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1. Introduction 

Leukotriene B4 is an important mediator of inflammation derived from successive 
metabolism of fatty acids by several enzymes including the terminal rate-limiting enzyme 
called leukotriene A4 hydrolase. Leukotriene A4 hydrolase is a soluble enzyme, and 
depending on its substrate can function as either an epoxide hydrolase or an 
aminopeptidase. Over the years, leukotriene B4 has been found to be highly associated with 
several human diseases, and most of the reported literature has focused on the biology of 
the epoxide hydrolase activity of the enzyme, which generates the lipid metabolite 
leukotriene B4. However, emerging data suggests that the aminopeptidase activity of the 
leukotriene A4 hydrolase enzyme may also play a crucial role in the process of anti-
inflammatory responses. Previous drug discovery efforts have focused on inhibition of the 
leukotriene B4 metabolite by indiscriminately blocking both the epoxide hydrolase and 
aminopeptidase functions of the enzyme. The co-existence of a dichotomous and directly 
opposing biological function of this enzyme as suggested by recent studies on the 
aminopeptidase activity of leukotriene A4 hydrolase is a radically paradigm-shifting and 
relevant concept. This manuscript will review these recent findings in the context of the 
classical understanding of the leukotriene A4 hydrolase enzyme. 

2. Background 

The leukotrienes are important downstream effector molecules of inflammatory tissue 
alterations. Human diseases exhibit dysregulated inflammatory and immune responses in 
their pathogenesis. Therefore, 5-lipoxygenase (5-LO)-mediated lipid pathways have been 
investigated as possible pro-inflammatory pathways in the pathogenesis of multiple human 
diseases. The leukotrienes are lipid mediators of inflammation derived from the metabolism 
of fatty acids to arachidonic acid by phospholipase A2 (cPLA2), then to leukotriene A4 (LTA4) 
by 5-lipoxygenase and 5-lipoxygenase activating protein (FLAP). Further downstream 
metabolism yields two classes of leukotrienes: cysteinyl-leukotrienes (leukotriene C4, D4, 
and E4) synthesized by leukotriene C4 synthase and leukotriene B4 synthesized by 
leukotriene A4 hydrolase. Eventually, cysteinyl-leukotrienes and leukotriene B4 bind to a 
cysteinyl leukotriene receptor or a leukotriene B4 receptor, respectively, to exert final tissue 
effects (Figure 1). 
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Fig. 1. The 5-lipoxygenase pathway. 

