
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



8 

Lipid Peroxidation in  
Colorectal Carcinogenesis:  

Bad and Good News 

Stefania Pizzimenti, Cristina Toaldo,  
Piergiorgio Pettazzoni, Eric Ciamporcero,  

Mario Umberto Dianzani and Giuseppina Barrera  
University of Turin, 

Italy   

1. Introduction  

During oxidative stress, membrane lipids are one of the major targets of Reactive Oxygen 

Species (ROS) that are known to elicit oxidative decomposition of polyunsaturated fatty 

acids (PUFAs) of membrane phospholipids, a process usually referred to lipid peroxidation 

(Esterbauer et al., 1991). During this process, a number of carbonylic compounds are 

generated as final products, including acrolein, malondialdehyde (MDA) and 4-

hydroxyalkenals (Esterbauer et al., 1991). Among the 4-hydroxyalkenal class, 4-

hydroxynonenal (HNE) is the most abundant aldehyde produced (Dianzani et al., 1999). 

Over the years, HNE has achieved a status as one of the best recognized and most studied of 

the cytotoxic products of lipid peroxidation (Poli et al., 2008). In addition to studies on its 

bioactivity, HNE is commonly used as a biomarker for the occurrence and/or the extent of 

oxidative stress. It appears to be produced specifically by peroxidation of ω-6 PUFAs, such 

as linoleic acid, arachidonic acid (AA) and ┛-linolenic acid (Esterbauer et al., 1982). HNE has 

three main functional groups: the aldehyde group, the C=C double bond and the hydroxyl 

group, which can participate, alone or in sequence, in chemical reactions with other 

molecules (Esterbauer et al., 1991). HNE is a highly electrophilic molecule, which 

predisposes it to localize in the cell membranes. It can easily react with low molecular 

weight compounds, such as glutathione, with proteins, with lipids and, at higher 

concentration, with DNA (Esterbauer et al., 1991; Uchida, 2003). The double bond, the 

carbonyl group and the hydroxyl group, all contribute to making HNE highly reactive with 

nucleophiles with the primary reactivity of the molecule lying at the unsaturated bond of 

the C-3 atom. HNE has been shown to form Michael adducts via the C-3 atom with the 

sulfhydryl group of Cys residues, the imidazole group of His residues, and the ε-amino 

group of Lys residues on a large number of proteins (Esterbauer et al., 1991). Recently, it has 

been proposed that HNE can also modify Arg residues of proteins (Isom et al., 2004). In 

addition to Michael adduct formation, Lys residues also form Schiff bases and pentylpyrrole 

adducts with HNE via the C-1 aldehyde group (Sayre et al., 1993; Petersen & Doorn, 2004; 

Schaur, 2003) 
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HNE-modified proteins can be removed by the proteasomal system (Siems & Grune, 

2003).  

Once formed, HNE is rapidly degraded and its metabolism is dependent upon a set of 

specific enzymes presenting high affinity toward HNE. In particular HNE metabolism can 

be divided into glutathione-mediated and oxidative/reductive categories (Siems & Grune, 

2003). In the first case, HNE binds the thiol group of GSH resulting in the correspondent 

emiacetal (Balogh & Atkins, 2011). The reaction with GSH can occur in a spontaneous 

manner, with low efficiency or through the reaction catalized by Glutathione S Transferases 

(GSTs). Moreover, although a number of isoforms of GST manifested HNE conjugating 

activity, it has been widely reported that the isoform GST A4 presents the highest HNE 

affinity (Balogh & Atkins , 2011). The oxidative/reductive pathway of HNE involves its 

NAD/NADP-dependent oxidative conversion to 4-hydroxy-2-nonenoic Acid (HNA) 

catalyzed by aldheyde dehydrogenases (ALDHs) or the reductive conversion to 1,4-

dihydroxy-2-nonene (DHN) catalyzed by alchool dehydrogenase (ADH) or aldhehyde 

reductase (AR) (Hartley et al., 1995; Vander Jagt et al., 1995). However, the majority of HNE 

is metabolized through forming GS-HNE (Forman et al., 2003). HNE-GSH is then further 

metabolized and found in urine, mostly, as the mercapturic acid derivative, HNE-MA 

(Alary, 1995). Indeed, HNE-GSH adduct is further metabolized by ┛-glutamyltranspeptidase 

(┛-GT) and dipeptidases (DP) to the cysteinyl (CYS)-HNE thioether adduct. The cysteinyl 

thioether adduct is a substrate for acetyltransferases (AT) that catalyze the acetylation of the 

cysteinyl adduct to generate the acetylcysteinyl (AcCYS), or mercapturic acid, adduct. HNE 

metabolites also can be found associated with mercapturic acid, such as DHN-MA, HNE-

MA and HNA-lactone (Alary et al., 2003). HNE is also partially excreted first with the bile, 

then with the faeces, under the form of conjugated metabolites. However, biliary 

metabolites undergo an enterohepatic cycle that limits the final excretion of faecal 

metabolites (Alary et al., 2003). 

HNE, and in general aldehydes formed during membrane lipid peroxidation, are quite long 

lived, as compared to reactive free radicals and can widely diffuse and react around the site 

of origin (Esterbauer 1991). As a consequence, HNE and related aldehydes were proposed as 

putative ultimate toxic messengers, potentially able to mediate stress-related injury at the 

molecular level (Uchida, 2003). Indeed, HNE has been detected in vivo in several 

pathological conditions, which entail increased lipid peroxidation, including inflammation, 

atherosclerosis, chronic degenerative diseases of the nervous system, and chronic liver 

diseases, reaching a concentration up to about 10 µM (Parola et al., 1999).  

However, under physiological conditions, HNE can be found at low concentrations in 

human tissues and plasma (0.07-2.8 µM) (Esterbauer et al., 1991, Poli et al., 2008) where it 

participates in the control of biological processes, such as signal transduction, cell 

proliferation and differentiation. Indeed, HNE, similarly to ROS, plays an important role in 

controlling the intracellular signal transduction pathways involved in a number of cell 

responses (Parola et al., 1999; Dianzani et al., 2003; Leonarduzzi et al., 2004). 

The contribution of HNE and lipid peroxidation in carcinogenesis is still controversial. 

Beside pro-tumoral effects, several authors pointed out their protective role. This “two-

faced” role has already emerged for ROS (Halliwell, 2007; Wang & Yi, 2008; Pan et al., 2009; 

Acharya et al., 2010) and increasing evidence is emerging also for a dual role of lipid 

peroxidation products (Zhi-Hua et al., 2006; Pizzimenti et al., 2010a). 

www.intechopen.com



 
Lipid Peroxidation in Colorectal Carcinogenesis: Bad and Good News 

 

157 

2. HNE and carcinogenesis 

2.1 DNA-adducts, mutagenicity and genotoxicity  
2.1.1 DNA-adducts 

The most substantial evidence of the genotoxic and mutagenic effect of HNE is the 

formation of HNE-DNA adducts. ROS and HNE seem to share this feature and this has been 

proposed as the mechanism of tumor induction (Bartsch & Nair, 2005).  

One of the most studied HNE-adducts is the propane-type DNA adduct with 

deoxyguanosine, the 6-(1-hydroxyhexanyl)-8-hydroxy-1, N2-propano-2’deoxyguanine 

(HNE-dG) (Winter et al., 1986). AA appears to be a major source of HNE-DNA adducts, 

producing a total of 20.6 μmol of HNE-dG adducts (Chung et al., 2000), by an in vitro assay 

using 1 mM AA. HNE-dG is also the main lesion produced upon the addition of HNE to 

DNA (Chung et al., 2000; Wacker et al., 2001); moreover, an increase of HNE-dG adducts 

was observed in the liver DNA of rats after treatment with CCl4, a well known inducer of 

lipid peroxidation (Chung et al., 2000). Taken together, these results generate substantial 

evidence for the endogenous formation of these adducts, thus it has been proposed that 

lipid peroxidation is a main endogenous pathway leading to propano adduction in DNA 

(Chung et al., 1999). 

