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1. Introduction 

Hepatocellular carcinoma (HCC) ranks the third in cancer-related death in the world. In 

Africa and Asia, the incidence of HCC, and death rate in particular, is even higher than 

other types of cancer. Chronic inflammation, mainly caused by viruses such as hepatitis B 

virus (HBV) and hepatitis C virus (HCV), has long been regarded as the major player in 

HCC development. However, increasing genes and/or tremendous epigenetic factors, and 

interactions thereof, have appeared to be involed in HCC development (Beasley & Lin, 1978; 

Arbuthnot & Kew, 2001). Although great efforts have been made in the past, early diagnosis 

and effective treatment to the patients in the late stage are still difficult. Centrosome 

amplification, a distinct feature in most cancer cells, has been widely studied recently in 

leukemia and increasing types of solid tumors. In HCC, however, there are few studies 

reported. What roles may centrosome play in hepatocellular carcinoma? What insights may 

it shine in guiding cancer therapies? And so on. We, in this chapter, would like to discuss 

the relations between centrosome and HCC development, through which, hopefully, novel 

therapeutic approaches are developed based on targeting the centrosome as a whole instead 

of just some proteins on it. 

2. Centrosome in cancer 

Centrosomes are tiny complex organelles, near the nucleus of an interphase cell, serving as 

microtubule organizing center (MTOC) involved in fundamental cellular activities such as 

cell polarity, cellular adhension, mobility, signal and molecule transport. These cellular 

processes are inseparable with important cellular events, such as cell cycle, DNA synthesis, 

DNA repair, apoptosis regulation, signal transduction, and carcinogenesis (Whitehead & 

Salisbury, 1999; Rieder et al., 2001; Palazzo et al., 2000). When cell enters into M phase, two 

newly duplicated centrosomes move to the opposing sites and form the poles of the mitosis 

spindle. Mitosis spindle play key roles in maintaining genetic stability, with the roles of 

centrosome in carcinogenesis having long been noticed by Theodor Boveri (Boveri T, 1914). 

Recently the centrosome was even described as a core part of “cell brain” (Kong et al., 2002). 
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2.1 The roles of centrioles in centrosome duplication 

The important roles that centrosome plays in carcinogenesis should be understood together 
with the understanding of the centrioles embedded in the centrosome. Normal structure 
and/or function of centrosome requires the exactly controlled centrioles cycle. In fact, in 
most cells the reproductive capacity of centrosome does depend on its centriole contents, 
and centrosome would not duplicate if centrosome lacks centrioles. Therefore, strictly 
controlled mechanisms to regulate the centriole duplication in one cell cycle, appear to 
particularly important, as abnormality of centrioles may promote genetic instability, 
centrosome mis-segregation and/or apoptosis (Schatten et al., 2000). 

As known, centrioles embedded in a cloud of electron-dense materials called pericentriolar 

material (PCM), which is responsible for formation of centrosome leading to bipolar mitosis, 

which, in turn, results in genetic stabilities. In cell cycle, centrosome cycle can be divided 

into centriole disorientation and disengagement, centriole duplication, centrosome 

maturation, centrosome separation, and procentriole assembly (Azimzadeh & Bornens, 

2007). In G1 phase, the orthogonal arrangement of the two centrioles is lost and the distance 

between the two centrioles increased. Then, the amorphous central tube forms 

perpendicular to mother centriole, subsequently, nine individual microtubules around it 

assemble to procentriole. S and G2 phase trigger the newly generated daughter centrioles 

elongation until they reach to the same size of their mothers. Once cells enter into M phase, 

the two parental centrioles disconnect fully and finally lose their orthogonal relationship. In 

the end, PCM separates to give rise to each own cloud of PCM. 