2.1 Properties of the leukotriene A4 hydrolase enzyme 

Leukotriene A4 hydrolase is a monomeric soluble protein, which localizes in all different 
cellular compartments of several mammalian sources. The leukotriene A4 hydrolase enzyme 
contains 610 amino acid residues and has a molecular weight of 69 KDa. In humans, the 
leukotriene A4 gene is localized to chromosome 12q22 as a single copy gene with 19 exons.  
The 5’ upstream region consists of several transcription consensus sequences including a 
phorbol ester response element and two xenobiotic response elements [1-3]. The enzyme 
usually resides in the cytosol, but was found to also localize to the nucleus in association 
with the proliferation of Type II alveolar cells [4]. Only leukotriene A4 has been known to 
bind with significant affinity to the leukotriene A4 hydrolase enzyme, whereas the isomers 
of leukotriene A4, leukotrienes A3 and A5, are known to bind to the substrate site with much 
lower affinity [5, 6]. Several site-directed mutagenesis studies demonstrated that Tyr-378, 
Glu-271, Asp-375, Arg-563, and Lys-565 play significant roles in the epoxide hydrolase 
activity of leukotriene A4 hydrolase [7-12]. High specificity of the leukotriene A4 lipid to the 
catalytic site also seems to modulate the enzymatic activity by covalently binding to the 
catalytic site, which results in inactivation of the enzyme [5, 6]. 
The leukotriene A4 hydrolase enzyme processes hydrolysis of leukotriene A4 to afford 
leukotriene B4. The biological activity of leukotriene B4 is dependent on a specific 
stereochemical configuration at carbon-12 and a specific geometric configuration of the 
olefin between carbon-6 and carbon-7. The leukotriene A4 hydrolase enzyme promotes 
stereoselective hydrolysis of leukotriene A4 by addition of water at carbon-12 to give the 12R 
adduct. The intermediate carbocation that is formed prior to hydrolysis is oriented by the 
enzyme to afford exclusively the 6Z olefin product. This catalytic hydrolysis performed by 
leukotriene A4 hydrolase is significant, because the leukotriene A4 lipid metabolite contains 
an unstable allylic epoxide that can undergo uncatalyzed hydrolysis. In this scenario, non-
enzymatic hydrolysis of the leukotriene A4 lipid results in the formation of 6E-leukotriene B4 
as a mixture of diastereomers at carbon-12 [13]. As shown in Figure 2, the olefin at carbon-6 
has the Z configuration and the carbon-12 stereocenter is defined as R for leukotriene B4. 
Under non-catalytic conditions, the olefin at carbon-6 is formed to give the E olefin, and the 
stereocenter at carbon-12 is formed to give a mixture of the R or S epimer. 
As compared to native leukotriene B4, both 6E-leukotriene B4 and the 12S epimer of 6E-
leukotriene B4 have demonstrated significantly reduced affinity for the leukotriene B4 
receptors in human leukocytes and guinea pig lungs [14, 15]. Sala and colleagues also 
demonstrated that a substantial amount of the leukotriene A4 metabolite can be released out 
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of the human polymorphonuclear leukocytes for transcellular biosynthetic processing [16]. 
In combination, this suggests that the conversion of leukotriene A4 to leukotriene B4 may 
play crucially important biological roles, and simple analysis of the total amount of 
leukotriene B4 produced at the local tissues cannot fully explain the observed phenotypes 
associated with these pathways. 
 

 
Fig. 2. Enzyme-catalyzed and uncatalyzed hydrolysis of LTA4. 

2.2 The dual catalytic activities of the leukotriene A4 hydrolase enzyme 
The leukotriene A4 hydrolase enzyme functions as either an epoxide hydrolase or 
aminopeptidase. As an aminopeptidase the enzyme efficiently catalyzes the hydrolysis of 
small peptides of three-amino acid length [17]. Leukotriene B4 is a potent neutrophil and 
monocyte chemo-attractant and activator, and therefore has been the subject of most 
discussions concerning leukotriene A4 hydrolase [18-21]. Leukotriene B4 is known to 
associate with two G protein-coupled seven transmembrane domain receptors, whose genes 
are located in very close proximity to each other in the human and mouse genomes [22]. 
This metabolite maintains important immune functions in the areas of defense and 
inflammatory diseases. It is an important intracellular messenger with numerous effector 
functions to stimulate immune responses. Leukotriene B4 promotes chemotaxis of several 
types of leukocytes (monocytes [21, 23-25], neutrophils [26-29], macrophages [20, 30-32], 
dendritic cells [18, 33]) which lead to the initiation of inflammatory responses at the site of 
local tissues. Leukotriene B4 subsequently promotes endothelial adhesion [34-37] and 
degranulation of toxic intracellular materials from the leukocytes [38-41]. Eventually, 
leukotriene B4 facilitates phagocytosis and clearing of the inciting foreign agents that 
initiated the inflammatory cascade [42-46]. Consistent with these biological observations, a 
variety of inflammatory diseases have been associated with the over-production of 
leukotriene B4. Some of these diseases are sepsis [47-50], shock [51, 52], cystic fibrosis [53-57], 
coronary artery disease [58-60] connective tissue disease [19, 61-65], and COPD [66-68]. 
The biosynthesis of leukotriene B4 is initiated by the conversion of arachidonic acid to 
leukotriene A4, which requires sequential actions by 5-lipoxygenase and 5-lipoxygenase 
activating protein. The 5-lipoxygenase enzyme and 5-lipoxygenase activating protein 
catalyze sequential reactions to produce the unstable metabolite leukotriene A4. The fate of 
leukotriene A4 is determined by either leukotriene C4 synthase, which conjugates 
glutathione to leukotriene A4 to form leukotriene C4 [69, 70], or leukotriene A4 hydrolase, 
which generates leukotriene B4 by its epoxide hydrolase activity [10, 29]. The 5-lipoxygenase 
enzyme has been mostly found in the leukocytes, and therefore, leukotriene B4 has been 
primarily found to be produced by leukocytes. However, the biosynthesis of leukotriene B4 
was also found to occur in the absence of 5-lipoxygenase. For example, in the cases of 
alveolar epithelial cells, due to the lack of 5-lipoxygenase, these cells cannot produce 
leukotriene A4, a mandatory precursor to leukotriene B4. However, when co-incubated with 
neutrophils, the alveolar epithelial cells were found to produce a measurable amount of 
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leukotriene B4. This was found to occur by transferring pre-made leukotriene A4 from 
neutrophils to the alveolar epithelial cells [71]. Therefore, the only enzyme that these 
alveolar epithelial cells require was the presence of intracellular leukotriene A4 hydrolase. 
This demonstrated that cells lacking 5-lipoxygenase could influence the total amount of 
leukotriene B4 in local tissues populated by the recruited leukocytes. As described above, 
this very mechanism can potentially alter the effects of this pathway by how the leukotriene 
A4 lipid is metabolized (i.e. enzymatic vs. non-enzymatic mechanisms). 
For the past several years, leukotriene A4 hydrolase has been known to carry two catalytic 
functions. One function is a well-characterized epoxide hydrolase activity described above 
and a poorly characterized aminopeptidase activity. The second catalytic site of the enzyme 
can bind short peptide sequences such as PGP, dynorphins, enkephalins, bestatin, and 
captopril [72-79]. The mammalian leukotriene A4 hydrolase enzyme is homologous to C. 
Elegans aminopeptidase-1, but the C. Elegans aminopeptidase-1 enzyme does not possess 
epoxide hydrolase activity [80]. A subsequent study has demonstrated that the mammalian 
aminopeptidase B enzyme shares significant homology with the leukotriene A4 hydrolase 
enzyme, but lacks epoxide hydrolase activity [81]. However, a clear understanding on the 
role of the aminopeptidase activity of leukotriene A4 has yet to be clarified. 

