et al., 2011). Similarly, other HLA haplotypes such as HLA-DRB1*1301 are 

elevated in CFS patients (Carlo-Stella et al., 2009). Polymorphisms in other receptors also 

occurs in CFS, importantly a number of the alleles for the receptor for advanced glycation 

end product (RAGE) may be decreased in CFS patients (Carlo-Stella et al., 2009). These 

changes in allelic frequencies and haplotypes especially in the HLA molecules may be 

associated with the inflammatory state of CFS patients.  

Gene studies with SNPs may be an alternative pathway for determining susceptibility to 

CFS. CFS patients are more likely to have SNP variations for the glucocorticoid receptor 

gene NR3C1 with high incidence of risk conferring haplotypes (Rajeevan et al., 2007). The 

serotonergic system in some CFS patients is compromised and this is typified by an over 

active 5-hydroxytryptamine (5-HT) and a down regulated hypothalamic-pituitary-adrenal 

(HPA) axis (Demitrack, 1997). This likely occurs as a consequence of polymorphisms in 

genes that regulate serotonergic signalling. Hence, in CFS an increase in the polymorphism 

of the A allele linked with -1438G/A in the HTR2A receptor may explain these compromises 

(Smith et al., 2008). In particular, -1438G/A has been associated with suicide and cognitive 

impairment (Arango et al., 2003; Reynolds et al., 2006). 

2.2 Twin studies 

CFS may be prevalent in some families, thus, CFS may have a heritable component. 

However, the credibility of this observation remains to be determined. Self report 

measures and restriction fragment length polymorphism are most often used to assess the 

hereditability of CFS (Crawley & Smith 2007). CFS may have a familial predisposition as 

relatives of patients with CFS may not necessarily meet the criteria for CFS but may be 

more prone to experience some of the symptoms of CFS (Walsh et al., 2001). Although 

twin studies allude to the existence of a genetic predisposition to CFS, this may be higher 

among monozygotic twins compared to dizygotic twins (Buchwald et al., 2001). Twins 

with CFS may share similar symptoms and experience the same level of severity in CFS 

related symptoms (Claypoole et al., 2007). Despite these heritable predispositions 

observed in twin studies, they are not enough to confirm a genetic basis for CFS (Albright 

et al., 2011). 
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2.3 Gene expression microarray studies 

Genome wide studies using microarrays is a predictive method of determining genes that 

may influence unexplained disorders such as CFS for which an aetiological mechanism is 

lacking. These large scale explorative studies are more often extensive and are able to 

determine the expression levels of genes expressed in CFS and non-CFS participants. While 

the results from these studies may be useful, validation through real-time quantitative 

polymerase chain reaction is most often required to ensure that the identified genes are 

representative of either a down or an up-regulation in gene expression patterns. Most of 

these large scale studies have identified genes that are differentially expressed in CFS 

compared to non-fatigued participants (Cameron et al., 2007; Carmel et al., 2006; Fang et al., 

2006; Kaushik et al., 2005; Kerr et al., 2008; Saiki et al., 2008; Whistler et al., 2005; Whistler et 

al., 2003). In general, these genes regulate important physiological activities that are 

compromised in CFS. These include immune, endocrine, neurologic, metabolic and cellular 

activities. Elucidation of genes that predispose an individual to CFS is essential in 

understanding the mechanism of CFS. Gene expression studies have allowed for the 

identification of a number of genes involved in different aspects of the disease. 

2.4 CFS gene expression studies 

Many factors can influence susceptibility to CFS. Changes in the expression of genes 

important for various physiological processes may affect normal function. The vast majority 

of research in CFS has confirmed significant compromise to immune, endocrine, 

neurological and metabolic processes. Immunological abnormalities observed in CFS 

patients include decreases in cytotoxic activity of Natural Killer (NK) cells and perturbations 

in cytokine levels.  

2.4.1 Cytokine and chemokine genes 

Cytokines and their genes are vital for sustaining and regulating innate and adaptive 

immune activities such as cell differentiation, proliferation and activation. IL-8 is a pro-

inflammatory chemokine gene with chemotactic properties for neutrophils during pathogen 

invasion and other immunological insults (Huber et al., 1991). In CFS IL-8 has been shown to 

be significantly increased in expression in comparison to non-CFS individuals (Vernon et al., 

2002). During neutrophil pathogen lysis, phagocytic products are released which acts as a 

positive feedback process to activate IL-8 to recruit more neutrophils (Ito et al., 2004; 

Sparkman and Boggaram, 2004). Alterations in IL-8 mRNA expression is linked with 

inflammation (Mukaida, 2003; Nozell et al., 2006; Xie, 2001). An increase in IL-8 expression 

noted in CFS patients may occur as a result of an increase in oxidative stress during 

inflammation (Shono et al., 1996; Ito et al., 2004; Sparkman and Boggaram, 2004). The 

promoter region of IL-8 is bound and activated by transcription factors including NF-κB A 

substantial decrease in the expression of NF-κB negatively affects IL-8 (Huang et al., 2001). 

NF-κB is a necessary component in the activation and signalling pathway of other leukocyte 

cytokines and reductions in their expression increases vulnerability to infectious agents and 

inflammatory reactions (Artis et al., 2003; Bohuslav et al., 1998; Sha et al., 1995; Campbell et 

al., 2000; Yang et al., 1998).  
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During inflammation, immune cells such as macrophages produce pro-inflammatory 

molecules such as TNF-ǂ. The severity of the inflammatory response determines the level of 

TNF-ǂ produced. The TNFA gene is contained within the MHC complex; once it has been 

translated it functions by binding to TNF receptors TNFR1 or TNFR2. TNF-ǂ has a higher 

affinity for the TNFR2 receptor compared to the TNFR1 (Orlinick and Chao, 1998). TNFR2 

modulates the proliferation of T lymphocytes and encourages pro-inflammatory responses. 

Usually a low concentration of TNF-ǂ is required to activate TNFR2 while TNFR1 is 

stimulated in the presence of increased concentration of TNF-ǂ. These interactions are vital 

for cell death signalling, cytotoxicity or cellular apoptosis (Zhou et al., 2002). TNFR1 and 

TNFR2 compete for TNF-ǂ (Bodmer et al., 2002). TNFA is instrumental in controlling and 

regulating viral infection, NF-κB signalling, neuropathic pain and cytokines (Lee et al., 

2009). In the central nervous system (CNS), glial-derived TNFA modulates synaptic 

plasticity by increasing the expression of AMPA and also reducing long-term potentiation in 

the hippocampus (Leung and Cahill, 2010; Orlinick and Chao, 1998; Pickering et al., 2005). 