However, these two centrioles are not identical in cell since centriole only originated from a 
pre-existing one called the mother centriole. The new one, being about 80% of the length of 
the mother centriole, is called the daughter centriole (Azimzadeh & Bornens, 2007). Only 
mother centriole has external appendages functioning as docking site for microtubules and 
mediating centriole attachment to plasma membrane. PCM also plays important roles in 
directing microtubule nucleation by minus ends at proteinaceous complexes around mother 
centriole. Therefore, the mother centriole may be a major player in “licensing” event to 
ensure that one cell contains only one newly duplicated centriole in rigorous centriole 
duplication cycle. Support of this idea came from the finding that once daughter centriole 
formed from mother centriole, the centriole duplication process would have been inhibited, 
even though the cell was in a permissive condition (Tsou & Stearns, 2006a). In other words, 
the centriole duplication was determined by the mother centriole. Does this mean that in M 
phase, the separated duplication centriole each can be as a template to give rise to a new 
centriole? The prevailing view is that cytoplasm symaptic with mother centriole controls the 
centriole duplication. In S phase, even if the newly synthesized centriole has been ablated by 
laser, centriole duplication cycle cannot restart (Balczon et al., 1995; Loncarek et al., 2008). It 
is noteworthy that in S phase arrested CHO, HeLa and U2OS cells, mother centriole 
generates more than one daughter centriole, indicating mother centriole must have a 
mechanism to count the number of newly formed centriole (Loncarek et al., 2008; Jones & 
Winey, 2006; Tsou & Stearns, 2006b). Once this mechanism attenuated, the number of 
daughter centriole is out of the control of mother one. Today, we know that some mother 
centrole proteins may be the major players in this process, such as PLK4, SAS-6, and 
pericentrin. Support of this further came from the experiment that HIV-16 E7 oncoprotein 
can induce multiple daughter centriole at single mother centriole by cyclin E/CDK2 and 
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PLK4 over-expression both in normal primary cells and in tumor cell lines (Kleylein-Sohn et 
al., 2007; Duensing et al., 2007; Strnad et al., 2007). These findings may help to explain why 
supernumerary centrosomes are found in most cancer cells. However, there may be other 
ways to form newly synthesized centriole. De novo assembly of centriole has been found in 
the centriole that lacks of oocyte in most species (Manandhar et al., 2005; Riparbelli & 
Callaini, 2003; Szollosi & Ozil, 1991). De novo centriole assembly can be activated only in 
somatic cells with the centrioles removed either by microsurgery or by laser ablation in spite 
of the cell is transformed or not (Khodjakov et al., 2002; La Terra et al., 2005). Under this 
circumstance, the de novo assembled centriole is usually supernumerary, displacement, and 
malformed. In addition, the minimal pericentriolar material, lower microtubule nucleation 
capacity, and disjoin centriole pairs are the common features. Obviously, de novo assembly 
centriole is deleterious consequences in somatic cells, so de novo assembly pathway always 
inhibited by canonical centriole duplication cycle as a well-defined cloud of PCM (Young et 
al., 2000). Thus the elegant centriole duplication mechanism ensures that only one 
centrosome is in interphase cells unless two in M phase. 

2.2 Centrosome abnormalities in cancer 

Given that centrosome abnormalities, including increased number and centrosome 

structural abnormalities, is a hallmark in most, if not all, cancer cells, some questions remain 

to be elucidated: why supernumerary centrosomes are common features in cancer cell; how 

do they arise; and are they the causes or consequences of tumorigenesis (Lingle et al., 1998; 

Pihan et al., 1998). Recent studies showed that centrosome abnormalities in cancers can 

originate either by centrosome overduplication or by de novo synthesis of centrosomes 

(Duensing, 2005). Several centriole maturity markers, including ODF2/cenexin, ε-tubulin, 

ninein, ninein-like protein, adenomatous polyposis coli, EB1, centriolin, and Cep170, which 

only located in the mother centriole, can be used to distinguish the centriole duplication 

either from centrosome supernumerary or vice versa (Huber et al., 2008; Chang et al., 2003; 

Ibi et al., 2011; Louie et al., 2004; Hinchcliffe, 2003; Guarguaglini et al., 2005). No matter what 

is causal factor in inducing centosome overduplication, the extra centrosome can form 

multipolar mitosis, which leads to unequal chromosomes separation, therefore, promoting 

tumorigenesis. In addition, only centrosome amplification has been recently shown to 

initiate tumorigenesis in flies (Basto et al., 2008). Although the relation between centrosome 

abnormalities and chromosome instability (CIN) has long been regarded as a hen-and-egg 

problem, increasing studies intent to support the findings that extra centrosomes are major 

players in directly inducing chromosome missegregation, which, in turn, facilitates the 

evolution of more malignant phenotypes (Ganem et al., 2009). 