2.3 The possible significance of leukotriene A4 hydrolase aminopeptidase activity 

To date, studies addressing the aminopeptidase activity of the leukotriene A4 hydrolase 
enzyme remain sparse. This reflects the presumption that the leukotriene B4 metabolite 
alone is biologically relevant in human diseases associated with this enzyme. Naturally, all 
known pharmacological investigations to date have targeted only the epoxide hydrolase 
activity of the leukotriene A4 hydrolase enzyme rather than the aminopeptidase activity. 
Numerous in vitro and in vivo animal studies have demonstrated significant pathologies 
induced by the exaggerated activity of the epoxide hydrolase activity of the leukotriene A4 
hydrolase enzyme (Table 1). 
Pre-clinical animal modeling demonstrated that these findings are associated with cystic 
fibrosis, inflammatory bowel disease, chronic obstructive pulmonary disease, sepsis, 
asthma, adult respiratory distress syndrome, and atherosclerotic coronary artery disease [4, 
64, 89, 160-164]. Exaggerated levels of leukotriene B4 have also been found in patients with 
rheumatoid arthritis [65, 147], cystic fibrosis [57, 165], obstructive pulmonary diseases [68, 
166], sepsis [47, 107], adult respiratory distress syndrome [56, 132, 138-141], inflammatory 
bowel diseases [167, 168], and atherosclerosis [58]. These observations led to FDA clinical 
trials to target the epoxide hydrolase activity of the leukotriene A4 hydrolase enzyme and 
the leukotriene B4 metabolite with several pharmaceutical agents. Interestingly, these 
clinical trials in humans mostly failed to show similar beneficial effects in several diseases 
such as rheumatoid arthritis, cystic fibrosis, inflammatory bowel diseases, sepsis, and 
atherosclerosis [59, 84, 88, 99-102, 113, 114, 126, 128, 130, 148, 150, 151, 159, 169, 170]. 
There are two plausible explanations for the failure to translate the significant pathobiology 
of the leukotriene A4 hydrolase enzyme and leukotriene B4 found in less complex in vitro or 
in vivo animal models to more complex human systems. First, the entire leukotriene A4 
hydrolase enzyme pathway may not be suitable as a therapeutic target. Second, the non-
specific targeting to completely inhibit all activities of the leukotriene A4 hydrolase enzyme 
may not be appropriate because of the unknown but potentially important biological 
contribution by the aminopeptidase activity of the enzyme. Taken together, it becomes 
apparent that significant confusion and knowledge gaps exist on this matter as a result of 