In the presence of peroxides and reactive oxygen species, HNE can be further metabolized 

to an epoxide intermediate that interacts with DNA, forming etheno-type DNA adducts 

(Chung et al., 1996). However the etheno-type DNA adducts are produced in significantly 

lower yield, with respect to the HNE-dG adducts, when a pro-oxidant stimulus, such H2O2, 

or HNE is added to cells. Indeed, in these experimental conditions, HNE-dG represent more 

than 95% of the overall adducts to DNA, suggesting that HNE-dG may represent the best 

biomarker of the genotoxic effects of HNE (Douki et al., 2004).  

All four bases of DNA are the targets for HNE adduct formation (Chung et al., 1996; De 

Bont et al., 2004), but with different efficiency: G>C>A>T (Kowalczyk et al., 2004).  

HNE-DNA adducts have been identified in tissues of untreated rats and humans (Chung et 

al., 2000), suggesting that the endogenously produced HNE can form adducts with DNA in 

the physiological condition also.  

Removal of these modified bases from DNA plays an important role in the prevention of 

mutagenesis and carcinogenesis. Each cell has an efficient defence mechanism to repair 

these types of damage via DNA repair pathways such as base excision repair (BER), 

nucleotide excision repair (NER), and mismatch repair (MMR) pathways (Min & Eberel, 

2009). In human leukocyte treated with 200 μM HNE, DNA damage was repaired after 12 h 

and returned to the control level at 24 h (Park & Park, 2011). 

It has been demonstrated that NER is a major pathway for repairing HNE-dG adducts, since 

HNE-dG adducts induce a significantly higher level of genotoxicity and mutagenicity in 

NER-deficient human and E. coli cells than in NER-proficient cells (Feng et al., 2003). 

Moreover, other authors suggested that HNE can also contribute to carcinogenesis, by 

inhibiting the nucleotide excision repair (NER) of DNA damage in cancer cells with 

concentration higher than 50 μM (Feng et al., 2004). In any case, HNE forms adducts with 

DNA only at higher concentrations, since it can react quickly with amino and sulphydrylic 

groups of proteins and, primarly, with the sulphydrylic group of GSH. Indeed, it has been 

calculated that GSH conjugates were 20000 times more numerous than DNA adducts when 

HNE was exogenously added to the cultured cells (Falletti & Douki, 2008).  
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2.1.2 Mutagenicity 

In this context, it would be important to know whether the HNE-dG adducts are mutagenic. 
Several authors suggest this possibility, since HNE has been shown to be mutagenic in 
mammalian cells (Cajelli et al., 1987). HNE was negative in bacterial mutagenicity tests, 
however its epoxidized form has been tested positive (Chung et al., 1993). HNE was found 
to be responsible for recombination, base substitutions and frameshift mutations in M13 
phage transfected in E.coli (Kowalczyk et al., 2004). 
Moreover it has been reported that 50 μM HNE treatment in human cells induces a high 
frequency of G.C to T.A mutations at the third base of codon 249 (AGG*) of the p53 gene 
(Hussain et al., 2000), a mutational hot spot in human cancers, particularly in hepatocellular 
carcinoma (Hsu et al., 1991). Both eheno and propane type HNE-DNA-adduct at codon 249 
can be responsible for such transitions (Feng et al., 2003).  
The stereochemistry of HNE-dG adducts seems to play an important role in determining 

mutations. Indeed, two of the HNE-dG adducts, (6R, 8S, 11R) and (6S, 8R, 11S), were 

significantly more mutagenic than (6R, 8S, 11S) and (6S, 8R, 11R) HNE-dG adducts. Only 

one of the HNE stereoisomers was able to form interstrand DNA–DNA cross-links. 

(Fernandes et al., 2003). 

2.1.3 Genotoxicity  

The genotoxic property of HNE was demonstrated in different cell types, such as on 
cultured human lymphocytes (Emerit et al., 1991), in primary hepatocytes (Esterbauer et al., 
1991) and cerebral microvascular endothelial cells (Eckl, 2003). In these cell lines an increase 
of micronuclei (a biomarker of chromosome breakage and/or whole chromosome loss), 
chromosomal aberrations and sister chromatid exchanges was observed after exposure to 
HNE at relatively low doses, ranging 0.1-10 μM. However these clastrogenic features of low 
doses of HNE failed to be confirmed in a recent multicentrum study on DNA of normal 
peripheral blood lymphocytes (Katic et al., 2010). 
Currently, the comet assay has been extensively used to measure DNA strand breaks, since 

it represents a sensitive and rapid assay to detect the mutagenic and genotoxicity of 

chemicals and xenobiotics (Tice, et al., 1991). 

Unfortunately, most HNE-induced DNA lesions are the stable 1,N2-propano adducts and 

they are not detected by this technique. By using this assay, the genotoxic property of 5-10 

μM HNE in the K562 leukemic cell line has been shown; this feature was highly dependent 

on cellular GSH/GST/AR system (Yadav et al., 2008). The comet test was also used to 

demonstrate the genotoxicity of 200 μM HNE in human leukocytes (Park & Park, 2011). 

2.2 Results in laboratory animals 

To date, in contrast with several in vitro experimental results, tumor bioassays in laboratory 

animals failed to demonstrate the carcinogenic and mutagenic properties of HNE. HNE, in 

particular its epoxy derivate, has shown that to be a weak tumor-initiating agent, causing 

the development of renal preneoplastic tubule lesions in new-born mice (Chung et al., 1993). 

More interestingly, HNE lacks in vivo genotoxicity in lacI transgenic mice, a model for 

detecting mutagenicity in target organs, even when lethal doses are applied (Nishikawa et 

al., 2000).  

The big gap between the in vitro and the in vivo data can be partially explained by carefully 

considering the elevated doses frequently used to demonstrated the carcinogenic properties 
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of HNE in vitro. Indeed, several mutagenic assays with HNE have been performed with 

high doses of HNE (more than 100 µM). It seems rather unlikely that HNE or other 

aldehydes can reach overall concentrations in the range of 100 µM in cells and organs 

(Esterbauer et al., 1991). It is conceivable that such levels may be built up locally, near or 

within peroxidizing membranes for a short time because of their high lipophilicity. It has 

been calculated, for example, that the concentration of HNE in the lipid bilayer of isolated 

peroxidizing microsomes is about 4.5 mM (Koster et al., 1986). Nevertheless, a convincing 

demonstration that this very high concentration can be reached into the cells has remained 

elusive. On the other hand, when HNE diffuses out from membranes, its concentration is 

reduced by the surrounding aqueous phase. Moreover, the cytosolic HNE-metabolizing 

enzymes destroy HNE produced in excess so that the steady-state HNE concentration into 

the cells, around 1 μM,  is reached quickly (Esterbauer et al., 1991; Dianzani et al., 1999). 