As known that centrosome supernumerary and CIN are deleterious to cancer cells, the 

question is then how cancer cells survive. If the number of tumor cell having abnormal 

centrosome is less, the negative effects on the cell fates can be neglected. However, if most 

of the tumor cells have extra centrosomes, then there must be some mechanism to limit 

the detrimental consequences of supernumerary centrosome and CIN. Based on the 

findings that not all of extra centrosomes are activated to form MTOC and the normal 

cells harboring extra centrosome can survive, to date, bipolar spindle has been regarded 

as the major mechanism to prevent multipolar mitosis in supernumerary centrosomal 

tumor cells (Godinho et al., 2009). In principle, bipolar division is an effective way to 
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eliminate extra centrosome. In fact, several research groups have found that some cell 

lines, which contain extra centrosomes, undergo bipolar divisions by clustering extra 

centrosomes. Interestingly, this phenomenon has been observed in some non-transformed 

cells that harbor extra centrosomes. Why is the centrosome clustering such a so popular 

event in supernumerary centrosome cells? It is highly possible that bipolar mitoses may 

be the best way to reduce the selective pressure. Although the exact mechanisms through 

which centrosome clustering is coordinated are not fully elucidate, recent studies have 

indicated that SAC, some MT motor proteins, such as Ncd/HEST, a kinesin family, and 

dynein, may be major players (Godinho et al., 2009). 

Centrosome amplification has long been regarded as a distinct feature in most cancer cells. 

Abnormal centrosome biology, either centrosome amplification or structural abnormalities, 

frequently occur in most types of tumors including testicular germ cell, liposarcoma, 

adrenocortical, bronchial, bladder, cerebral primitive neuroectodermal, cervical, prostate, 

breast, squamous cell carcinomas of the head and neck, myeloma, and T-cell leukemia 

(Pihan et al., 1998; Duensing, 2005; Kramer et al., 2005; Nigg, 2002; Nigg, 2007; Giehl et al., 

2005). Recent proteomic studies showed that abnormal centrosome may be the consequences 

of centrosome protein dysregulation. Up to now, More than 500 proteins have been 

identified and localized in centrosome, suggesting that centrosome may function as a central 

docking platform, where regulatory complexes converge and cross-talk by signaling 

pathway through microtubule network (Andersen et al., 2003). These centrosome localized 

proteins are generally divided into two classes: 1) structure proteins, including alpha 

tubulin, beta tubulin, gamma-tubulin, gamma-tubulin complex components 1–6, centrin 2 

and 3, AKAP450, pericentrin/kendrin, ninein, pericentriolar material 1 (PCM1), ch-TOG 

protein, C-Nap1, Cep250, Cep2, centriole-associated protein CEP110, Cep1, centriolin, 

centrosomal P4.1 associated protein (CPAP), CLIP-associating proteins CLASP1 and 

CLASP 2, ODF2, cenexin, Lis1, Nudel, EB1, centractin, myomegalin; 2) temporary 

proteins, including oncogenes, tumor suppressor genes, ubiquitination and degradation 

related proteins, DNA damage checkpoint proteins, cell cycle regulated proteins, such as 

Survivin, Ras, Rad6, HER2/neu, p53, Rb, p21, APC, Gadd4, including APC/C, brca1, 

Cdc20, Cdh1, ATM, ATR, BRCA1, Chk1, including cyclin B1, Cdks, Chks, Plks, aurora 

kinases, and Neks. Over-expression of these centrosome proteins, mainly temporary 

proteins, has been demonstrated to induce tumor-like features. Since more and more 

known and yet-to-be known key proteins are found to be docked to centrosome, 

regarding centrosome together with centrioles and microtubules as the center of cell or 

called cell brain appears to be reasonable. 

2.3 Roles of the centrosome in HBV virus infection 

About 15% of all human cancers were caused by tumor viruses, mainly including human T-

cell leukemia virus (HTLV-I), HBV, HCV, human papillomavirus (HPV), Epstein–Barr virus 

(EBV), Kaposi's sarcoma herpesvirus (KSHV) (Parkin, 2006). Whether virus need to entry 

into the cell or out from the cell, the cytoplasm is a very viscous milieu to preclude efficient 

directional movements by free diffusion (Suzuki & Craigie, 2007). What can they do to cope 

with this problem? Intracellular viral pathogens has evolved numerous mechanisms to 

hijack the host for their own profit during their life cycles. As centrosome is a perinuclear 
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organelle and functions as an MTOC, which, in turn, is responsible for MT assembly and 

mediates MT-dependent trafficking due to MTs minus ends anchoring to the PCM and the 