www.intechopen.com



 
Leukotriene A4 Hydrolase – An Evolving Therapeutic Target 257 

incomplete understanding of the biology of the aminopeptidase activity of the leukotriene 
A4 hydrolase enzyme. 
 
Human Disease Pre-Clinical Animal 

Models 
Observational or in 

vitro Human Studies 
Pharmaceutical Trials 

Cystic Fibrosis De Lisle[116] 
Tetaert[117] 
van Heeckeren[100, 
118] 

Daryadel[119] 
Lawrence[54, 55, 120] 
O'Driscoll[56] 
Cromwell[57] 

Schmitt-
Grohe(BLTR)[99] 
Panchaud(LTA4H) [100] 

Inflammatory 
Bowel Diseases 

Habib[83] 
Stenson[121] 
Bailon[122] 
Nancey[123] 
Murthy[124] 

Ikehata[125] 
Kjeldsen[126] 
Cole[127] 
Casellas[128] 
Pavlenko[129] 

Roberts(5-LO)[101] 
Hawkey(5-LO)[102] 
Rask-Madsen(5-
LO)[103] 
McCall(LTA4H)[104] 

Sepsis Hartiala[50] 
Mack[130] 
Doi[49] 
Rasmussen[131] 
Marshall[132] 
Rios-Santos[133] 

Tavares-Murta[47] 
Alves-Filho[91] 
Arraes[134] 
Ball[135] 
Nakae[136] 
Takakuwa[137, 138] 

Winning(BLTR)[105] 

Obstructive 
Lung Disease 

Freisch[139] 
Taki[140] 
Johnson[141] 
Turner[142] 
Henderson[143] 
Fretland[144] 

O'Driscoll[56] 
Payan[145] 
Tanno[146] 
Wardlaw[147] 
Radeau[148] 
Koh[149] 

Arm(LTA4H)[107] 

ARDS Thomsen[150] 
Sprague[93, 151] 
Goldman[152] 
Czarnetzki[153] 
Hicks[154] 
Furue[155] 

O'Driscoll[56] 
Davis[92] 
Sprague[93] 
Czarnetzki[94] 
Schonfeld[95] 
Loick[96] 

 

Rheumatoid 
Arthritis 

Suarez[156] 
Fretland[144, 157] 
Grespan[61] 

Sperling[19, 65, 158] 
Nielsen[159] 
Elmgreen[160] 
Smith[88, 112] 

Diaz-
Gonzalez(BLTR)[113] 
Alten(BLTR)[114] 

Atherosclerosis Hagihara[161] 
Amsterdam[162] 
Senoh[163] 

Qiu[164] 
Dwyer[165] 
Elgebaly[166] 
Hakonarson[59] 
Maznyczka[58] 
Back[167] 

Tardif(5-LO)[115] 
Hakonarson(FLAP)[59] 

Table 1. Representative review of literature on pre-clinical and clinical studies targeting 
LTB4. References in the “Pharmaceutical Trial” column are matched with the LTB4 
associated pharmaceutical targets. LTA4H = LTA4 hydrolase. BLTR = LTB4 Receptor. 5-LO = 
5-Lipoxygenase. FLAP = 5-Lipoxygenase Activating Protein. 
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2.4 Emerging data on the leukotriene A4 hydrolase aminopeptidase activity 