TNFA expression increases in the presence of stress and this has been observed in CFS 

patients although this increase was similar in healthy controls (Light et al., 2009). While 

mRNA levels in TNFA may be similar in CFS and healthy controls, polymorphism within 

TNFA may affect their ability to perform efficiently as shown in other diseases (Zhang et al., 

2010). 

IFNAR1 is required for IFNǂ/ǃ antiviral responses and is therefore a key component in 

immunity against viral and bacterial infections (David, 2002). CFS patients are known to 
have significant increases in viral antigens and these may persist where the activities of IFNs 

are ineffective in inducing antiviral immune responses (Bansal et al., 2011). In CFS, IFNAR1 

is increased in expression (Kerr et al., 2008) and this may occur as a result of persistent viral 

antigens or viral infected cells. It has been observed that IFNAR1 tends to increase in the 
presence of infections such as Human papillomavirus (HPV) and influenza (Gius et al., 2007; 

Jia et al., 2010). IL10-RA is both down- and up-regulated in CFS patients (Kaushik et al., 
2005; Kerr et al., 2008). The protein, IL10-Rǂ is expressed on T cells, B cells, monocytes, 

macrophages, dendritic cells, NK cells, mast cells and microglia with no intrinsic kinase 
activity. Interactions between IL10-Rǂ and IL-10 stimulate the phosphorylation and 

activation of JAK1 and TYK2 kinases (Hebenstreit et al., 2005; O'Shea et al., 2002). This 
sequentially phosphorylates tyrosine residues in the cytoplasmic regions of IL-10Rǂ chains 

and forms docking sites for STAT3 (Moore et al., 2001). Janus Kinases and signal transducers 
and activators of transcription (JAK/STAT) pathways are essential for regulating cytokine 

mediated responses and vice versa (Schindler, 1999; Schindler et al., 2007). Genes such as 
STAT5A are induced by cytokines IL-2, IL-4 and IL-7. STAT5A is a critical element in the 

proliferation and survival of Th2 cells (Hebenstreit et al., 2005; Lin and Leonard, 2000). 
Differential expression in STAT5A in CFS likely affects the Th1-Th2 cytokine balance, 

possibly favouring an anti-inflammatory/Th1 like immune response, while suppressing 
pro-inflammatory immune reactions (Ihle, 2001; Kagami et al., 2001; Saiki et al., 2008; 

Skowera et al., 2004).  

JAK1 contains cytoplasmic tyrosine kinases that react in a non-covalent manner to a varying 
number of cytokine receptors and is therefore implicated in lymphocyte development in 
particular, lymphocyte proliferation and differentiation (Flex et al., 2008). STAT5A and JAK1 
are requisite for IL-2, IL-10, IL-7, IL-9, IL-13, IL-22 and IFN-ǂ signalling (Schindler et al., 
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2007). Hence, over expression of both STAT5A and JAK1 (Kerr et al., 2008; Saiki et al., 2008) 
may substantially alter the normal function of these cytokines and their receptors. These 
may include IFN-ǂ, IL-7 and IL-10 (Kerr, 2008). Such adverse effects may cause shifts in the 
inflammatory profile causing either an increase or decrease in pro- and anti-inflammatory 
cytokines (Gupta et al., 1997; Vojdani et al., 1997). The exact profile of cytokines in CFS 
remains to be determined, although, a number of studies suggest that CFS is characterised 
by a predominant anti-inflammatory immune state (Skowera et al., 2004) others advocate a 
pro-inflammatory immune profile (Swanik et al.). This mixed picture suggests dysregulation 
of the balance in pro- and anti-inflammatory mechanisms. 

Bidirectional communication between JAK/STAT signalling and cytokines is important for 

maintaining immune homeostasis. For example, IL-6 binds to its receptor and positively 

stimulates a number of JAKs and STATs which initiates a sequence of downstream effects 

that prompt the development and maturation of progenitor cells (Kamimura et al., 2003; 

Kristiansen and Mandrup-Poulsen, 2005). However, the expression of IL-6 can be dampened 

by suppressors of cytokine signalling (SOCS), this inevitably increases inflammation (Croker 

et al., 2003; Zhang et al., 2008). Hence, differential expression in IL-6, IL6R and IL6ST (Kerr, 

2008; Light et al., 2009) may have adverse consequences on the activity of IL-6 in both the 

innate and adaptive immune response. This may also affect JAK1 in CFS (Guschin et al., 

1995). Therefore in CFS differential expression in cytokine, JAK and STAT genes may 

increase susceptibility to prolonged immune deterioration.  

TNFRSF1A is the gene for pro-inflammatory tumour necrosis factor (TNF)-ǂ receptor, 

which increases pro-inflammatory events and stimulates the generation of cytokines 

through the activation of NF-κB (Nowlan et al., 2006). TNFRSF1A is also involved in cell 

death pathways involving TNFR-associated factor (TRAF) domains (Baud and Karin, 

2001). In some CFS patients, cell death is particularly increased in neutrophils in 

comparison to non-fatigued controls (Kennedy et al., 2004; See et al., 1998; Vojdani et al., 

1997). NF-κB gene, NFKB1, is decreased in expression in some CFS patients. Decreases in 

both NFKB1 and TNFRSF1A in CFS may potentially affect the proliferation of cytokines 

and chemokines such as IL-8 (Kerr, 2008). Additionally, NF-κB is inhibited by NFKBIZ 

which is also down regulated in CFS (Kerr, 2008). In the immune system, NF-κB is 

activated in response to toll-like receptors (TLR) (Kitamura et al., 2000; Yamazaki et al., 

2001) by TRAF3 (Hauer et al., 2005; He et al., 2007; He et al., 2006). TRAF3 is instrumental 

in T cell related immune responses (Goldfeld et al., 1991). TRAF3 and NFKBIZ are 

collectively involved in the downstream activities of TNFRSF1A and NF-κB. 

Modifications in these genes can affect other cytokine pathways.  