plus ends extending towards the cell periphery, it is reasonable to believe that centrosome is 

the most appropriate candidate (Afonso et al., 2007). In fact, centrosome, particularly the 

pericentriole may act as progeny virus assembly site because of the high local concentration 

of chaperons, and play as a transfer station controlling virus cytoplasm - nuclear transport 

through MTs (Brown et al., 1996a, 1996b). The evidence stems from that microtubule 

depolymerizing agents can affect the ability of incoming viruses to reach to their replication 

site and viral protein assembly. This is why viruses such as HBV and HCV exploit the host 

cell’s centrosomal capabilities and recruit centrosomal material for their own survival within 

host cells (Scaplehorn & Way, 2004; Coppens et al., 2006).  

As for HCC, more than 85% of the cases are attributed to HBV infections (World Health 
Organization Scientific Group on Prevention and Control of Hepatocellular Carcinoma, 1983; 
Goncalves et al., 1998; Brechot et al., 2000). HBV is a DNA virus, which can lead to centrosome 
abnormalities, either supernumerary or dysfunction. Among HBV virus encoded proteins, 
only X proteins (HBx) is an oncoprotein associated with dysregulated cell division and cell 
death mainly caused by centrosome abnormal. Among HBx binding partners, HBXIP, a 
centrosome associated protein in mitotic cells, controls the virus cellular movement by binding 
to the motor protein, dynein (Chisari & Ferrari, 1995). HBXIP is a cytosolic survivin adaptor 
belonging to BIR-family chromosome passenger protein involved in cell apoptosis and 
division controlling. In Reed group, it is reported that HBXIP functions as a regulator in 
prometaphase and at telophase through centrosome duplication and cytokinesis pathway 
(Fujii et al., 2006). In HBV virus infected cells, the functions of cellular HBXIP may be 
dysregulated by HBx oncoprotein, which promote amplification of centrosomes, multipolar 
mitotic spindle formation, and CIN, and eventually creating tumorigenesis. Over-expression 
of HBXIP can trigger formation of extra centrosomes, which results in tripolar and multipolar 
spindles formation in premetaphase, whereas down-regulation of HBXIP may lead to 
monopolar spindle formation, regardless of p53 status. This may partly explain the 
contradictory findings that the centrosome abnormalities were caused by p53 and vice versa. 
Interestingly, pericentrin , the primary signal, transports signal to HBx and HBXIP to regulate 
centrosome functions (Wen et al., 2008). These findings explain why pericentriole is an 
assembly site for most virus infection and centrosome is a major hijacking target in virus entry 
and out process. Besides, 20 kDa centrin 2 has been found only in the cell expressiong HBx. 
Chromosome region maintenance 1 (CRM1), which is a transport receptor that mediates 
nuclear export of proteins, was found to mediates HBx nuclear export through Crm1/Ran 
GTPase-mediated pathway (Rousselet, 2009). Once exported from the nuclear by Crm1, HBx 
can be transported to pericentriole to assembly and budding sites. And pericentrin, main 
component of pericentriole, identified as five novel nuclear export signals (NESs) could bind to 
Crm1 (Forgues et al., 2003). Any disruption of specific nuclear cytoplasm transport pathways 
is crucial for the productive life cycle of some viruses. Clearly, centrosome and associated MTs 
plays pivotal roles in virus life cycle (Greber & Way, 2006).  

2.3.1 The roles of centrosome-associated proteins in HBV induced HCC 

More recently, a growing list of centrosome located proteins associated with carcinogenesis 

have been identified, such as PLK4, Aurora-A/STK 15/ BTAK, p53, NF-κB, and so on. In 
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normal cells, the balance of apoptosis and proliferation must maintain at a stable level, 

whereas viruses usually hamper the host apoptosis to facilitate virus reproduction. The 

proteins involved in this process include p53, NF-κB, MAPK (Pang et al., 2006). HBx may 

influence apoptosis by interacting with the NF-κB signaling cascade or p53 (Wang et al., 

1995; Becker et al., 1998; Livezey et al., 2002), whereas stimulate cell proliferation through 

the activation of cyclin-dependent kinase activities (Bouchard et al., 2001). p53, the tumor 

suppressor and key surveillance factor, has recently been detected to be mutated in HCC. In 