New findings from the murine model of influenza pneumonia have demonstrated that the 
aminopeptidase activity of the leukotriene A4 hydrolase enzyme was necessary and crucial 
in the resolution phase of neutrophilic inflammation induced by intranasal influenza 
exposure [73]. An investigation was undertaken to explain how murine lungs clear 
neutrophilic inflammation induced by intra-nasal influenza exposure in association with the 
previously discovered tri-amino acid chemotactic peptide called PGP [72]. These studies 
demonstrated that timely resolution of neutrophilic infiltration into the lungs occur in 
parallel with degradation of a simple tri-peptide sequence, PGP. Further analysis of this 
murine model demonstrated that the leukotriene A4 hydrolase enzyme was the major 
aminopeptidase enzyme that degraded PGP, and this degradation of PGP by the 
aminopeptidase activity of the leukotriene A4 hydrolase enzyme was crucial to resolve acute 
neutrophilic infiltration into the lungs post influenza exposure. These findings were 
recapitulated in an in vivo murine model by confirming paradoxically increased neutrophil 
infiltration into the lungs of the leukotriene A4 hydrolase -/- mice post influenza exposure. 
This was presumed to occur in the setting of decreased PGP degradation and clearance as 
compared to wild-type mice. 
These studies by Blalock and co-workers were the first to demonstrate an important 
biological function performed by the aminopeptidase activity of the leukotriene A4 
hydrolase enzyme in association with neutrophilic inflammation. These studies were also 
the first to demonstrate PGP as a natural biological substrate to the aminopeptidase catalytic 
site of the leukotriene A4 hydrolase enzyme. Subsequently, Barber and colleagues reported 
that the enzyme producing PGP, prolyl endopeptidase, made important contribution to 
cigarette smoke-induced pulmonary emphysema in a murine model [174]. Xu and 
colleagues reported that the prolonged presence of PGP may also contribute to lung tissue 
destruction in cystic fibrosis patients by PGP secretion leading to CXCR1 and CXCR2, 
receptor activation, exaggerated influx of neutrophils and chemotaxis into the lungs [171]. 

3. Structural biology 

The leukotriene A4 hydrolase enzyme is a fairly large (69 KDa) cytosolic protein. Its 
solubility likely facilitated crystallization of the enzyme, which allowed for high resolution 
X-ray crystallographic structure elucidation [176]. The endogenous ligand for leukotriene A4 
hydrolase is leukotriene A4, and unstable epoxide-containing lipid derived from arachidonic 
acid. As mentioned previously, the leukotriene A4 lipid is known to undergo two possible 
transformations as follows. First, stereoselective hydrolysis at C-12 is mediated by the 
leukotriene A4 hydrolase enzyme to give leukotriene B4. Second, leukotriene C4 synthase 
catalyzes the conjugation of glutathione to give leukotriene C4. Although leukotriene A4 
hydrolase and leukotriene C4 synthase both recognize leukotriene A4 as an endogenous 
substrate, they share very little similarity. The 3-dimensional crystal structure of leukotriene 
C4 synthase resembles glutathione transferase enzymes as was expected on the basis of its 
primary structure and catalytic activity [177, 178]. On the other hand, leukotriene A4 
hydrolase is a cytosolic protein and catalyzes the hydrolysis of leukotriene A4 to leukotriene 
B4. Leukotriene A4 hydrolase was found to be homologous to enzymes that exhibit 
aminopeptidase activity, and indeed leukotriene A4 was also found to catalyze the 
hydrolysis of short peptides [17]. Both leukotrienes B4 and C4 are responsible for 
inflammatory responses, and therefore previous pharmacological efforts have targeted these 
metabolites. However, recent literature suggests that the mostly uncharacterized 
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aminopeptidase activity of the leukotriene A4 hydrolase enzyme might also be a key player 
in inflammatory responses. In this section, we will review the structural elements that 
contribute to substrate binding and enzymatic processing by leukotriene A4 hydrolase. 

3.1 The structure of the leukotriene A4 hydrolase enzyme 
In 2001, Haeggström and co-workers published a high-resolution X-ray crystal structure of 
the leukotriene A4 hydrolase enzyme in complex with bestatin, a competitive inhibitor [176]. 
Over the past 10 years, X-ray crystallography of the leukotriene A4 hydrolase enzyme has 
become commonplace, and over 40 subsequent structures of the enzyme in complex with a 
variety of ligands have been published [10-12, 78, 179-182]. The abundance of crystal 
structures with high resolution (< 3.0 Å) of the leukotriene A4 hydrolase enzyme has 
enabled detailed understanding of its molecular mechanisms in substrate binding and 
processing. Nevertheless, a very intriguing feature of the dual activity of the enzyme can be 
realized by a simple 2-dimensional comparison of the conversion of leukotriene A4 to 
leukotriene B4 and the hydrolysis of short peptides such as proline-glycine-proline (PGP). 
 