Another important gene, HIF1A, which encodes for the hypoxia induced transcription factor 

HIF1ǂ, is responsible for the induction of apoptosis and inhibition of cell proliferation 

(Akakura et al., 2001; Carmeliet and Tessier-Lavigne, 2005; Yu et al., 2004). HIF1A also 

regulates pathogen lysis or phagocytosis mediated by neutrophils and macrophage (Nizet 

and Johnson, 2009). Oxidative phosphorylation is an important component of the phagolytic 

mechanism. This is deficient in some CFS cases and may cause a decrease in the amount of 

reactive oxygen species released from neutrophils to effectively breakdown the 

phagocytosed pathogen (Brenu et al. 2010). Impairments in oxidative phosphorylation in 

CFS patients may ensue from a downregulation in HIF1A. 
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As previously mentioned, chemokines such as IL-8 are important soluble proteins that are 
necessary for immune cell trafficking during infection and other inflammatory insults. 
Chemokines such as CXCR4 are expressed by neutrophils, monocytes and T lymphocytes 
and their activities are regulated by cAMP, IL-6, IL-4, IL-10 and reactive oxygen species 
(Jazin et al., 1997). CXCR4 is necessary for hematopoietic cell trafficking, differentiation, 
endothelial migration and cell proliferation in the CNS and immune systems (Jazin et al., 
1997; Moepps et al., 1997; Zou et al., 1998). CXCR4 is another gene involved in the 
identification of microbial factors such as LPS. The CXCR4 protein is part of the seven trans-
membrane G-protein super family of receptors (Pierce et al., 2002). CXCR4 promotes the 
proliferation of tumour cells via the MAP/ERK pathway and can in some cases have anti-
apoptotic properties (Darash-Yahana et al., 2004). Similar to the TLR4 and CD14 in response 
to LPS, CXCR4 expression becomes upregulated (Moriuchi et al., 1998). As these genes were 
simultaneously measured in the same CFS population, it is possible to posit that in some 
cases of CFS there are high levels of LPS factors, in particular LPS factors that cause 
heightened persistent immune activation. In these individuals perhaps these immune 
activations are not cleared and therefore encourage the survival of these microbial 
pathogens in circulation for a longer duration. In some CFS patients, CXCR4 is upregulated 
(Gow et al., 2009; Kerr, 2008) which may suggest an altered chemokine profile in CFS 
patients. Other genes such as CD47 are present on cells in the CNS and immune system. 
CD47 is a necessary factor in the migration of neutrophils and other cells (Brown et al., 1990; 
Gao et al., 1996; Lindberg et al., 1993; Parkos et al., 1996). It is also important in T cell 
activation and neurological function such as memory (Ticchioni et al., 1997; Waclavicek et 
al., 1997). In CFS, lymphocyte numbers in circulation may vary from patient to patient, 
however, the available number of lymphocytes at sites of infection or engaged in 
eliminating infected cells is not known. Incidentally, an upregulation in chemokine genes IL-

8, CXCR4 and CD47 may affect the efficiency of these cells to migrate to areas of infection 
(Gow et al., 2009; Kerr, 2008). 

As previously discussed TGF-ǃ1 is an important pleiotropic cytokine as it regulates 

peripheral tolerance mechanisms in response to injury, cell growth and survival (Marie et 

al., 2005). TGF-ǃ1 is a critical component of the Treg differentiation pathway in particular 

Treg survival and FOXP3 expression (Marie et al., 2005). TGF-ǃ1 is also an important factor 

in cellular apoptosis involving Fas mediated apoptotic pathways and oxidative 

phosphorylation (Sanchez-Capelo, 2005). An upregulation in this gene may stimulate 

pathways that increase spontaneous apoptosis in neutrophils (Kennedy et al., 2004) and 

thereby prevent the induction of oxidative stress in CFS individuals (Brenu et al., 2010). 

2.4.2 Genes involved in pathogen lysis 

An important mechanism employed by both NK and CD8+T cells to lyse viral pathogens is 
cytotoxic activity. The end result of cytotoxicity is cell death or apoptosis. Cytotoxic activity 
is achieved when the NK or CD8+T cells release lytic granules containing granzymes and 
perforin into the target cell through exocytosis (Leong & Fehinger 2010). In the cell 
membrane of the infected cell perforin facilitates the binding of granzymes to different 
organelles of the cell and induce either caspase dependent or independent apoptosis 
(Pradelli et al., 2010). GZMA is the gene for granzyme A, it is essential for natural cytotoxic 

activity and antibody dependent cytotoxic activity of CD8+T and NK cells via FCγRII (CD16) 
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receptor (Lahmers et al., 2006; Madueno et al., 1993). GZMA induces slow apoptosis once 
released into the target cell. In some CFS patients mRNA levels for GZMA and GZMB are 
low while levels of perforin are increased (Brenu et al., 2010; Saiki et al., 008). Differential 
expression in these lytic molecules may explain the inefficiency of NK or CD8+T cells in CFS 
patients to effectively execute cytotoxicity in the presence of pathogenic cells (Kilmas et al., 
1990; Maher et al., 2005; Brenu et al., 2011).  

However, discrepancies in the cathepsin C (CTSC) gene, which has wide distribution 
throughout the human body particularly in myeloid cells, polymorphonuclear leukocytes, 
alveolar macrophages and osteoclasts, can potentially affect the effectiveness of lytic cells 
(Hakeda and Kumegawa, 1991; McGuire et al., 1997; Rao et al., 1997b). Deficiencies in CTSC 
are associated with impaired activation of GZMA and GZMB in NK and cytotoxic T 
lymphocytes (Pham and Ley, 1999). This implies that CFS patients presenting with atypical 
CTSC expression may also exhibit decreased GZMA and GZMB production (Maher et al., 
2005; Saiki et al., 2008). Cytotoxic activity may be considerably low as a consequence of low 
expression of granzyme genes in CFS patients, thus an increase in viral load will be highly 
detrimental to the compromised immune system. 

2.4.3 Transcription factors 

The regulation of genes is dependent on molecules known as transcription factors 

(Farnham, 2009). In CFS, transcription factor genes are differentially expressed. Among 

them is EGR3, which regulates lymphocyte proliferation, apoptosis and inflammatory 

responses (Beinke and Ley, 2004; Inoue et al., 2004; Jiang et al., 2005). EGR3 in T 

lymphocytes stimulates Fas-L formation and cytotoxic activity of CD8+T lymphocytes 

(Matsuoka and Jeang, 2005). Their dysregulation affects the production of IL-2 (Safford et 

al., 2005), an important factor in anti-inflammatory Treg and Th2 differentiation. In CFS 

patients this may be associated with the deficits in cytotoxic activity and the presence of 

anti-inflammatory immune responses (Kerr et al., 2008).  

TRAIL is another gene expressed by both innate and adaptive immune cells. It is important 

in inducing cellular apoptosis in immune cells, monocytes, dendritic cells, NK and CD8+T 

lymphocytes (Schaefer et al., 2007). In cytotoxic cells such as NK and CD8+T, TRAIL serves 

as an alternative pathway for effective cytotoxic activity against viral antigens (Janssen et al., 

2005; Kayagaki et al., 1999). Th2 cells preferentially express TRAIL and therefore are able to 

kill other immune cells and infected cells (Zhang et al., 2003). Hence, CFS patients with 

deficiencies in this gene may experience decreases in NK and CD8+T cell cytotoxic activity 

and induction of apoptosis, making them more vulnerable to immune infection and 

hindering normal immune function in these individuals. 