HCC, HBx inactivates p53 and p53-mediated activation of p21 (Ogden et al., 2000; Park et 

al., 2009), which, in turn, do not act as the “stop signal” for cell division. On the other hand, 

inactivated p53 no longer binds DNA in an effective way and acts as the negative signal for 

cell division, inducing an uncontrolled cell cycle-specific manner, which, in turn, leads to 

multiple copies of centrosome duplication in cell cycle. p53 mutation accompanied with 

centrosome aberration can induce genetic instability and this defective surveillance 

checkpoint mechanism ensures cancer cell reentering the cell cycle, thereby leading to series 

of catastrophic cascade, such as uncontrolled cell growth, pro-oncogenes activation, and 

tumors formation. NF-κB, the oncogene, promotes cell division, which can be augmented by 

mutant p53 through activation IKKǂ and IKKǃ and enhancing NF-κB activity, therefore 

promoting cancer cell utilization of aerobic glycolysis preferentially for energy provision. 

Studies found in HBx expression cells, NF-κB was highly up-regulated and accompanied 

with extending life span, which indicated that cells enhance endogenous NF-κB 

transcriptional activity, harboring p53 mutations through a selective survival advantage in 

inflammatory microenvironments, and that p53 mutations may promote cancer under 

conditions of chronic inflammation (Park et al., 2006). More recently, the studies showed 

that HBx, but not export-defective mutant, can bind to and sequester Crm1 in the cytoplasm, 

thereby altering Crm1/Ran GTPase-dependent nuclear export of the NF-κB/IκBǂ complex 

(Forgues et al., 2003). In addition, all these findings suggested that HBx may act as several 

centrosome associated proteins to regulate cell apoptosis and proliferation benefitting for 

virus reproduction.  

In addition, several centrosome associated kinases have been shown to induce chromosomal 

instability, leading to aneuploidy and cell transformation, such as Aurora-A, PLK4. 

Frequently occurred over-expression and amplification of Aurora-A, which can promote 

tumor formation and progression by causing unbalanced chromosomal segregation and 

centrosome aberrations in human cancer, lately have been detected in HCC (Benten et al., 

2009). Centrosomal proteins such as Aurora-A and p53 may regulate each other in 

carcinogenesis. p53 protein could suppress the Aurora-A induced centrosome amplification 

and cellular transformation in a trans-activation-independent manner in HCC. Aurora-A 

over-expression was found to be correlated with p53 mutation, and tumors with both 

Aurora-A over-expression and p53 mutation usually have worse prognosis than that with 

p53 mutation alone (Jeng et al., 2004). This indicates that both of p53 and Aurora-A 

contribute to tumor progression and poor prognosis. Similar results have been found in PLK 

abnormal expression cells. Polo-like kinases (Plks), potential regulators of M phase, 

functions in mitotic entry, spindle pole activities and cytokinesis, which are broadly 

conserved despite physical and molecular differences in these processes in disparate 

organisms (de Carcer et al., 2011). PLK1-4 proteins are aberrantly regulated and possess 

different roles in human HCC, with PLK1 acting as an oncogene and PLK2-4 being 
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presumably tumor suppressor genes. Plk4, major risk factor for primary liver cancer, 

localizes to centrioles throughout the cell cycle and is essential for centriole duplication 

(Pellegrino et al, 2010). In Plk4 down expression HCC cells, cell cycle progression was 

impaired with delay in M phase completion by dysregulation of cyclins D1, E, and B1, and 

of cdk1, whereas multipolar spindle formation was increased 6-fold and p53 activation and 

p21 expression were suppressed (Pellegrino et al., 2010; Ward et al, 2011). 

2.3.2 The roles of centrosome in signaling pathway in HBV-induced HCC 

Network of signaling pathway provides a robust mechanism for cells to respond to 

various biological stimuli. Although little is known about the roles of centrosome in signal 

transduction, a growing body of evidence has demonstrated that many signaling proteins 

localize at centrosome, being the targets of HBx. For example, protein kinase C (PKC) and 

its major substrate MARCKS (myristoylated alanine-rich C-kinase substrate), exerting 

multiple roles, such as controlling microtubule organization, spindle function, and 

cytokinesis, were found to colocalize to pericentrin and gamma-tubulin within MTOCs 

(Kim et al., 2008; Michaut et al., 2005). HBx activates PKC, which is transient and differs 

from activation of PKC by the ras oncogene product or phorbol ester in that it does not 

lead to rapid down-regulation of the enzyme subsequent to the activation. Previous 

studies have implicated protein kinase C (PKC) as upstream regulators of the MAPK. 