 
Fig. 3. A 2-dimensional analysis of leukotriene A4 hydrolase-mediated hydrolysis. 

As shown in Figure 3, the common group in both substrates is the carboxylic acid moiety, 
which are highlighted in red. Extension of the molecule beginning from the carboxylic acid 
moiety shows that the cleavage site of the peptide aligns with the site for epoxide ring 
opening, which suggests that enzyme activation occurs in this region. However, hydrolysis 
of the peptide occurs directly at the site of cleavage, whereas hydrolysis of leukotriene A4 
occurs 6 atoms away at carbon-12 to give leukotriene B4. The binding pocket of the enzyme 
can be labeled using the nomenclature devised by Schechter and Berger to describe protease 
subsites [183]. Thus, the N-terminal proline residue that is proximal to the site of hydrolysis 
is labeled P1’ (P for peptide) and resides in the S1’ subsite of the enzyme. The 2-dimensional 
analysis in Figure 3 places the epoxide group of leukotriene A4 slightly toward the C-
terminus side of the scission site, which is labeled the S1’ subsite of the enzyme. Therefore, 
peptide cleavage and epoxide ring opening appear to occur in the same region in the S1’ 
subsite of the enzyme. However, whereas hydrolysis of the peptide occurs directly at the 
scission site in the S1’ subsite, hydrolysis of leukotriene A4 occurs ~6 atoms away at carbon-
12 in what would be the S2 subsite for extended peptide substrates. 
A more sophisticated analysis of the binding pocket of the leukotriene A4 hydrolase enzyme 
can be delineated from structures elucidated by X-ray crystallography. As mentioned above, 
X-ray crystallography of the leukotriene A4 hydrolase enzyme has become commonplace 
and gives intricate details about substrate binding. Currently, there are 44 solved crystal 
structures of the enzyme deposited in the Protein Data Bank (PDB) [184]. Structural studies 
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of the leukotriene A4 hydrolase enzyme continue to be the subject of active research with 9 
crystal structures released to the PDB in the past year. Most of the published structures 
contain a co-crystallized substrate. Drug discovery efforts by deCODE Genetics, an Iceland-
based pharmaceutical company, utilized the facility in which the leukotriene A4 hydrolase 
enzyme could be co-crystallized with small molecule substrates to identify molecular 
fragments that could be pieced together to design a new drug [181, 182]. 
 

 
A B C 

Fig. 4. The binding pocket of LTA4H. 