2.3 Cellular responses and signal transduction 

As previously indicated, the adduct formation between HNE and DNA is only one of the 
several biological effects determined by this aldehyde. Indeed, HNE is considered as a 
signalling molecule influencing proliferation, differentiation and apoptosis of cancer cells 
(Dianzani, 2003; Leonarduzzi et al., 2004; Poli et al., 2008; Pizzimenti et al., 2010b). The 
majority of experimental evidence indicate an antiproliferative role of HNE, when added at 
low doses (1-10 μM) to cultured cells. The inhibition of proliferation has been observed in 
leukemic (HL-60, K562, U937, MEL, ML-1) (Barrera et al., 1991; Barrera et al., 1987, Rinaldi et 
al., 2000; Pizzimenti et al., 2006), neuroblastoma (SK-N-BE) (Laurora et al. 2005), hepatoma 
(7777, J42) (Muzio et al., 2001; Canuto et al., 1999), osteosarcoma (SaOS2; HOS) (Calonghi et 
al., 2002; Sunjic et al., 2005), prostate cancer (PC3) (Pettazzoni et al., 2011) cells. This anti-
proliferative effect is sustained by the modulation of key genes involved in cell growth 
control, such as oncogenes (c-myc, c-myb, fos, AP1, cyclins) and anti-oncogenes (pRB, p53, 
SUFU-1, Mad-1) (Poli et al., 2008; Pizzimenti et al., 2009). 
Interestingly, the effect of HNE in normal cell proliferation is more variable if not opposite 

to that observed in tumor cells. For example, HNE has no effect on normal myeloid stem 

cells (Hassane et al., 2008) or on human peripheral blood lymphocytes (Semlitsch et al., 

2002), while the respective tumour was sensitive to the anti-proliferative effect of aldehyde. 

On the contrary, in vascular smooth muscle cells 0.1 μM HNE stimulated cell proliferation 

(Kakishita et al., 2001). 

In several cell lines, the inhibition of proliferation was accompanied by apoptosis. The 

mechanisms of HNE-induced apoptosis through the extrinsic and intrinsic pathways, its 

self-regulatory role in this process and its interaction with Fas (CD95), p53, and Daxx has 

been recently reviewed (Awasti et al., 2008).  
HNE is also able to induce differentiation, as observed in HL-60, MEL, K562 and SaOS 
osteosarcoma cells (Barrera et al., 1991; Rinaldi et al., 2000; Calonghi et al., 2002; Cheng et al., 
1999; Fazio et al., 1992). Moreover, HNE was shown to induce features of typical 
differentiated cells, such as chemotaxis (Curzio et al., 1988), phagocytosis and the ability to 
induce respiratory burst (Barrera et al., 1991) in myeloid cells. HNE also demonstrated the 
ability to regulate the replicative potential of cells, by inhibiting the telomerase activity. 
Indeed, in HNE-treated leukemic cells, the expression of the hTERT gene was down-
regulated by modulating the expression of transcription factors belonging to the 
Myc/Mad/Max network (Pizzimenti et al., 2006). 
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The anti-tumoral properties of HNE are also sustained by the demonstration of anti-
angiogenic properties. Stagos and collaborators demonstrated that 5 and 10 μM HNE were 
able to inhibit the tube formation of human bone marrow endothelial cells (HBMEC) (Stagos 
et al., 2009). However, conflicting results have been reported, since it has been demonstrated 
that 1 μM HNE induces an increase of VEGF expression in human retinal pigment epithelial 
cells (Ayalasomayajula & Kompella, 2002).  
The cellular responses to HNE are sustained by affecting cell signalling at multiple levels. 

Relevant findings in this area have been extensively reviewed (Poli et al., 2008; Leonarduzzi 

et al., 2004; Dianzani et al., 1999).  

In addition to the above cellular responses presented, HNE activates various cytoprotective, 

stress response pathways, promoting changes in gene expression that facilitate cell survival 

and recovery from stress (West & Marnett, 2005). For example, HNE activates the 

transcription factors Nrf2 (Nuclear factor erythroid-derived 2-like 2) and HSF1 (heat shock 

factor 1), which mediate the antioxidant and heat shock responses, respectively (Jacobs & 

Marnett, 2007). Nrf2 acts by binding Antioxidant Responsive Elements (ARE) sequences on 

promoters of certain genes promoting their expression (Thimmulappa et al., 2002). In regard to 

HNE metabolism, functional ARE sequences have been found on promoter of GST A4 ALDH 

and ADH (Reddy et al., 2007; Malhotra et al., 2010). Moreover, Nrf2 promotes de novo GSH 

synthesis by up-regulating expression of the GSH synthesis pathway (Harvey 2009). Nrf2 is 

controlled by both translational and post-translational mechanisms, in particular the protein 

Kelch-like ECH-associated protein 1 (KEAP1) mediates Nrf2 ubiquitinaltion followed by 

proteasomal destruction (Kaspar et al., 2010). In conditions of oxidative stress or in response to 

many chemicals KEAP1 undergo conformational changes responsible for loss of Nrf2 binding 

activity. As a consequence Nrf2 can accumulate, translocate in the nucleus and drive 

expression of the antioxidant program (Reddy et al., 2007).  

The heat shock response mediates the induction of a highly conserved set of heat shock 

proteins (Hsps) (Mosley, 1997). The inducible expression of Hsps is mediated by heat shock 

transcription factor 1 (HSF1), which translocates to the nucleus upon activation and 

enhances the expression of genes to form promoters containing heat shoch elements (HSE), 

such as Hsp70 (Sarge et al., 1993; Baler et al., 1993). A principal function of Hsps is to 

chaperone other proteins, binding to nascent polypeptide chains as well as to unfolded and 

damaged proteins. Their function as protein chaperones aids in the recovery of cells from 

thermal and chemical-induced damage (Hahn & 1982; Howard, 1993). In addition to acting 

as protein chaperones, Hsps inhibit cell death by directly inhibiting a variety of pro-

apoptotic mediators, such as HNE (Jacobs et al., 2007). 

It is very likely that the majority of effects observed on cell signalling and cellular responses 

can be mediated by the reaction of HNE to proteins and peptides. Quantitatively, proteins 

and, among peptides, the GSH, represent the most important group of HNE-targeted 

biomolecules. It was estimated that 1–8% of the HNE formed in cells will modify proteins 

(Siems & Grune, 2003). Most of the identified targets are enzymes, carriers, receptors, ion 

channels, transport proteins, cytoskeletal, heat shock proteins and others. The biological 

significance of the HNE-protein adducts identified have been reviewed by several authors 

(Uchida, 2003; Poli et al., 2008). Some of the protein-adducts identified can explain the anti-

tumoral effect exerced by this aldehyde. For example, it was demonstrated that the 

inhibition of cell proliferation in the human colorectal carcinoma cell line (RKO) and human 

lung carcinoma cell line (H1299) by HNE was mediated by the direct reaction of HNE with 
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IκB kinase (IKK), the key enzyme regulating the NF-κB activation (Ji et al., 2001b). Moreover 

the HNE adducts with alpha-enolase, at the cellular surface of leukemic cells, suggest a new 

role for HNE in the control of tumour growth and invasion, since HNE causes a dose- and 

time-dependent reduction of the plasminogen binding to alpha-enolase. As a consequence, 

HNE reduces adhesion of HL-60 cells to HUVECs (human umbilical vein endothelial cells) 

(Gentile et al., 2009).  

New perspectives of HNE role in cancer-inducing signaling pathways have recently 

emerged, by recent findings on microRNA (miRNA) (Pizzimenti et al., 2009), a class of 

conserved non-coding small RNAs, which regulate gene expression by translation 

repression of coding mRNAs (Bartel, 2004). 