Interestingly, both of PKC and MAPK are required for phosphorylation of HBx, which, in 

turn, alters its subcellular localization and dysregulation of cell cycle progression, leading 

to hepatocarcinogenesis in HBV-infected cells. Besides, phosphoinositide 3-kinase (PI3K), 

a family of enzymes linked to extraordinarily diverse group of cellular functions, are 

involved in cancer (Lee et al., 2001; Yun et al., 2004, Wang et al., 2011). In HBV-infected 

cells, PI3K/Akt pathway can be activated through Akt phosphorylation by HBXIP, which 

also induce up-regulate cyclin D and down-regulate p21 and p53 expression, promoting 

cell proliferation (Wang, et al., 2011).  

Cell adhesion to the extracellular matrix (ECM) is an important process that controls cell 

morphology, migration, proliferation, and so on. Integrin bridges cell and ECM, enduring 

pulling forces to promote cell migration. Otherwise, cell attachment to ECM is a basic 

requirement to build a multicellular organism, during this process integrin transmits 

surrounding signals into cytoplasm. The cytoplasmic domain of ǃ1 integrin acts as a 

proximal receptor kinase to phosphorylate downstream targets regulating integrin-

mediated signal transduction. If ǃ1 integrin cytoplasmic domain mutation occurs, it will 

inhibit MT nucleation from the centrosomes and also disrupts cytokinesis, most likely due to 

spindle defects such as multipolar spindles (Reverte et al., 2006). In addition, cell migration 

also requires the orientation of the spindle during asymmetric cell division. Integrin linked 

kinase (ILK), a serine/threonine protein kinase, has also been shown to localize to the 

centrosome and to play a role in spindle assembly (Fielding et al., 2008). Interestingly, ILK 

signaling effectors such as Akt, GSK3 and ǃ-catenin have also been found at the centrosome 

and mitotic spindles, indicating that centrosome associated proteins play important roles in 

spindle assembly. Recent evidence suggests that ǃ-catenin involves in two signaling 

transduction pathways, cell-adhesion signaling and Wnt signaling pathway in which 

process ǃ-catenin–T-cell factor (TCF) complex transcriptionally regulates gene expression 
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(Nelson & Nusse, 2004). No matter which way ǃ-catenin involves, the intracellular ǃ-catenin 

level is critical to its functions, therefore, HBx can regulate ǃ-catenin, which plays an 

important role in various aspects of liver biology including cancer development, either by 

GSK-3, which directly suppress its activation via Src, or indirectly inhibit its activation by 

ERK signaling, or by p53, in which process HBx stabilize p53 expression leading to ǃ-catenin 

degeneration (Hsieh et al., 2011; Wu et al., 2008; Jung et al., 2007). Importantly, ǃ-catenin, a 

component of centrosome, interacts with centrosomal proteins to regulate mitotic 

centrosome separation (Bahmanyar, 2010) by forming a complex with the centrosomal 

proteins Nek2, C-Nap1 and Rootletin (Bahmanyar et al., 2008; Hadjihannas et al., 2010). 

Depletion of ǃ-catenin in asynchronous cells results in monopolar spindles with 

unseparated centrosomes (Bahmanyar et al., 2008), whereas expression of mutation ǃ- 

catenin causes increased centriole splitting in G1-S (Bahmanyar et al., 2008; Hadjihannas et 

al., 2010). These findings suggest that cell adhesion is a major target for HBx both on cell 

migration and on signaling transduction. 

3. Centrosome abnormalities in the development of drug resistance 

As signaling center, centrosome plays important roles in the development of drug 

resistance. Many centrosome-associated proteins are involved in chemo-resistance 

process, such as Her-2/neu, bcl-2, c-myc, ras, c-jun, MDM2, p210 BCR-abl, or mutant p53. 

In fact, abnormal centrosome itself may lead to formation of poly- or monopolarity 

spindle resulting in chromatin mis-segregation, which further result in or accelerate 

inactivation of tumor suppressor genes and/or activation of tumor genes, thereby leading 

to the development of chemoresistance. Support of this idea comes from the recent 

finding that p53 status determines tumor response to anti-angiogenic therapy and heat 

shock proteins (HSPs) varies with tumor progressions (Chen & Kong, 2009; Ciocca & 

Calderwood, 2005). 