A 3-dimensional analysis of the binding pocket of leukotriene A4 hydrolase was rendered 
using the Visual Molecular Dynamics (VMD) software package (Figure 4A) [184]. Several 
crystal structures of the leukotriene A4 hydrolase enzyme containing small molecular 
fragments were aligned, and then the ligands were displayed. The ligands shown in blue 
occupy an L-shaped binding pocket with the zinc atom centered between the two regions. A 
2-dimensional schematic of the putative binding mode for leukotriene A4 is presented in 
Figure 4B. For comparison, a schematic of a transition-state analog of a tripeptide, which 
was co-crystallized with leukotriene A4 hydrolase, is shown in Figure 4C [180]. 
The X-ray crystal structure of the leukotriene A4 hydrolase enzyme demonstrates three 
distinct binding regions. The S1’ subsite is located within the C-terminal domain binding 
region and the S2 subsite resides within the N-terminal domain binding region. The catalytic 
domain contains the zinc atom, which anchors the two flanking C-terminal and N-terminal 
domains. The binding pocket is made up of a narrow hydrophobic cavity that is ~6-7 Å 
wide by ~15 Å deep [176]. The depth of the pocket is an important aspect with regards to 
binding leukotriene A4, which must extend into the S2 pocket with a long aliphatic chain. 
The reaction mechanism for hydrolysis by the leukotriene A4 hydrolase enzyme involves 
activation of the epoxide of leukotriene A4, or the amide carbonyl group of a small peptide, 
by the weakly Lewis acidic zinc atom. The oxidation state of the zinc atom is +2 and 
complexes with bestatin with a trigonal bipyramidal geometry [176]. Removal of the zinc 
atom by treatment with 1,10-phenanthroline results in loss of enzymatic activity. The 
catalytic activity of the enzyme is restored when treated with a stoichiometric amount of 
Zn2+. The Zn2+ cation can be exchanged for a Co2+ cation, also a weakly Lewis acidic 
transition metal ion, to give a functional leukotriene A4 hydrolase enzyme [185]. 
Presumably, coordination of the epoxide of leukotriene A4 results in formation of a 
resonance-stabilized carbocation between carbons 6 and 12. The shape of the cavity 
apparently drives hydrolysis at the C-12 position mediated by Asp375 to give exclusively 
the R configuration and an E olefin between carbons 6 and 7 (Figure 5A). 
On the basis of the structure of RB3041 (see Figure 4C) co-crystallized with the leukotriene 
A4 hydrolase enzyme, peptide hydrolysis appears to occur by activation of the carbonyl 
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group of the P1 amide bond (Schechter and Berger nomenclature) followed by addition of 
water by Glu296 to give the tetrahedral intermediate. Subsequent decomposition of the 
tetrahedral intermediate releases the free carboxylic acid and free amine (Figure 5B) [186]. 
 

     
A B 

Fig. 5. Reaction mechanism for hydrolysis by the leukotriene A4 hydrolase enzyme. 

3.2 The history of leukotriene A4 hydrolase inhibitors 
As noted in these reaction mechanisms, inhibition of leukotriene A4 hydrolysis by chelation 
with the zinc atom will inevitably lead to inhibition of aminopeptidase function. Inhibition 
of the leukotriene A4 hydrolase enzyme was motivated by the potential clinical utility that 
could be realized by reducing the biosynthesis of the leukotriene B4 metabolite. Therefore, 
initial efforts to design leukotriene A4 hydrolase inhibitors focused on analogs of the lipid 
substrate (Figure 6). Prescott first reported that eicosapentaenoic acid, an omega-3 fatty acid, 
inhibited leukotriene B4 biosynthesis in a dose-responsive manner [187]. Leukotriene A3, 
derived from metabolism of exogenously added 5,8,11-eicosatrienoate, also known as mead 
acid, was then found to also inhibit leukotriene A4 hydrolase [5, 188]. Shimizu and co-
workers then reported the effect of a series of leukotriene A4 analogs on the leukotriene A4 
hydrolase enzyme. Their work demonstrated that an appropriately positioned allylic 
epoxide is sufficient for inhibition of the enzyme. However, their study suggested that the 
free carboxylic acid moiety, the 5,6-epoxide, and the (7E,9E,11Z,14Z)-tetraene structure of 
the leukotriene A4 substrate were all required components for binding to the enzyme [6]. 
 

 
Fig. 6. First discovered inhibitors of the leukotriene A4 hydrolase enzyme. 

On the basis of the aminopeptidase activity of the leukotriene A4 hydrolase enzyme, Orning 
and co-workers realized that the general metallohydrolase inhibitor bestatin was also a 
potent inhibitor of the leukotriene A4 hydrolase enzyme [79]. Subsequent studies revealed 
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that the enzyme is also sensitive to captopril (Figure 7), an inhibitor of the angiotensin-
converting enzyme (ACE) [79]. 
 

 
Fig. 7. Examples of zinc-chelating inhibitors of the leukotriene A4 hydrolase enzyme. 