2.4 HNE content in human cancers  

Several studies on human cancer tissues have analysed the HNE or HNE-protein adduct 

content, in order to find a possible correlation between this marker of lipid peroxidation and 

the progression of cancer. 

HNE content has been reported to increase along with the progression of breast cancer 

(Karihtala et al., 2011) and astrocytoma (Zarkovic et al., 2005). In human renal cell 

carcinoma, immunohistochemistry for HNE-modified proteins showed positive staining in 

the cytoplasm of tumor cells, with respect to controls, without correlation to the clinical 

stage (Okamoto et al., 1994).  

However other reports have demonstrated the opposite: a low or undetectable lipid 

peroxidation, as well as HNE content, such as in hepatomas (Dianzani, 1993).  

Several studies have shown elevated lipid peroxidation markers in the sera, plasma or urine 

of breast carcinoma (Hung et al., 1999; Chandramathi et al., 2009), cervical intraepithelial 

neoplasia and carcinoma of the cervix (Looi et al., 2008), head and neck squamous cell 

carcinoma (Gupta et al., 2009) and prostate tumor (Kotrikadze et al., 2008), compared to 

healthy controls. However, these extratumoral measurement are likely, at least partly, to 

reflect generalized oxidative stress and /or inflammation in the whole body. 

3. HNE and colorectal carcinogenesis 

3.1 Sources and fate of HNE in colon 

Colon cells can be exposed to HNE derived form different sources (Figure 1). It is possible to 

find HNE directly in the food (Gasc et al., 2007), since it can derived from lipid peroxidation 

of PUFAs introduced with diet or from endogenous PUFAs presents in cellular membranes. 

A small amount of HNE can reach the colon also via bile. Following a single intravenous 

administration of [3H]-HNE, five metabolites were present in the bile, namely GSH–HNE, 

GSH–DHN, DHN, and HNA-lactone mercapturic acid conjugates (Laurent et al., 1999). 

Within 4 hr from injection of the radiolabel 3[H]-HNE, 19.5% of the injected radioactivity 

was found in the bile, whereas only 3% was found in the feces within 48 hr (Laurent et al., 

1999). The existence of an enterohepatic circulation for HNE metabolites has been 

unequivocally demonstrated (Laurent et al., 1999) using a model linking donor rats (injected 

intravenously with [4-3H]HNE) and recipient rats (to which the bile from donor rats was 

delivered intraduodenaly). This enterohepatic circulation, approximately 8% of the total 

dose, may explain the low amount of radioactivity recovered from faeces when rat were 

dosed intravenously with [4-3H]HNE. 
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Fig. 1. Sources and fate of HNE in colon 

Metabolic transformation of HNE starts in enterocites, where GSH-HNE is the main 

metabolite produced (Grune et al., 1991). The majority of HNE metabolites are found in the 

urine. Indeed, following the intravenous administration of [3H]-HNE in rats, 67%, 3%, 

0.16%, and 6.5% of the injected radioactive dose was recovered from urine, faeces, liver and 

remaining tissues, respectively (Alary et al., 2003). The urinary HNE metabolites were 

separated by HPLC and the resolved peaks were identified as mercapturic acid conjugates 

of HNA, DHN, HNE and HNA-lactone, where DHN-MA, and to a lesser extent HNA 

lactone-MA, have been found to be the major urinary metabolites of HNE in rats (Boon et 

al., 1999). DHN-MA has been confirmed to be the major urinary HNE metabolite also in 

human urine (Alary et al., 1998). 

The microflora of the human intestine can also affect levels of lipid peroxidation, since the 

antioxidative effect of lactic acid bacteria has been demonstrated (Lin et al., 1999). In 

particular, the antioxidative activity of Bifidobacterium longum ATCC 15708 and 

Lactobacillus acidophilus ATCC 4356 was measured based on the inhibition of linoleic acid 

peroxidation. Both intact cells and intracellular cell-free extracts of B. longum and L. 

acidophilus demonstrated an antioxidative effect on inhibiting lipid peroxidation. The 

antioxidative activity ranged from 38 to 48% inhibition of linoleic acid peroxidation. This 

indicates that B. longum and L. acidophilus have a very strong antioxidative effect on 

inhibiting lipid peroxidation (Lin et al., 1999). 
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Low level of HNE and its metabolites can be found also in faecal water (Alary et al., 2003) 
and numerous studies have emphasized the lipid peroxidation products of faecal water in 
colon cancer as diet-related factors (Lapre et al., 1992; Glinghammar et al., 1997). 

3.2 Pro-tumoral and anti-tumoral role of HNE in colon carcinogenesis 

Several authors have reported evidence that sustains the pro-tumoral activity of HNE and 
other products of lipid peroxidation in colon carcinogenesis. These findings include in vitro 
(see table 1) and in vivo studies, which demonstrate the genotoxic properties of HNE on 
coloncarcinoma cell lines, the increase of HNE content along with the progression of 
colorectal cancer and the increase of HNE-DNA adducts in vivo. However other studies, 
seem to demonstrate the opposite (see table 1). Consistent with the hypothesis of an anti-
tumoral role of HNE are the results showing the inhibition of cell growth, the induction of 
apoptosis in several colon cancer cell lines, as well as the demonstration that HNE content 
decreases in biopsies of colon-cancer tissues with respect to normal mucosa. A deeper 
discussion of these opposite results is here reported. 
 

 COLON 
CANCER 
CELL LINE 

HNE 
DOSE 

OBSERVED 
EFFECTS 

PROTEIN / PATWAY INVOLVED 
/ MAIN RESULTS 

REFERENCE 

CaCo-2  1 μM 

apoptosis, ROS 
production, 
enhanced by 
co-treatement 
with TGF-┚1 

HNE activates c-Jun N-terminal 
kinase (JNK) and Smad4, effects 
enhanced by co-treatment with 
TGF-┚1 

Zanettiet  
al., 2003;  
Vizio  
et al., 2005;  
Biasi et al., 2006 

CaCo-2, 
HT-29 

1 μM 
cell growth 
inhibition, 
apoptosis 

HNE down-regulates telomerase 
activity and hTERT expression, 
through modulation of 
Myc/Mad/Max network 

Pizzimenti  
et al., 2010 

CaCo-2 1 μM 
cell growth 
inhibition, 
apoptosis 

HNE induces an increase of c-myc 
expression and a subsequent 
down-regulation; HNE increases 
bax and p-21 expression 

Cerbone  
et al., 2007 

RKO 
30-75 
μM 

apoptosis 

HNE activates a mitochondrion-
dependent pathway, involving 
cytochrome c release and caspase 
activation 

Ji et al., 2001a 

RKO 40 μM apoptosis 
HNE inhibits NF-kB activation by 
direct interaction with IkB kinase 
(IKK) 

Ji et al., 2001b 

RKO 
30-60 
μM 

apoptosis 

comparison with other aldehydes 
producted during lipid 
peroxidation (HPNE,ONE) and 
stereoisomers of HNE 

West  
et al., 2004 

RKO 
5, 20, or 
60 μM 

 5 and 20 μM 
subcytotoxic, 60 
μM apoptosis 

 by using microarray technology, 
HNE simultaneously affects 
multiple stress signaling pathways

West  
et al., 2005 
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 COLON 
CANCER 
CELL LINE 

HNE 
DOSE 

OBSERVED 
EFFECTS 

PROTEIN / PATWAY INVOLVED 
/ MAIN RESULTS 

REFERENCE 

RKO 
30-60 
μM 

apoptosis 

beside the activation of pro-
apoptotic pathway, HNE activates 
a protective signal activation 
through activation of HSF1, Hsp70-
1 and Hsp40 and stabilization of 
Bcl-XL 