3.1 Centrosome clustering pathway as a target in cancer therapy 

Centrosome clustering pathway is indispensable in cells with supernumerary centrosomes 

ensuring the success of cell division. Interference in this process could be lethal to tumor 

cells containing extra centrosomes (Kwon et al., 2008). Therefore, proper interference 

centrosome clustering pathway may raise the possibility of developing a new therapeutic 

strategy. HSET, the human homologue of the KAR3 family of minus end-directed kinesin-

like motors, may be one of the most appropriate such candidates, as HSET depletion 

destroys centrosome clustering pathway and induces multipolar divisions and hence 

abnormal chromosome segregation or aneuploidy. Besides, HEST is essential only for 

clustering extra centrosomes in cancer cell but not in normal cells, by bundling the minus 

end of MT in acentrosomal spindles (Mountain et al., 1999). These results indicate that 

inhibition of HSET can selectively kill cells with extra centrosomes without affecting the 

viability of cells that contain normal centrosome numbers. In addition, HEST has been 

found to be involved in cell-cell adhesion by influencing the cells shape, then inducing 

low integrin -1 expression, and eventually resulting in tumor environment changes 

(Amendola et al., 2001). Taken together, HSET inhibitor may have a relative low toxicity 

compared with other mitosis-blocking agents involving centrosme, including checkpoint 
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with forkhead and ring finger domains (CHFR), Aurora A, B, and C, Polo-like kinases 

(Plk1-4), and Nek kinases (NIMA1-11). 

3.2 Targeting the centrosome as a whole in HCC therapy 

As stated above, most of the key proteins are associated with cancer development. Selective 

inhibitors of these proteins such as p53, kinase C (PKC), proteasome, Aurora, NEDD1, and 

centrosome-associated regulators, therefore, have recently been tried in drug development 

(Graff et al., 2005; Montagut et al., 2005; Godl et al., 2005; Warner et al., 2006; Wang et la., 

2009; Tillement et al., 2009). Since most of the key cellular proteins are localized to the 

centrosome, and centrosome abnormalities has long been found to be one of the most 

common features in a variety of human cancers and to be one of the earliest events in cancer 

development, as compared to p53 mutation and telomerase up-regulation that have been 

long regarded as the major factors contributing to the development of carcinogenesis. 

Centrosome is naturally becoming a candidate target in cancer therapy. In addition, 

chromosome instability (CIN) may be the fundamental cause in the development of drug 

resistance, and centrosome together with centrioles abnormalities are closely associated 

CIN, the whole complex consisting of the centrosome and centrioles may be a most 

promising candidate in cancer therapy. 

Since increasing key proteins are found to be localized on centrosome and/or centrioles. 

And each protein exerts its yet unknown functions alone or through centrosome and/or 

centrioles. Selective targeting centrosome as a whole like mentioned previously (Kong, 

2003a, 2003b, 2003c) or through combination of chemotherapeutic drugs that work through 

different mechanisms is expected to be reasonable and promising. Kong proposed that 

centrosome can be crystallized with tetrazolium salts (Kong et al., 2002). Although there is 

no further evidence to affirm whether it works or not in clinic, it seems to be reasonable that 

the crystallized centrosome may not function as the centre of the cell to mediate important 

cellular events. In other words, all key enzymes located in the centrosome will not function 

normally, and the cellular structures that are rich in the enzymes will be functionally and 

structurally frozen or restrained (Kong et al., 2002; Chen & Kong, 2006). Therefore, selective 

targeting centrosome as a whole unlike traditional approaches aiming at single protein or 

pathway is worthy of trying.  

4. Conclusion 

Centrosome works as an integrated complex in regulating important cellular events. 

Disrupting centrosome structurally and functionally may trigger malignant transformation. 

Although the roles of centrosome in carcinogenesis have been elucidated in some types of 

cancer, the roles of the centrosome in HCC development, particularly in cancer therapy, are 

largely uncovered. As discussed above, centrosome serves as a platform for HBV virus 

infection through centrosome-associated proteins, then transforming cell to immortalization. 

It is reasonable to believe that the drugs targeting centrosome-associated proteins should be 

developed to stop cancer cells proliferation and exert their efficacy when combined with 

conventional therapeutic agents. However, centrosome is an open prison, where proteins 

can bind and release in a precisely time-dependent manner in different cell cycle. Selective 
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targeting centrosome as a whole, instead of a single protein or pathway, is, therefore, 

particularly worthy of trying.   
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