NFATC1 is the gene for the nuclear factor of activated T lymphocytes belonging to the 
NFAT family of transcription factors. This transcription factor regulates genes encoding 
cytokines and cytokine receptors in response to antigen activation (Crabtree and Clipstone, 
1994; Rao et al., 1997a). Importantly, they are implicated in T cell abundance, Th2 
differentiation and cytokine production (Yoshida et al., 1998; Ranger et al., 1998). Impaired 
Th2 cytokines in some cases of CFS may emanate from perturbed expression in NFATC1. 
Conversely, other genes such as human ǃ-defensin 1 (DEFB1) may have unfavourable 
consequences on the Th1 cytokines causing an over abundance of these proteins in some 
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cases of CFS (Wehkamp et al., 2005). DEFB1 is involved in immunomodulation against 
microbial peptides in both the innate and adaptive immune response. Using the CCR6 
receptor they are able attract dendritic cells and CD4+T lymphocytes (Yang et al., 1999) 
during infection and inflammation (Dommisch et al., 2005; Sun et al., 2005; Wehkamp et al., 
2005). Animal models have confirmed that an increase in susceptibility to microbial 
infections infections ensues in the event where DEFB1 is deficient or mutated (Morrison et 
al., 2002; Moser et al., 2002). CFS related serological and virological studies indicate 
significant increases in viral antigens in some CFS patients and this may also be linked to 
defects in DEFB1.  

ETS1 encodes for a transcription factor that binds to DNA sequences with an invariant GGA 

(Gegonne et al., 1993). ETS1 like many other transcription factors is upregulated in CFS 

patients (Kerr et al., 2008). ETS1 is an early response transcription factor gene with binding 

sites for transcription factors AP1, AP2 and ETS at its promoter end (Dittmer, 2003; Thomas 

et al., 1997). It is found in the nucleus where phosphorylation of Ras strongly increases 

transcriptional activity of ETS1 and its interactions with other proteins through the ETS1 

domain (Wasylyk et al., 1998). ETS1 acts together with other genes to increase its function 

hence it is positively regulated by AML-1, Pit-1 and HIF-2ǂ (Dittmer, 2003). ETS1 

sequentially excites the DNA binding process of these genes . ETS1 can be inhibited by 

CAMKII, Daxx/EAPI and ZEB (Dittmer, 2003). ETS1 synergises with TGF-ǃ to activate other 

genes. Activated T cells usually have a decreased expression of ETS1 compared with 

dormant T cells T cells (Bhat et al., 1990). ETS1 is found in T, B, and NK cells. It is a proto-

oncogenic transcription factor which is involved in naïve T cell development and 

differentiation (Di Santo, 2010). In T cells, deficiencies in ETS1 can inhibit T cell responses to 

other stimulatory signals and increase susceptibility to cell death. Although, ETS1 

expression decreases in the activated T cells in the developing T cell it is essential in 

prompting the expression of TCRǂ and TCRǃ (Giese et al., 1995). Additionally, ETS1 

interacts with other immune regulators such as STAT5 which is implicated in T cell 

responses (Rameil et al., 2000). ETS1 is an essential gene necessary for the optimal optimal 

development of naïve T cells, an increase in this gene may suggest an increase in resting T 

cells over activated T cells in CFS patients. Although, increases in some subsets of T cells 

such as FOXP3 Tregs (Brenu et al., 2011b) have been suggested, it is possible that these cells 

are not adequately activated and a majority of these cells are in the resting phase it is most 

likely thus are not able to effectively clear infections or encourage most favourable immune 

profile in CFS patients. NK decrease in cytotoxic activity may also be related to ETS1 over 

expression as ETS1 is important in NK cell development (Yokoyama et al., 2003). Failure of 

NK cells to develop into efficient lytic cells can hinder their ability to recognise and 

eliminate pathogens. Loss of function in ETS1 impairs proper lymphocyte differentiation 

and permits autoimmune responses (Wang et al., 2005). However, FOXN1 is involved in the 

development and differentiation of thymic epithelial cells (TECs) (Su et al., 2003). The 

expression of FOXN1 is controlled by Bone Morphogenetic proteins (BMPs) and WNT 

(Coffer and Burgering, 2004). Immune deficiencies arise when mutations occur in FOXN1 

(Coffer and Burgering, 2004). In CFS, FOXN1 has been suggested as a potential candidate 

gene for the development of biomarkers for CFS and may be linked to the severity of CFS 

(Presson et al., 2008). Abnormal changes in FOXN1 affects T cell development and function 

and may relate to the cytokine pattern in CFS.  

www.intechopen.com



 
Gene Expression in Chronic Fatigue Syndrome 

 

21 

The histone acetyltransferase and deacetylase (HDAC7A) gene modulates nuclear histone 
acetylation. It inhibits the activity of myocyte enhancer-binding factor (MEF) and is highly 
expressed in thymocytes (Kasler and Verdin, 2007). This gene is responsible for 
transcriptional repression and the maintenance of cellular integrity (de Ruijter et al., 2003). It 
is an efficient co-repressor of the androgen receptor (AR) (Karvonen et al., 2006). It regulates 
apoptosis in developing thymocytes and may be associated with the decrease cytotoxic 
activity noticed in some CFS patients. Given that transcription factors are important in most 
cellular processes, a decrease or increase in its expression can have crucial consequences on 
the normal functioning of many physiological processes. 

2.4.4 Immune regulators 

The current data on CFS strongly support an impaired immune function characterised by 
differential expression of cytokines and decreases in cytotoxic activity. These observed 
immune defects may ensue from changes in the expression of certain genes involved in the 
signalling pathways of these immune indices. MAPK9 codes an important signalling 
molecule known as the JNK2 protein kinase and its disruption is associated with the 
pathogenesis of destructive insulitis (Jaeschke et al., 2005). Some microbes are able to 
downregulate MAPK9 which in turn inactivates JNK2 thereby decreasing transcriptional 
events in this pathway (Zhang et al., 2004). 

The cytochrome P450 (CYPIBI) gene has a role in responding to environmental toxins and 
mutagenic products (Hayes et al., 1996; Shimada et al., 1996). Although it is expressed in 
higher concentrations in breast cancer (Huang et al., 1996), in CFS it most likely involved in 
increased susceptibility to toxic agents. As CFS is likely a multi-factorial disorder, prolonged 
exposure to toxic agents may predispose an individual to CFS. CMRF35/CD300C encodes 
the CD300c leukocyte surface protein present on macrophages (Turnbull and Colonna, 
2007). Secretion of TNF-ǂ and IFN-ǂ is highly dependent on CYPIBI (Ju et al., 2008). 
Additionally, abnormalities in CFS cytokine profiles possibly occurs where CMRF35 is 
differentially expressed, distorting anti-viral (IFN- ǂ) and pro-inflammatory (TNF-ǂ) 
activities required for maintaining immune homeostasis (Sen, 2001). 