Jacobs & 
Marnett, 2007 

RKO 45 μM apoptosis 

BAG3, induced by HSF-1, 
increases cell survival, by 
stabilizing the level of Bcl-2 family 
proteins 

Jacobs & 
Marnett, 2009 

HCT15 
20-80 
μM 

cell death 
AKR1B10-overexpressing cells are 
resistant to cytotoxicity of HNE 

Matsunaga  
et al., 2011 

Apc+/+, 
Apc+/- 
colon 
epithelial 
cells  

10-250 
μM 

cell death 
HNE reduces cellular viability of 
either Apc+/+ and Apc-/+ cells, 
with lesser extent in Apc-/+ cells 

Pierre  
et al., 2007 

CaCo-2  cell death 

HNE increases prostaglandin 
E2 (PGE2) production and 
cyclooxygenase (COX)-2 
expression; inhibition of  
AR prevented HNE-induced  
effects 

Tammali  
et al., 2006 

HT-29, HT-
29clone19A 

100-200 
μM 

genotoxicity 

butyrate reduces DNA damage 
caused by HNE,  
through induction of 
Glutathione S-Transferase 

Ebert  
et al., 2001  

primary 
human 
colon cells, 
LT97, HT-
29clone19A 

100-250 
μM 

genotoxicity 
HNE induces TP53  
specific DNA damage 

Schaeferhenrich 
et al., 2003 

HT-29 150 μM genotoxicity 

Two fermentation products of 
wheat bran reduce the genotoxicity 
of HNE, via up-regulation of the 
activity of GSTs 

Glei et al., 2006 

primary 
human 
colon cells, 
LT97 

0-250 
μM 

genotoxicity 
HNE induces DNA damage on 
specific genes (APC,TP53, KRAS) 

Glei et al., 2007 

HT-29 
100-250 
μM 

genotoxicity 
butyrate induces resistance to HNE 
damage, by inducing GSH syntesis 
and increasing GSTA4-4 level 

Knoll et al., 
2005, Scharlau 
et al., 2009 

Table 1. HNE in vitro effects on colon cancer cell lines 
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3.2.1 HNE-DNA adducts in colon and colon cancer 

HNE-dG adducts, were found in normal human colon tissue, as well as DNA adducts with 

other lipid peroxidation products, such as acrolein and MDA (Chung et al., 2000). The levels 

of HNE-dG in tissue DNA examined so far are estimated to be in the range of 3-9 adducts 

per billion bases (3-9 nmol/mol guanine) (Chung et al,. 2000). 
The etheno-DNA adducts, inter alia formed from epoxidized HNE, were found at increased 
level in colonic polyps of familial adenomatous polyposis (FAP) patients. Mean adduct 
levels in FAP polyps were 65 εdA/109 and 59 εdC/109 parent nucleotides, being 2 to 3 times 
higher than in unaffected colon tissue (Schmid et al., 2000). Interestingly, the level of etheno-
DNA adducts in colon carcinoma tissues were found to be similar to unaffected colon 
(Schmid et al., 2000), suggesting a possible HNE role in the early events of colon 
carcinogenesis.  
On the contrary, Obtułowicz and collaborators (2010) have found that, in colon cancer 
patients, the DNA-HNE adducts εdA and εdG, measured both in colon tissues and blood 
leukocytes, were lower in patients than in controls (Obtułowicz et al., 2010). These authors 
have measured the two corresponding metabolites also, 1,N6- Ethenoadenine (εAde) and 
3,N4-ethenocytosine (εCyt), catalized by BER, the major pathway of etheno adduct 
elimination from DNA (Obtułowicz et al., 2010). Both excision activities were significantly 
higher in tumor than in normal colon tissues and this feature could be explained by the 
increased level of abasic site endonuclease (APE1), belonging to BER system, in coloncancer 
patients with respect to controls (Obtułowicz et al., 2010).  
A possible pro-cancinogenic role of etheno-DNA adducts is also sustained by the finding 

that in the colon of patients with inflammatory bowel disease εdC, but not εdA, are 

increased. In particular it has been demonstrated that εdC was 19-fold higher in colonic 

mucosa of Crohn’s disease and 4-fold higher in the colonic mucosa of ulcerative colitis 

patients, when compared to normal tissues (Nair et al., 2006). Since patients with ulcerative 

colitis (UC), and Crohn’s (CD) have an elevated risk for developing colon cancer (Konner et 

al., 2003), the authors suggest that the promutagenic etheno-DNA adducts, generated as a 

consequence of chronic inflammation, can act as a driving force to malignancy in cancer-

prone inflammatory diseases (Nair et al., 2006). 

HNE can also contribute to induce colon carcinogenesis, by inhibiting the DNA repair 

mechanism of such adducts. Indeed, Feng and collaborators (2004) demonstrated that 50 μM 

HNE inhibits NER in the human colon epithelial cell line HCT116. The repair capacity for 

benzo[a]pyrene diol-epoxide and UV light-induced DNA damage was greatly compromised 

in cells treated with HNE.  

3.2.2 Genotoxicity and mutagenicity of HNE in colon cancer  

Comet assay demonstrated that HNE, at concentration higher than 150 μM, displays a 

genotoxic effect in the colon carcinoma cell line HT-29 (Glei et al., 2006; Ebert et al., 2001; 

Knoll et al., 2005) and in HT29clone19A, a permanently differentiated sub-clone treated with 

sodium butyrate (Augeron & Laboisse, 1984). Moreover, such high doses of HNE were able 

to affect DNA integrity in primary human colon cells (Schaferhenrich et al., 2003; Glei et al., 

2007) and in LT97, an established cell line derived from a differentiated microadenoma, 

representing a model of an early premalignant genotype, carrying adenomatous polyposis 

coli (APC) and Ki-ras mutated, but normal p53 (Richter et al., 2002), three well-characterized 

genes involved in coloncancer progression (Fearon et al., 1990). 

www.intechopen.com



 
Colorectal Cancer Biology – From Genes to Tumor 

 

166 

Genotoxicity of HNE is higly dependent on cellular GSH level. Indeed, GSH depletion leads 
to and increase of HNE genotoxicity in the HT-29 colon carcinoma cell line (Knoll et al., 
2005). Moreover, HNE displayed a higher genotoxicity in LT97 than in HT29clone19A and 
primary human colon cells. This result can be explained by the lower GST expression found 
in LT97 compared to HT29clone19A and primary human colon cells (Schaferhenrich et al., 
2003). 
Recently, by using a refined comet assay (Comet-FISH) (Glei et al., 2009), which combined 
the classical comet assay with the fluorescence in situ hybridisation, it has been 

demonstrated that HNE concentrations higher than 150 μM were able to affect DNA 
integrity on the p53 (Schaferhenrich et al., 2003; Glei et al., 2007), Ki-Ras and APC genes 