The mechanism of captopril inhibition of the leukotriene A4 hydrolase enzyme likely 
involves chelation to the zinc atom via its sulfhydryl group. Strategies to target the 
leukotriene A4 hydrolase enzyme on the basis of zinc chelation has led to some of the most 
potent inhibitors known for the enzyme [189]. As expected on the basis of a shared binding 
mode in the enzyme, the aminopeptidase inhibitors also inhibit the epoxide hydrolase 
activity of the leukotriene A4 hydrolase enzyme. 
Despite the impressive potencies achieved with zinc-chelating agents, selective inhibition of 
the leukotriene A4 hydrolase enzyme over other zinc-containing aminopeptidases remained 
a challenge [189]. Therefore, most of the current inhibitors of the leukotriene A4 hydrolase 
enzyme are derived from the scaffold provided by Penning and co-workers. Optimization of 
SC-22716, a lead compound identified through the Monsanto Structure-Activity Screening 
Program, identified important structural motifs for inhibition of leukotriene A4 hydrolase 
without a zinc-chelating component. These inhibitors contain a bis-aryl substituent, a two-
carbon linker, and an amine (or nitrogen atom-containing heterocycle) substituent [190]. The 
large number of inhibitors derived from Penning’s work has recently afforded an efficient in 
silico pharmacophore model for identification of new inhibitors of the leukotriene A4 
hydrolase enzyme by virtual screening (Figure 8). In this model, the chemical features that 
make up the best pharmacophore includes a hydrogen bond acceptor (HBA), a hydrophobic 
region (HYP), and two ring-aromatic regions [191]. 
 

 
 

A B 

Fig. 8. A. Non-chelating inhibitors [189]. B. In silico pharmacophore model [191]. 

3.3 Contemporary approach in targeting the leukotriene A4 hydrolase enzyme 
The most advanced leukotriene A4 hydrolase inhibitor in clinical trials is a small molecule 
developed by deCODE Genetics and named DG-051 (Figure 9). As described earlier, 
deCODE Genetics underwent an impressive fragment-based screening program using X-ray 
crystallography to design new inhibitors of the leukotriene A4 hydrolase enzyme. Their 
efforts afforded molecules that fit the pharmacophore model derived from Penning’s work. 
However, the use of X-ray crystallography unveiled a potential interaction with the zinc 
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atom that could be achieved with an extended carboxylic acid substituent. Addition of a 
carboxylic acid moiety allowed for optimization of other important physicochemical 
properties such as solubility for oral administration [181, 182]. Building upon the pre-clinical 
findings, which demonstrated the pathogenic roles of the leukotriene A4 hydrolase epoxide 
hydrolase activity, DG-051 is now at an advanced stage of FDA clinical trial as a therapy for 
preventing atherosclerosis. 
 

Fig. 9. Structure of DG-051. 

Exploitation of the newly found biology of the aminopeptidase activity of the leukotriene A4 
hydrolase enzyme is the subject of current research efforts. A reported strategy targets the 
biological role of PGP as a CXCR1/CXCR2 activating ligand in the process of neutrophil 
chemotaxis [73]. One approach is to inhibit the prolyl endopeptidase enzyme or 
metalloproteinase-8 in order to reduce endogenous bio-production of PGP [171, 174]. A 
second approach is to target neutrophil chemotaxis by creating a synthetic PGP analog, 
which would emulate the N-terminus of interleukin-8 but antagonize the CXCR1/CXCR2 
receptors [173]. These two pharmaceutical strategies would mitigate deleterious neutrophil 
chemotaxis in various states of human diseases. 

4. Conclusion 

The leukotriene A4 hydrolase enzyme has been a center of intense biological investigations 
for several decades.  The relevance of the leukotriene A4 hydrolase enzyme in human 
diseases has proved to be substantial, but pharmaceutical attempts to exploit this pathway 
have been disappointing. The aminopeptidase activity of the leukotriene A4 hydrolase 
enzyme was recently found to be an important factor in human diseases. Attempts to exploit 
the biology of the leukotriene A4 hydrolase enzyme is actively ongoing and is certainly 
expected to continue in the foreseeable future. This review has considered both the classical 
and new understandings of the biology of the leukotriene A4 hydrolase enzyme, and it is 
reasonable to conclude that both catalytic functions of the enzyme (i.e. epoxide hydrolase 
and aminopeptidase activities) need to be carefully considered for pharmaceutical 
investigations targeting this enzyme. Taken together, the leukotriene A4 hydrolase enzyme 
and the leukotriene B4 associated pathways are sure to remain an important topic of 
discussion in the arenas of drug discovery for years to come. 
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