Adhesion molecules are important for interactions between T cells and other cellular 
surfaces. In T cells the adhesion molecule CD2 allows T cells to connect with other cells. CD2 
is regulated by CD2BP2 (the CD2 binding protein 2) which increases binding specificity of 
the cytoplasmic domain of the T cell adhesion molecule CD2 and localizes it to the cell 
membrane and nucleus. TLR4 is an anti-tumour repressor and which inhibits the 
destruction of tumour antigens in lysosomes of dendritic cells. This facilitates antigen 
presentation to T cells and enhances the binding of LPS to MD-2. TLR4 mediated signalling 
can either occur via MyD88 dependent or independent pathway. When the MyD88 
dependent pathway is used, this leads to the production of pro-inflammatory cytokines 
while the MyD88-independent pathway induces Type I interferons and interferon inducible 
genes (Lu et al., 2008). Human macrophages express CD14, a glycosylphosphatidylinositol-
linked plasma-membrane glycoprotein, on their cell surfaces that facilitate the induction of 
apoptosis of foreign cells (Vita et al., 1997). CD14 in conjunction with TLR4 and MD2 
initiates the formation of a lipopolysaccharide receptor complex that controls immune 
responses to pathogens in the respiratory system, recognition of LPS and the generation of 
systemic inflammation (Wright et al., 1990). An increased expression in both TLR4 and CD14 
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may suggest an increase in LPS, LPS increases the expression of these genes (Foster et al., 
2007). The biphasic expression of these genes allows them to have either an activating or a 
limiting effect on other genes. Additionally, in most cellular responses to bacterial infection 
due to LPS release, the MyD88-independent signalling pathway is activated. TLR4 may bind 
to the cell membrane allowing efficient presentation of LPS to TLR4. It is evident that 
modulation of the expression of CD14 and TLR4 can have severe consequences on the ability 
of immune cells to recognise microbial particles. Nonetheless, these observations are 
indicative of a heightened immune activation as a possible contributory factor to the 
compromised immune function in CFS patients.  

Other neutrophil related genes have also been suggested to be differentially expressed in 
CFS patients. Genes such as SNAP23 (Synaptosomal-associated protein 23) and CFACAM8 
are upregulated in some cases of CFS (Gow et al., 2009; Kerr et al., 2008). SNAP23 is present 
mostly in non-neuronal tissues and is part of the t-SNARE complex (Washbourne et al., 
2002). SNAP23 controls neutrophil exocytosis and also cell surface granule interactions and 
is thus essential for intracellular trafficking of vesicles/granules (Lacy, 2006; Zylbersztejn 
and Galli, 2011). CFACAM8 on the other hand is important in cell adhesion, migration and 
signal transduction in neutrophils (Zhao et al., 2004). These genes are therefore essential for 
the movement of neutrophils to sites of inflammation and or infection. 

2.4.5 Other cellular processes  

Other genes examined in CFS are necessary for many cellular processes. These genes may be 
implicated in functional properties of cells in a number of physiological processes 
suggesting a heterogeneous clinical presentation. For example, ARPC5 is the smallest 
subunit of the actin related protein complex 5, which controls the polymerization of actin 
(Pollard, 2007). This normally occurs in response to cellular motility during the 
polymerization of new actin filament. Dendritic cells have not being adequately investigated 
in CFS, however, their morphogenesis may be compromised as evident by the over 
expression of ANAPC11 (Gumy et al., 2011). ANAPC11, anaphase promoting complex 
subunit 11, has a role in dendritic cell morphogenesis (Domingo-Gil et al., 2010). It is part of 
a complex that targets and degrades proteins during mitosis. The migration of cells from 
one point to another, in circulation, involves the interplay of a number of genes such as 
ATP5J2, an ATP synthase involved in cellular processes requiring ATP (Cheung and 
Spielman, 2009). APP, the amyloid precursor gene is a marker for Alzheimer’s disease 
(Zetterberg et al., 2010). It regulates cell surface proteins (Hoe and Rebeck, 2008).GSN is an 
anti-apoptotic regulator, and an actin serving protein that modulates actin assembly, 
disassembly and regulates cell motility via the actin network (Hoe and Rebeck, 2008). 
REPIN1 is highly expressed in the liver and adipose tissue. It is a replication initiator and is 
involved in a number of metabolic disorders (Bahr et al., 2011). 

A number of genes identified in CFS patients are involved in metabolic pathways 
specifically the protein kinases, ATP and cAMP related genes. These genes interact to 
maintain normal metabolic activity. These include transmembrane protein 50A (TMEM50A) 
located in RH gene locus, ATP6V1C1 which regulates extracellular acidification to facilitate 
bone resorption (Feng et al., 2009) and PRKAR1A inhibits protein phosphorylation and 
tumour development (Bossis and Stratakis, 2004; Groussin et al., 2002). Mutations in 
PRKAR1A have been associated with tumour development (Scott, 1991; Tasken et al., 1997). 
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AKAP10 is the kinase-anchoring gene 10 which is currently an identifier for determining the 
risk of developing colorectal cancer (Wang et al., 2009a; Wang et al., 2009b). It also requires 
cAMP to diffuse through the cytoplasm to propagate its signal. AKAP10 modulates immune 
responses related to PGE2/EP2/cAMP/PKA pathway (Kim et al., 2011). It targets 
regulatory subunit of PKA to specific cell sites such as the mitochondria. The cAMP 
responsive element binding protein (CITED2) refers to (Xu et al., 2007). It modulates 
hypoxia inducible factor dependent expression of vascular endothelial growth factor and 
hematopoietic stem cells. In CFS, we have recently reported an increase in neuropeptide 
receptors, specifically in VPACR2 in a cohort of CFS patients (Brenu et al., 2011b). This 
increase in VPAC2R may translate into an increase in cAMP causing a potential increase in 
PKA activity in CFS. An increase in cAMP may increase the expression of PKAR1A, AKAP10 
and CITED2 and hence making their regulatory effects redundant and altering the 
physiological homeostasis. Tyrosine kinase non-receptor 2 (TNK2) functions as a 
translational repressor during cell fate specification and is necessary for the expression of 
epidermal growth factor receptors (Howlin et al., 2008). 