(Glei et al., 2007), in primary human colon cells and the colon adenoma cell LT97. After cell 
incubation with HNE, the p53 gene, the crucial target gene for the progression of adenoma 

to carcinoma, migrated more efficiently into the comet tail than the global DNA, indicating a 
high susceptibility of the p53 gene to HNE (Glei et al., 2007). Moreover, the TP53 gene 

sensitivity to the DNA damage induced by HNE was significantly higher with respect to 
APC and KRAS genes. This particular sensitivity is especially apparent in LT97 cells (Glei et 

al., 2007). This may be due to the fact that LT97 cells normally carry damaged APC and 
KRAS, but undamaged TP53 (Richter et al., 2002). In normal colonocytes, APC and KRAS 

were also sensitive to damage (Glei et al., 2007). These findings are highly interesting when 
considering the sequence of mutational events that occur during human colon 

carcinogenesis (Vogelstein et al., 1988). APC and KRAS mutations transform normal 
epithelial (stem) cells into initiated, more rapidly proliferating cells to yield dysplasia and 

small adenoma. TP53 mutations in adenoma are then crucial alterations leading to further 
progression and to carcinoma. Based on studies of Glei and collaborators (2007), it is 

possible to conclude that HNE could potentially contribute to both cancer initiation and 
progression in the colon, if produced in sufficient amounts. However, as mentioned in the 

previously chapter, it is unlikely that HNE is reaching such high concentrations (150 μM) in 
colon in vivo. Moreover it still remains to be studied to what extent the observed 

genotoxicity of HNE is related to mutagenicity. Consistent with this hypothesis, as 
previously reported, it has been demonstrated that 50 μM HNE treatment in human TK-6 

lymphoblastoid cell line induces a high frequency of G.C to T.A mutations at the third base 
of codon 249 (AGG*) of the p53 gene (Hussain et al., 2000), a mutational hot spot in human 

cancers, particularly in hepatocellular carcinoma (Hsu et al., 1991). The adduct of HNE to 

codon 249 of the p53 gene has been also found by Hu and collaborators (2002). These 
authors exposed DNA of exons 5, 7 and 8 of human p53 gene, where the large majority of 

p53 mutations occur, to a very high concentration of HNE (192 mM or more). They 
identified two main HNE adducts, the first already mentioned at codon 249 (exon 7) and the 

second at codon 174 (exon 5) (Hu et al., 2002). However, the possible contribution of HNE to 
p53 mutations, through the formation of DNA adducts remains to demonstrated, since 

codon 249 and codon 174 of p53 usually are not mutated in colorectal rectal. Indeed, 
mutations at codon 175, 245, 248, 273, and 282 account for approximately 43% of all p53 

mutations in CRC (Soong et al., 2000; Soussi et al., 2000; Soussi & Beroud, 2003).  

3.2.3 HNE role in controlling cell proliferation, apoptosis of colon cancer cell 

Several findings have been collected through the years related to the anti-proliferative and 
pro-apoptotic in colon cancer cells. These results, even obtained with very low doses of 
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HNE, easily reacheable in vivo, cast doubt on the pro-tumoral HNE role. 1 μM HNE is able 
to inhibit cell proliferation of Caco-2 and HT-29 colon cancer cells (Cerbone et al., 2007; 
Pizzimenti et al., 2010b; Vizio et al., 2005) and concentrations ranging form 1 to 100 μM are 
able to induce apoptosis in Caco-2, HT-29, RKO, HCT15 colon cancer cells. (see table I for 
references). A number of genes or cell signalling pathways have been found to be affected 
by HNE, and their modulation can explain the biological effects observed.  
Results obtained in our laboratories demonstrated that the inhibition of proliferation in 

Caco-2 and HT-29 colon carcinoma cells by 1 μM HNE is sustained by the down-regulation 

of telomerase activity and hTERT expression, the catalytic subunit of telomerase (Pizzimenti 

et al., 2010b). The major mechanism of HNE action seems to be the modulation of expression 

and activity of transcription factors belonging to the Myc/Mad/Max network (Pizzimenti et 

al., 2010b). 

After HNE treatment, apoptosis of several colon cancer cell lines was investigated by 

different authors and different pathways were considered to be involved. In Caco-2 human 

colon adenocarcinoma cell line, 1 μM HNE caused an increase of bax expression (Cerbone et 

al., 2007) and the apoptosis induction is mediated by JNK activation. Indeed, the HNE-

mediated apoptotic cell death was significantly prevented by preincubating the cells with 

the selective JNK inhibitor SP600125 (Biasi et al., 2006).  

Ji and collaborators investigated the mechanism of HNE-induced cell death in human 

colorectal carcinoma cells and found that HNE-induced apoptosis depends on alteration of 

mitochondrial function, leading to the release of cytochrome c and subsequent activation of 

caspase cascade (Ji et al., 2001a). The authors have further demonstrated that HNE inhibited 

IκB kinase activity by direct interaction with IκB kinase and suggested that HNE is an 

endogenous inhibitor of NF-κB activation that acts by preventing IκB kinase activation and 

subsequent IκB degradation (Ji et al., 2001b). 

The molecular mechanism of HNE induced apoptosis was investigated in RKO colon cancer 

cells also. In this cell line, beside the pro-apoptotic stimuli, HNE activates the stress response 

pathways, that abrogate programmed cell death. Moreover, HNE elicits the nuclear 

translocation of HSF1 and promotes Hsp40 and Hsp72 expression (Jacobs & Marnett, 2007). 

The silencing of HSF1 sensitizes the colon cancer cells to HNE-induced apoptosis, through a 

mechanism involving the control of BCL-XL, BAG3 protein turnover (Jacobs & Marnett, 

2007; Jacobs & Marnett, 2009)  

3.2.4 HNE content in human colon cancers 

Only a few studies have investigated the level of the lipid peroxidation products, in 
particular HNE, in human colon cancers and results are contradictory. It has been 
demonstrated that the levels of proteins modified by HNE and MDA in colorectal cancer 
tissues were significantly increased (Murawaki et al., 2008). By immunohystochemical 
analysis, Murawaki and collaborators (2008) have demonstrated that the proteins modified 
by HNE were stained diffusely in the cytoplasm of cancer cells, while they were weakly 
stained in normal tissues. Similar results have been obtained by Kondo and collaborators 
(1999). Immunostaining of HNE-histidine adducts was observed in the cytoplasm of colon 
cancer tissues. Immunoreactivity was also found in the cytosol of infiltrating inflammatory 
cells. Western blot analysis of HNE-histidine adducts confirmed the results, since larger 
amounts of modified proteins were detected in carcinomas than in nontumorous epithelial 
counterparts (Kondo et al., 1999). The authors also demonstrated that HNE content 
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increased along with the progression of colorectal cancer, since tubular adenoma cells 
revealed a weaker staining, similar to the staining of non-tumorous epithelial cells (Kondo et 
al., 1999). An increase of HNE content in colon cancer tissues have been found also by 
Skrzydlewska and collaborators (2005). These authors analyzed the HNE content in 
homogenates of human colon cancer tissues, by measuring HNE as a fluorimetric 
derivative. These authors have demonstrated that the level of HNE was significantly 
increased (P<0.001) in cancer tissue compared to control group, with highest in G3-grade 
adenocarcinoma and mucinous adenocarcinoma and clinical IV stage of colorectal cancer.  
In contrast with these results, other scientists demonstrated a decrease of HNE in colon 

cancer tissues. Indeed, it was demonstrated that HNE was significantly decreased in cancer 

specimens, with respect to normal tissues, by measuring the HNE content in tissue biopsies 

from patients with colon adenocarcinoma of different TNM and G stage (Biasi et al., 2002; 

Zanetti et al., 2003). This result was confirmed later by the same group (Biasi et al., 2006). 

Moreover, Chiarpotto and collaborators (1997) have demonstrated that the fluorescent 

adducts with plasma proteins and HNE were significantly lower in the plasma from cancer 

patients (all stage G3, pT3pN0) than in controls.  

3.2.5 HNE metabolism in colon cancer 

In colon cells, the enzymes of HNE metabolism are present. Staining with anti GST A4 

specific antibodies revealed a significant expression of GST A4 in columnar and crypt 

epithelial cells of normal colon mucosae (Desmots et al., 2001), as well as in colon cancer cell 

lines (Scharmach et al., 2009; Knoll et al., 2005). Moreover, both the oxidative and reductive 

metabolisms of HNE are well represented in colon cells, since both ALDH or ADH have 

been found to be significantly expressed in colon mucosae (Seitz et al., 1996; Yin et al., 1994). 

The expression of AR is also enhanced in various forms of cancer, such as hepatoma 

(Zeindl-Eberhart et al., 1997) and melanoma cancer (Kawamura et al., 1999).  

By affecting HNE metabolism enzymes, it is possibly to modulate the HNE concentration 
inside cells. This could be critical for cancer growth regulation or DNA genotoxicity. Indeed, 
butyrate, produced during gut fermentation, has a chemoprotective role toward HNE 
injury, when added at high concentration, such as 100-200 μM in HT-29 colon cancer cells 
(Knoll et al., 2005). The chemoprotective effect of butyrate seems to be related to the 
increasing the expression of glutathione S-transferases GSTP1 (Ebert et al., 2001) and 
hGSTA4-4 (Knoll et al., 2005) able to catalyze the conjugation of HNE with glutathione. 
Similar results were obtained in HT-29 cells by using two wheat bran-derived 
arabinoxylans, fermented under anaerobic conditions in human feces. These two 
fermentation products inhibited growth and reduced the genotoxicity of HNE (100-200 μM) 
via up-regulation of the activity of GSTs, in absence of a GSTP1 or hGSTA4-4 increase (Glei 
et al., 2006). 
There is a growing interest in targeting aldose reductase (AR), as a novel therapeutic 

approach in preventing progression of colon cancer (Tammali et al., 2011). AR besides 

reducing aldo-sugars efficiently reduces toxic lipid aldehydes and their conjugates with 

glutathione (Tammali et al., 2006). Indeed, inhibition of AR by sorbinil or by antisense 

ablation, prevented FGF–induced and PDGF–induced proliferation of Caco-2 cells at S-

phase (Tammali et al., 2006). Similar results were also obtained in other colon cancer cell 

lines, by Ramana and collaborators which show that the inhibition of AR prevents 

epidermal growth factor (EGF)– and basic fibroblast growth factor (bFGF)–induced HT29, 
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and cell proliferation, by accumulating cells at the G1 phase of the cell cycle, through the 

AKT/Phosphoinositide 3-Kinase/E2F-1 pathway. Analogous results were obtained in 

SW480 and HCT-116 colon cancer cells (Ramana et al., 2010).  

More interestingly, in vivo studies showed that administration of aldose reductase-small 

interfering RNA (siRNA), or the AR inhibitor fidarest, to nude mice bearing SW480 human 

colon adenocarcinoma cells, led to a complete arrest of tumor progression. Such evidence 

suggests a key role for aldose reductase in growth factor-induced proliferation in colon 

cancer cells and it points to inhibition of aldose reductase as a novel therapeutic approach in 

preventing progression of colon cancer (Tammali et al., 2006; Ramana et al., 2010). 
Recently, the ATP-depent transporter RLIP76 (Ral binding protein1) has been considered for 
its role in controlling HNE content inside the cells. Indeed, it has been demonstrated that 
this transporter with multi-specific transport activity towards glutathione-conjugates and 
chemotherapeutic agents, is also specific for GSH-HNE (Sharma et al., 2002). The expulsion 
of GS-HNE from cells represents another critical step in HNE detoxification since it avoids 
the accumulation of adducted GSH and permits the restoration of GSH/GSSG equilibrium. 
RLIP76 protein is frequently overexpressed in cancer lesions (Vatsyayan et al., 2010), 
included colon cancers (Singhal et al., 2007), thus there is a growing interest in considering 
this protein as target in cancer therapy (Vatsyayan et al., 2010). When RLIP76 is inhibited, a 
rapid increase in HNE-GSH is observed, both in vitro (Awasthi et al., 2003; Cheng et al., 
2001; Yang et al., 2003) and in vivo (Vatsyayan et al., 2010). Recent studies show that the 
inhibition and/or depletion of RLIP76 by antibodies, siRNA, or antisense can lead to a 
drastic and sustained regression of lung, kidney, melanoma, prostate, and colon cancer 
xenografts with no observed recurrence of tumors (Vatsyayan et al., 2010). In particular, it 
has been shown that xenografts of SW480 human colon cancer cells in nude mice can be 
completely regressed by anti-RalBP1 immunoglubulin G or by suppression of RalBP1 
expression using phosphorothioate antisense against it (Singhal et al., 2007). 
The super family of aldo–keto reductase (AKR) enzymes seems to be involved in tumor 

development, and growing evidence is accumulating, suggesting them as a new class of 

tumor marker. These enzymes are hydroxysteroid dehydrogenases with a broad substrate 

specificity for other carbonyl compounds including HNE. The isoform AKR1B10 seems to be 

particulary involved in the transformation of HNE to the oxidized counterpart 4-oxonon-2-

enal (4-ONE) (Martin et al., 2009). AKR1B10 is also up-regulated in many types of solid 

tumors (Fukumoto et al., 2005; Yoshitake et al., 2007; Breton et al., 2008; Satow et al., 2010), 

and its gene silencing results in growth inhibition of colorectal cancer cells (Yan et al., 2007), 

as well as in increasing HNE-elicited cell death (Matsunaga et al., 2011).  

Recently, some family members of AKR enzymes have been shown to be overexpressed and 

linked to resistance against anticancer drugs such as anthracyclines, cisplatin, and 

methotrexate (Veitch et al., 2009; Cheng al., 2008; Selga et al., 2008). As regarding colon 

cancer, experimental data suggest that the up-regulation of AKR1B10 was related with 

acquisition of resistance to the anticancer drug mitomycin-c (MMC) in HT-29 colon cancer 

cells (Matsunaga et al., 2011). The cytotoxic effects of MMC seems to be mediated by the 

formation of HNE. Thus, the biological significance of the increasing of AKR1B10 in MCC 

resistant cancer cells would be an ability to better detoxify cytotoxic aldehydes including 

HNE. (Matsunaga et al., 2011). In the resistant cells, treatment with an AKR1B10 inhibitor 

decreased their MMC tolerance (Matsunaga et al., 2011), suggesting its use as adjuvant 

therapy in drug resistant cells, in which AKR1B10 is over-expressed. 
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Many dietary cancer chemopreventive compounds, such as cruciferous vegetables, could 
activate the antioxidant responsive element (ARE), a critical regulatory element in the 
promoter sequence of genes encoding cellular Phase II detoxifying and antioxidant 
enzymes. Transcriptional activation of ARE is typically mediated by the transcription  
Nuclear factor-erythroid 2-related factor 2 (Nrf2). Thus, this transcription factor has 
emerged as a novel target for the prevention of colon cancer (Saw & Kong, 2011). However, 
stable RNAi-mediated knockdown of Nrf2 in human colon cancer cells suppressed tumor 
growth in mouse xenograft settings and colon tumor angiogenesis by inhibiting Hypoxia-
Induced Activation of HIF-1a (Kim et al., 2011). Thus, the role of Nfr2 in colon 
carcinogenesis still has to be explored.  

3.2.6 HNE and nutrition 

It is well accepted that development and progression of colon cancer is generally associated 

with lifestyle-dependent risk factors, such as dietary choices (Pearson et al., 2009). HNE can 

be directly found in food (Gasc et al., 2007) or its production can be enhanced by the 

presence of some nutrients, i.e. ω-6 PUFAs, or some fermentation products of diet, i.e. 

butyrate, can modulate the metabolism of this aldehyde, thus modifying its concentration. 