Mitochondria related genes are also differentially expressed in CFS these genes include 

SUCLA2, MRRF, EIF4G1, MRPL23, GABPA, PRDX3 and EIF3S8. As cellular function is 

impaired in CFS it is likely that important organelles especially those related to metabolic 

processing may be functioning at suboptimal levels. SUCLA2is involved in mitochondria 

regulation (Miller et al., 2011), EIF4G1 is an initiation factor implicated in mitochondrial 

induced apoptosis (Bushell et al., 2000), MRRF regulates cell survival (Rorbach et al., 2008) 

while PRDX3 prevents oxidative damage to cells (Ejima et al., 2000). Additionally, GABPA, 

EIF3S8 and MRPL23 have broad functions in mitochondria (Wyrwicz et al., 2007; Zhang and 

Wong-Riley, 2000). Mitochondria in the muscles of patients with CFS produce relatively low 

energy when compared to non-fatigued controls (Plioplys and Plioplys, 1995). In some cases 

patients may present with structural deformities in the mitochondria, these include 

subsarcolemmal mitochondrial aggregates, compartmentalization of the internal 

mitochondrial membrane and polymorphism (Plioplys and Plioplys, 1995). Similarly 

defective mitochondrial metabolic activity may be characterised by the presence of 

neurotoxic phospholipids and phospholipids of mitochondria that appear after microbial 

infections (Hokama et al., 2008). Neutrophil in the innate immune system employ 

respiratory burst and oxidative phosphorylation as a means to effectively kill and clear 

pathogen invasion. This unique mechanism is advantageous and reduces the persistence of 

microbial infections. Respiratory burst in CFS is flawed. The authors have previously shown 

that in CFS neutrophils are able to recognise and engulf pathogens however, the ability to 

induce and activate reactive oxygen species to induce respiratory burst is significantly 

compromised when compared to non-fatigued controls (Brenu et al., 2010). Incidentally, 

abnormal mitochondrial function exists in CFS where ATP and oxidative phosphorylation is 

substantially lower in the CFS patients (Myhill et al., 2009).  

2.4.6 Neurology and endocrine function 

Neurological dysfunction in CFS may present in many formats, the most obvious 
documented symptoms are loss in memory and concentration, sleep disorder and severe 
headaches. While the exact cause of CFS remains to be determined it has been postulated 
that neuroimmune abnormalities in form of dysregulation in cytokines due to a prevalent 
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viral antigens in the brain may enhance CFS related neurological deficits (Kuratsune et al., 
2001). In CFS a number of genes that regulate neurological and endocrine function have also 
being detected to be equivocally expressed when compared to non-fatigued controls. These 
observations may relate to the impairment in cognition and other neurological functions 
associated with this disease. The HPA axis is distorted in CFS and this may have a bearing 
on the changes in other genes (Ursini et al., 2010). EIF2B4 affects neurological function and 
has been shown to be related to mitochondrial function. It refers to the eukaryotic 
translation factor 2B subunit 4. It has been implicated in Vanishing White Matter disease 
(VWM). Although CFS is not an inherited disorder it may share similar symptoms with 
VWM. Both CFS and VWM are associated with infections (Bansal et al., 2011). CFS patients 
and patients with VWM may demonstrate abnormalities in cerebrospinal fluid (Schutzer et 
al., 2011a; Schutzer et al., 2011b). White matter studies in CFS are inconsistent, in some 
instances, abnormal white matter has been observed (Lange et al., 1999; Schwartz et al., 
1994). Also, grey matter in some CFS patients may be reduced (de Lange et al., 2005). These 
confounding factors may to some extent relate to the severity of neurological impairments in 
patients with CFS. 

NHLH1 is the helix-loop-helix transcription factor whose expression is restricted to the 
nervous system. It is important during development and neuronal differentiation (De 
Smaele et al., 2008). In mice loss of NHLH1 generates irregular autonomic function 
characterised by arrhythmia, dampening of parasympathetic and in increase in death 
(Cogliati et al., 2002). A number of CFS patients may present with a dysfunctional 
autonomic system which may be related to an increase in heart rate and a decrease in 
systolic blood pressure. Additionally, irregularities in pH and heart rate variability occur in 
CFS patients following exercise (Jones et al., 2009; Newton et al., 2007). SORL1 refers to the 
sortilin-related receptor. It is a neuronal sorting protein-related receptor that is involved in 
intracellular trafficking. It directs trafficking of amyloid precursor protein and is decreased 
in the brains of humans suffering with Alzheimer’s disease (Shibata et al., 2008). It is 
associated with risk of late onset of AD. This gene may be partially responsible for the 
memory loss experience by some CFS patients although this needs further clarification 
(Reynolds et al., 2010). PKN1 is part of the neurofilament head rod domain kinase. It is a 
serine/threonine protein kinase that mediates cellular response to stress (Kato et al., 2008). 
PKN1 regulates gene expression in response to extra cellular stimuli. Overexpression of 
PKN1 causes a substantial elevation in the phosphorylation of ERK (Kajimoto et al., 2011). A 
number of CFS patients show an upregulation in genes in the ERK signalling pathway when 
compared to non-fatigue controls (Kerr et al., 2008). Phosphorylation of TRAF1 is dependent 
on PNK1 and this also regulates the ratio of TRAF1 and TRAF2 and determines the NF-κǃ 
and JNK signalling (Kat et al., 2008). TRAF1 and TRAF2 in turn modulate the signalling 
activity of IKK and JNK (Gotoh et al., 2004). An upregulation in PKN1 may severely alter the 
downstream signalling pathways associated with PKN1. Importantly NF-κǃ immune 
related activities maybe distorted where PKN1 is upregulated. NF- κǃ regulates 
inflammatory cytokines (Park and Levitt, 1993). In CFS alterations in cytokine distribution 
has been observed. This may be either towards a pro- or anti-inflammatory cytokine profile. 
In the CNS system shifts in cytokine profiles have been reported for many autoimmune 
disorders and a similar mechanism may occur in CFS patients as a consequence of 
prevailing viral and microbial antigens that are not effectively cleared following infection. 
Perhaps these antigens remain and therefore modulate the cytokine milieu in the CNS. 
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Additionally heightened pro-inflammatory mechanisms followed by an increase in 
suppression may exist in the CNS neuroimmune system in an attempt to dampen viral and 
microbial survival in the CNS. 

During development, HOXA1 is expressed in the hindbrain (Studer et al., 1998). It is an 

essential developmental gene belonging to the homeobox genes. It is associated with autism. 

The product generated from translation of this gene is a transcription factor which is 

important in cell differentiation, embryogenesis, defining body plan during development 

and oncogenic transformation. Recently HOXA1 has been observed to be a target of miR-10a 

(Shen et al., 2009). COMT is the catechol-O-methyltransferase, it is critical for the metabolic 

degradation of dopamine (Blanchard et al., 2011). It is involved in the function of dopamine 

in the prefrontal cortex of the human brain thus it is involved in frontal lobe functioning 

(Meyer-Lindenberg et al., 2005). The inability of most CFS patients to concentrate for long 

periods on activities requiring higher order cognitive function may be explained by 

dysregulation in COMT.  