In this context, it is very interesting to explore the connection between HNE, nutrition and 

colon carcinogenesis. 

HNE has been founded in different foods, correlating with the amount of ω-6 (Surh et al., 

2010). UsingGC–MS technology, scientists measured 4-hydroxy-alkenaks content in 

vegetable oils, fish and shellfish, calculating the HNE dietary intake of the Korean 

population (Surh et al., 2005). Korean daily exposure to 4-hydroxy- 2-alkenals was found to 

be of 4.3 mg/day and HNE was found to be more represented (2.7 mg). There was an 

additional exposure to more than 11.8 mg/day 4-hydroxy-2-alkenal from fried foods. The 

combined exposure would be, therefore, 16.1 mg/day corresponding to 0.3 mg/kg body 

weight/day for a 60 kg Korean adult. Additionally, the screening of PUFA-fortified foods 

including infant formulas and baby foods commercially available on the Korean markets 

were screened, and it was estimated that 3- month to 1-year-old babies sticking exclusively 

to these products could be exposed to a maximum 20.2 μg/kg BW/ day of 4-hydroxy-2-

alkenals (Surh et al., 2007). However, in spite of the biological toxicity of 4-hydroxy-2-

alkenals, the risk for humans cannot be quantified due to the lack of a virtually safe dose of 

the compound (Surh et al., 2005). 
A diet high in red and processed meats can increase colon cancer risk by 12–20%. The 
mechanism of promotion by haem iron is not known, but may be linked to oxidative stress 
and subsequent events such as lipid pro-oxidation and HNE production (Sesink et al., 1999; 
Sawa et al., 1998). Indeed, the dietary haem, in the form of either haemoglobin or meat, 
promotes precancerous lesions, aberrant crypt foci (ACF) and mucin-depleted foci in the 
colon of rats (Pierre et al., 2003; Pierre et al., 2004). This haem-induced promotion was 
associated with increased lipid peroxidation in faecal water and strong cytotoxycity activity 
of faecal water on the cancerous colonic epithelial cell line (Pierre et al., 2003). Further, Pierre 
and collaborators (2007), have explored the effect of faecal water components of haem-fed 
rats, on normal APC +/+ or premalignant APC -/+ cells, demonstrating that the toxic effects 
observed correlated with the presence of HNE in the faeces. Moreover, the premalignat APC 
-/+ cells were more resistant to apoptosis with respect to normal APC +/+. The authors 
suggested, thus, that the premalignant mutation confer to cells the resistance to the 
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inhibitory signal, allowing them to undergo further mutations and follow a tumoural 
pathway (Pierre et al., 2007). 
In a randomized human study, the urinary excretion of DHN-MA, the major metabolite of 
HNE detectable in urine was compared in volunteers consuming different levels of heme 
iron. The volunteers fed with a low red meat diet (60 g/day) showed a twofold increase of 
DHN-MA when supplemented with heme iron as blood sausage (70 g/day). Since colon 
preneoplastic lesions and DHN-MA excretion in the experimental animal were clearly 
associated with dietary heme iron, urinary DHN-MA was suggested as a promising 
biomarker of colon carcinogenesis (Pierre et al., 2006). 
The role of fat present in the diet in coloncarcinogenesis has been explored by several 

authors and comprehensive reviews have been published. In particular, diets rich in ω-6 

PUFAs, contained in vegetable oils, seem to enhance the development of colon tumors, 

whereas ω-3 PUFA-containing diets, such as fish oil, reduce colon cancer incidence (Reddy, 

2002; Kim & Milner, 2007). Thus, it is possible to suggest a putative HNE role in colon 

carcinogenesis, since HNE is derived from peroxidation of ω-6. However, the complexity of 

the issue forces us to be more cautious. Indeed, Eder and collaborators investigated the 

impact of different fatty-acids composition in the diet on cancer development, measuring 

the formation of the promutagenic HNE-dG in the mucosa of several organs, such as colon. 

The correlation between adduct levels and the different fatty acids assumption was not 

uniform for all organs and they didn’t find a clear relationship between fatty acids and 

adduct levels in the colon (Eder et al., 2008). Moreover, beside lipid peroxidation products it 

is necessary to consider the eicosanoids, also derived from PUFAs. Indeed, eicosanoids have 

different properties in cancer cell growth, invasion and angiogenesis when derived from ω-6 

or ω-3 fatty acids (Berquim et al., 2008), thus suggesting a role in carcinogenesis. 

Epidemiological studies show a reduction in risk for individuals and populations 

consuming high amounts of vegetables. The protective effect of vegetables may be due to 

their content of complex carbohydrates such as dietary fiber and starch (Scheppach et al., 

1999). A substantial amount of starch escapes digestion in the small intestine (Englyst et al., 

1992) and this fraction is called enzyme-resistant starch (RS). Starch and dietary fiber 

together are the principal substrates controlling the pattern of fermentation in the colon and, 

thus, the metabolism of compounds, like bile acids, nitrate and enzyme activityes (bacterial 

and antioxidant enzymes), which have been implicated in carcinogenesis. The effect of 

enzyme-resistant starch (RS) on the development of colon cancer was reported to include 

both chemopreventive and tumorigenic activity in humans. Indeed, an inverse association 

between starch consumption and large bowel cancer incidence has been found in an 

international comparison in 12 populations worldwide (Cassidy et al., 1994). However, an 

increased cancer risk with high-starch intake has been also reported (Franceschi et al., 1998; 

Favero et al., 1999). Wacker and collaborators (2002) have studied the number of 1,N2-

propanodeoxyguanosine-30- monophosphate (HNE-dGp) adducts in the colonic mucosa of 

volunteers fed with starchy foods enriched with a highly resistant amylomaize starch 

(Hylon VII) and they found an increase of the HNE-dGp adduct, whereas there was no 

evidence for an increased cell proliferation in the upper crypt.  

Finally, as already mentioned, nutrients can modulate the HNE level in the colon, by 

affecting its metabolism. This is the case of fermented products of diet, such as butyrate 

(Knoll et al., 2005; Glei et al., 2006) and wheat bran-derived arabinoxylans, that can affect the 

HNE levels, by upregulating GSTs activities.  
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4. Conclusion 

Lipid peroxidation is a physiological and pathological process that elicits a number of 
electrophilic compounds able to modulate several cellular processes. Among these, HNE is 
the most studied aldehyde, due to its high biological activity. Since HNE is a normal 
constituent of the diet or can be produced in the gut, colon cells can be exposed to this 
aldehyde. 
Low doses of HNE are able to inhibit cell proliferation and induce differentiation of colon 
cancer cells. Conversely, a high concentration of HNE exhibits genotoxic and mutagenic 
activity. We believe that the concentration of HNE and other lipid peroxidation products in 
the colon, represent a steady state level between production and catabolism. The alteration 
of this equilibrium elicits a stress condition for colon cells and, possibly, could be involved 
in colon carcinogenesis, although there is no scientific consensus in supporting its pro-
tumoral action.  
Results on HNE content in human biopsies of coloncancer tissues are contradictory, and the 
positive correlation between HNE content and cancer progression doesn’t allow an 
assumption whether the HNE increase during the progression of colon cancer may 
represent a cause or a consequence of this process. However, in colon cancer cells, HNE 
induces apoptosis and telomerase inhibition. Thus, we can hypothesize that HNE, produced 
during radiotherapy or chemotherapy, can participate to the control of tumor growth and 
tumor cell death. 
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