2.5 MicroRNA 

MicroRNAs (miRNA) are recently described, highly conserved molecules with regulatory 
activities in multi-cellular organisms such as mammals. They are small components of 
ribonucleoprotein particles belonging to a family of RNA which have diverse effects on 
physiological function. MicroRNAs are suppressors of gene expression and affect either 
translational processes or the stability of mRNAs through the encouragement of decay 
processes, deadenylation and decapping processes termed RNA interference (Mishima et 
al., 2006; Wu et al., 2006). The expression of the miRNA gene results in the creation of the 
primary transcript (pri-miRNA) that is 60-80 nucleotides in length. This pri-miRNA contains 
a hairpin stem-loop structure which is cleaved by the enzyme Drosha (RNA III enzyme) and 
DGCR8 (DiGeorge critical region 8), resulting in the creation of a structure comprised of a 
~22 base pair stem, 2-nucleotide 3’ overhang and a loop, collectively known as the 
precursor-miRNA (pre-miRNA) transcript (Lee et al., 2003). The pre-miRNA transcript is 
transported into the cytoplasm where RNase III enzyme, Dicer, cleaves the terminal loop of 
the pre-miRNA transcript to form a 18-24 base pair product (Lee et al., 2002). A currently 
unidentified helicase then produces individual miRNA strands – a mature miRNA, which is 
the mediator of mRNA repression, and the passenger strand, which is rapidly degraded. 
The mature miRNA is integrated into an RNA induced silencing complex (RISC) with 
Argonaute (Ago) proteins where it is further processed (Khvorova et al., 2003; Lee et al., 
2003; Lingel et al., 2003; Mourelatos et al., 2002). The final product formed from this 
sequence of events is a miRNA-RISC complex. Suppressive effects of miRNA on mRNA 
molecules occur via the RISC complex in which Ago is able to exercise endonuclease activity 
on the double stranded miRNA-mRNA structure (Hutvagner and Zamore, 2002). The 
mature miRNA can bind to complete and incomplete complementary strands of mRNA 
molecules and degrade the mRNA or inhibit translation respectively (Behm-Ansmant et al., 
2006; Hutvagner and Zamore, 2002; Lim et al., 2005). Through these mechanisms it has been 
extensively documented that miRNA regulates a diverse range of physiological activity and 
also contributes to disease states such as cancer (Lu et al., 2005) and cardiomyopathy (Chen 
et al., 2006). Interactions between the miRNA and mRNA molecules are important for 
maintaining physiological processes in development and homeostasis and have already 
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been associated with numerous disease states. However, the role of miRNA in CFS is largely 
unknown. For further reading on the cellular and physiological processes of miRNA, the 
reader is directed to Sun et al. (2010).  

With consistent trends between immunological dysfunction and CFS becoming more 
apparent, miRNAs related to immune function are relevant to this understudied area and 
may hold potential for treatment. The first study of its kind to assess miRNA expression in 
CFS investigated the expression of miRNAs relating to immune function, apoptosis and cell 
cycle regulation (Brenu et al., 2011a). This study identified a general down regulation in 
most of the miRNA transcripts in NK cells of CFS patients. This supports the observation of 
immune dysregulation in CFS patients (Brenu et al., 2010; Maher et al., 2005), however, 
whether this is linked to a decrease in miRNA processing activity or is specific to miRNA 
function is yet to be determined. More specifically, this study found decreases in miRNA 
transcripts that are involved in apoptosis. CFS patients have been shown to demonstrate 
significant decrease in cytotoxic activity of NK cells hence decreases in miRNAs  
may contribute to the pattern of NK cytotoxicity noticed in CFS patients. For example,  
miR-146, which mediates the expression of NFκ-ǃ and thus the transcription of numerous 
inflammatory mediators, was significantly decreased in CFS (Brenu et al., 2011b).  
The consequence of this may be a decrease in the cytokine secretion by NK cells as NFκ-ǃ  
is an important regulator of cytokine production in these cells (Gerondakis & Siebenlist 
2010). Incidentally IFN-Ǆ was noticed to be significantly decreased in expression in the same 
cohort of CFS patients with a decrease in miR-146 (Brenu et al., 2011b). Similarly, in  
the presence of an altered NFκB expression, NK responsiveness to IL-12 in CFS patients may 
be dampened compromising immune response to both infection and homeostasis (Broderick 
et al., 2010). Further studies are needed to verify whether miRNAs contribute or are linked 
to depressions in IL-8, IL-13 and IL-5 and increased activity of IL-1ǂ, IL-1ǃ, IL-4, IL-5,  
IL-6 and IL-12 in CFS patients (Fletcher et al., 2009). Substantial decreases in the expression 
miR-21 were observed in the CFS patient group. These results suggest the presence  
of a possible compromise in the maturation and function of lymphocyte translating  
into decreases in cytotoxic activity (Salaun et al., 2011). Direct evidence of this however, 
remains to be established.  

At the present miRNA research is at its infancy hence the exact role of miRNAs in NK cells 
is subject to speculation. Similarly the gene expression miRNA studies in CFS is severely 
lacking therefore only postulations can be made about the link between the miRNAs and  
the disease. However, the promising data shown in the aforementioned studies likely 
suggest that miRNAs may indeed play greater roles in the dysregulation of immune 
function in CFS.  

MicroRNAs may regulate other aspects of immune function in CFS, the above mentioned 
study is limited as it only examines NK and CD8+T cells. However miRNAs are known to 
regulate most if not all immune cells. In the innate immune system, miRNAs such as miR-155 
enhance the maturation of macrophages and dendritic cells via the TLR receptor pathway, 
causing heightened sensitivity in these cells to antigens in circulation (O'Connell et al., 2007; 
Tili et al., 2007). CD4+ T cell matuation into various subsets in the periphery is regulated by 
miRNAs (Wu et al., 2007). The generation of Tregs that express FOXP3 is to some extent 
dependent on miRNAs (Kohlhaas et al., 2009). Any perturbed effects in miRNAs can influence 
thymic and peripheral derived Tregs especially in response to TGF-ǃ stimulation on naive 
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CD4+ T lymphocytes (Ha, 2011). Modulation of the effects of these molecules is essential for 
appropriate immune response to bacterial and viral invasion and current studies show these 
areas may be impaired in CFS sufferers. Importantly, deficiencies in components of the 
miRNA such as Dicer promotes a predominant Th1 response governed by IFN-Ǆ with a 
reduction in the effects of Th2 cells and Treg cells (Cobb et al., 2006). In contrast a predominant 
Th2 CD4+ T cell profile prompting systemic inflammation emanates from deficiencies in the 
miR-155 (Rodriguez et al., 2007; Thai et al., 2007) while in the absence of miR-101, autoreactive 
T cell mediated autoimmunity occurs (Yu et al., 2007). In CFS there are inconsistencies in the 
data on Th1/Th2 profiles. It is likely that in the event that immune related miRNAs are 
differentially expressed, shifts in Th1 and Th2 inflammatory response and defects in TLR 
signalling may occur, and this may be related to the pathophysiology of CFS. Whilst it is 
believed that many miRNAs are yet to be discovered, evidence is scarce to describe the 
multitude of various physiological roles of currently discovered miRNAs. Despite this, the 
current evidence that links miRNA dysregulation to the characteristics of CFS has shown that 
there is merit in the roles of miRNA in CFS. Further advancements are needed to characterise 
the role of miRNAs in CFS.  

Our current investigative techniques for identifying transcriptional changes in known 
miRNAs are quickly advancing through microarray technology. This method uses the same 
principle as DNA microarray technology and allows for semi-quantitative expression 
changes of a large number of miRNAs in a single chip (Li and Ruan, 2009). The clear 
advantages of using microarray is the high throughput and vast number of transcripts 
analysed in a single chip as compared to low throughput and tedious methods of microRNA 
cloning, northern blotting and real time RT-qPCR. As mentioned in section 2.2, this gives 
investigators the power to identify expression differentials in gene categories, allowing the 
association of a particular state or disease to a molecular or physiological category. 
Numerous limitations are associated with microarray technology, most importantly is the 
ability to identify changes in already known miRNAs, as the targets require hybridisation 
with specifically designed probes attached to the chip. Moreover, these expression changes 
are only semi-quantitative due to the hybridisation techniques used, resulting in a lack of 
reproducibility. These pitfalls are similar to those in DNA microarray but are likely not as 
pronounced due to the various isoforms and large size of genes as compared with miRNAs 
(Fathallah-Shaykh, 2005). Finally, microarray technology has the disadvantage of only being 
able to detect known transcripts. With possibly many undiscovered transcripts this poses a 
problem for miRNA discovery in differential expression using this method and may also 
interfere with target specificity. However, more recent investigative techniques look 
promising for the discovery of new target miRNAs as well as addressing many of the 
pitfalls of the low-throughput and microarray based methods. One such example is 
sequence-by-synthesis technology, which has recently been used with investigative 
application and is likely to be used more widely in the near future (Morin et al., 2008).  

2.6 MicroRNA-based gene therapy 

The roles of microRNAs in diseases are likely to become targets for therapy. The current 
experimental practice is known as gene silencing and the specialised transcripts used in 
such instances are known as small interfering RNA (siRNA) (Wang et al., 2011). The cellular 
method of translation or transcription repression is the same as miRNAs – through the use 
of RISC, however in gene silencing the target-specific substrate, the siRNA, is exogenously 
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introduced. There is currently little in the way of clinically translated practice of gene 
therapy using the siRNA method, as it is associated with a number of problems. The most 
notable of these is delivery and cell specific targeting. The current means of delivery in 
experimental models is via adeno- or adeno-associated virus constructs transcribing the 
specific siRNA or siRNAs of choice. To allow for cell specific targeting certain virus 
constructs are suited for various cell types however the lack of specificity and low 
percentage uptake makes this is an improbable method of therapy at present. There are 
however new experimental means of delivery currently being optimised (Yuan et al., 2011). 
Once such issues have been addressed the significance of gene silencing may be relevant in 
CFS. With increasing amounts of evidence indicating that CFS likely has a strong molecular 
basis, such methods hold merit once initial targets have been discovered. The current stance 
on miRNAs in CFS calls for further research in the area in both genome wide miRNA 
analysis in longitudinal studies, and also the search for new miRNAs possibly implicated in 
this disorder. With the current technology available, and promising experimental 
therapeutics such as gene silencing, miRNA is likely to play a large and significant role in 
possibly the development of biomarkers, mechanisms or treatment of CFS.  

2.7 Future directions 

The high variability in genomic anomalies within CFS patients may be an underlying cause 
of our current inability to effectively treat the disorder. No specific conditioning or dieting 
routine has proven beneficial for a wide majority of patients and even more elusive are 
effective pharmacological targets for this population. It is probable that various underlying 
mechanisms may give rise to the variable patient-described symptoms of CFS. This may 
explain the lack of efficient treatment options and opens questions in the area of 
pharmacogenomics. Pharmacological agents specific to genetic traits that are associated with 
CFS and possibly subsets of the disease may be useful in monitoring CFS. In the context of 
CFS, this pertains to our lack of understanding and inability to define areas of treatment, 
suggesting that a suitable treatment may call for the definition of subtypes of the disease or 
populations that are genetically predisposed to such symptoms. 

However, at present the most important aim of research worldwide is to establish 
biomarkers for CFS. Currently the most stable and reliable marker is NK cytotoxic activity 
(Brenu et al., 2011b; Fletcher et al., 2009; Klimas et al., 1990; Maher et al., 2005). Consistent 
data worldwide suggest that a decrease in cytotoxic activity is a hallmark of CFS. In most 
cases this decrease has been associated with differential expression in cytotoxic molecules 
including GZMA, GZMK, GZMB and PRF1 (Brenu et al., 2011b; Saiki et al., 2008). 
Developing pharmacological agents that specifically target these cytotoxic genes in order to 
increase or decrease their expression might be an alternative method of treating impaired 
cytotoxic activity in CFS patients. Subtypes of CFS patients may exist and this may be based 
on clusters of symptoms or severity of illness. Hence these may need to be considered when 
developing appropriate agents for modulating the disease. 

3. Conclusion  

In summary, the repercussions of these changes gene expresseion may contribute 
tremendously to the disease profile of CFS. The genes discussed above have vital roles in 
most immune related activities such as inflammatory modulation, lymphocyte and cytokine 
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activation, lymphocyte differentiation and proliferation and are also implicated in the 
apoptosis signalling pathways. Hence, an up-regulation in chemokine genes may affect 
leukocyte response to infection and other immunological insults while down-regulation in 
pro-inflammatory cytokine genes may disrupt inflammatory reactions. Importantly, the 
consistent observation of impaired NK cytolysis in CFS is partly due to the reduced 
expression of perforin and granzymes genes. As previously discussed these granzymes 
induce apoptosis of antigens within the cell. Variation in cytokine release and production 
can be explained by the altered levels of pro- and anti-inflammatory cytokines. Most of these 
cytokines are engaged in other physiological processes. Hence, defects in their production 
can severely hinder physiological function and homeostasis. Other symptoms such as 
cognitive impairment and changes in the HPA axis in CFS patients may emanate from an 
increase NHLH1 while changes in mitochondria genes contribute to fatigue and muscle 
weakness. Although, these studies have to some extent provided information on the 
genetics of CFS patients, it is not known whether CFS elicits these changes in gene 
expression patterns or vice versa. Similarly, most of the genes observed in these studies have 
not been replicated in other CFS patients. It is therefore very difficult to ascertain which 
specific cells are compromised among the CFS population. Further studies are now required 
to determine how changes in gene expression can be related to the mechanism of CFS and 
the specific cells or systems that may be severely compromised in this disorder. 
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