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Challenges for Metabolomics as a  
Tool in Safety Assessments  

George G. Harrigan and Bruce Chassy  
Regulatory Product Characterization and Safety Center, Monsanto Company, St. Louis, 

USA 

1. Introduction 

Agriculture’s ability to supply an abundance of nutritious foods and feeds to nourish the 

world’s growing population faces serious challenges (Foresight, 2011). In order to meet 

these challenges, plant breeders will be required to continuously improve agricultural 

productivity as well as enhance food and feed quality. In recent years, the development of 

methods for the direct introduction of new traits to produce transgenic varieties – also 

known as GM crops – has proven to be a powerful tool in the hands of breeders. In most 

countries, however, GM crops are subjected to rigorous pre-market regulatory assessments 

that require numerous laboratory and field studies and which consume time and resources 

(Kalaitzandonakes et al., 2007).  

Comprehensive compositional analyses represent a key component of the pre-market safety 

evaluations of GM crops (Harrigan, et al., 2010). These analyses typically include the 

measurement of levels of key nutrients such as protein, storage oil, fiber, amino acids, fatty 

acids, vitamins, as well as crop-specific metabolites such as gossypol and cyclopropenoid 

fatty acids in cotton or isoflavones in soybean. The Organization of Economic Cooperation 

and Development (OECD) has produced a series of consensus documents that identify key 

analytes in a number of major crop varieties (http://www.oecd.org). These documents 

carefully review the composition and uses for each crop and identify those components that 

contribute to nutritional or functional food or feed value as well as components that might 

confer health-beneficial, health-protective, or harmful effects (e.g. allergens, anti-nutrients, 

and potential toxicants). The large-scale compositional studies performed as part of 

regulatory assessments must follow internationally accepted guidelines. These are outlined 

in detail by Codex Alimentarius (Codex Alimentarius, 2008) and OECD. In most cases, these 

studies are typically conducted under Good Laboratories Practice (GLP), a practice that 

places a high premium on documentation and reconstructability of data, method validation 

and personnel training, and a requirement for professionally staffed Quality Assurance 

Units. 

The fact that different crops produce foods or feeds with differing compositions, along with 
the fact that human and animal diets vary greatly in their consumption of these crops, 
means that each crop plays a unique role in diet and health. Most plant foods in the human 
diet make significant contributions to the total intake of just a few macro- and 

www.intechopen.com



 
Metabolomics 

 

332 

micronutrients (Senti and Rizek, 1974; Chassy, 2010). It is therefore important to assure that 
no changes have occurred that would lower the dietary intake of an essential nutrient; on 
the other hand, large changes in the content of one or more nutrients in a crop that supplies 
an infrequently consumed food, one which is consumed in small amounts in the diet, or one 
which is not an important source of that nutrient in the diet, are of no health consequence 
and will have no adverse effect on health (Chassy, 2010).  

The identification and analysis of a key set of relevant metabolites is often referred to a 

“targeted” compositional analysis. Analyses utilize quantitative assays and the overall 

approach allows the generation of data that is easily interpretable from a nutrition and 

food/feed safety aspect. Furthermore, since the small molecule metabolite pool in seed is 

of low abundance relative to macromolecular components, measurement of 

macronutrients approximates the total seed biomass. For example, the small molecule 

metabolite pool in corn grain is only ~5% of the total biomass (corn is dominated by 

starch, fiber, protein, and fat). Anti-nutrient components in grain such as phytic acid and 

raffinose (which represent much of the small molecule metabolite pool) are measured in 

regulatory assessments. Other small molecules metabolites can be included if they are an 

intended endpoint of compositional or nutritional modification. Otherwise analytical 

measurement of the metabolites that constitute this pool, mainly ubiquitous free amino 

acids, sugars, and organic acids), is of little value owing to the extreme sensitivity of 

metabolite levels to environmental influences and the negligible contribution they make 

to safety and nutritional content (Herman et al., 2009; Skogerson et al., 2010, Harrigan et 

al., 2007). 

In fact, levels of all crop compositional components are influenced markedly by 

environment (Harrison and Harrigan, 2011; Harrigan, et al., 2010; Zhou et al., 2011a, 2011b). 

To illustrate, as far back as 1983, it was noted that “The concentration of the isoflavones vary 

from [soybean] variety to variety, and there are also differences when the same variety is 

grown in different locations” (Eldridge and Kwolek, 1983). Given the extensive scientific 

literature on isoflavone variability, it was unsurprising that Gutierrez-Gonzalez et al. (2009) 

recently concluded that “The range of values of isoflavones is overwhelming, even for 

homozygous genotypes growing in the same year and location, which greatly complicates 

genetic studies.” This is true for almost all crop compositional components as evidenced by 

challenges in enhancing nutritional quality in staple crops through conventional 

approaches. Figure 1 illustrates the type of variability than can be observed for metabolites 

such as isoflavones. 

The use of multiple geographically separate sites is required in regulatory assessments to 

allow compositional studies across a wide range of environmental conditions. Indeed, 

information on compositional variation in conventional crops with respect to their 

responsiveness to environmental factors is necessary to provide context to evaluations of 

new GM crops. Studies incorporating four to five replicated field sites utilizing randomized 

complete block designs with three blocks per comparator are typical in regulatory 

assessments, although the European Food Safety Authority (EFSA) has recently mandated a 

minimum of eight replicated sites utilizing randomized complete block designs with four 

blocks (EFSA, 2011). 
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Fig. 1. An overview of variability in isoflavone levels. Datapoints show daidzein values 
from an analysis of GM (40-3-2) and conventional reference comparators from a total of nine 
(2001-2009) growing seasons. A total of 112 unique GM varieties were assessed (Zhou et al., 
2011b). This type of information presents context to any GM-non-GM pairwise comparison 
and would be a required component of any metabolomic assessments. 

Results to date from these large-scale compositional studies have generally demonstrated 
that the effect of transgene insertion is significantly less than the impact of environmental or 
germplasm variation on conventional crops (Harrigan et al., 2010). This has allowed some to 
question the relevance and design of compositional assessments. One review, for example, 
suggests that “the current complexity and resource requirements for compositional studies 
on transgenic crops containing input traits are not justified by a commensurate 
understanding of safety” (Herman et al., 2009). 

Despite continued confirmation that conventional breeding and environmental variation 
contribute to compositional variability more so than transgene insertion (Ricroch et al., 
2011), and the resource-intensiveness of the large-scale studies currently required for 
regulatory assessments, there remains some interest in the application of profiling 
technologies to compare GM and conventional crops. These are often posited in terms of 
“gap-filling” (Heineman et al., 2011) or “case-by-case” (Davies, 2010) evaluations. It is also 
perceived by many (e.g., Kok et al., 2008) that measurement of “primarily the low-
molecular weight molecules” is more relevant to safety than proteomic or transcriptomic 
profiling due to a closer relationship to “the plant phenotype and nutritional and 
toxicological characteristics”. This potential advantage of metabolic profiling could be 
extended as an improvement over, for example, measurements of gross levels of protein, 
fat, and fibers, key nutritional but essentially “safe and inert” components of food. It is 
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noteworthy that Kok et al. (2008) define metabolomics as the “generation of profiles of 
secondary metabolites” whereas most metabolic profiling experiments to date have 
focused on primary metabolites. It has also been suggested that untargeted profiling 
techniques are unbiased while “targeted” compositional analysis is biased. Finally, 
advocates of metabolomic profiling have suggested that such an approach can detect 
potentially deleterious totally novel metabolites that would have been missed by 
“targeted” analysis, although it should be noted that many profiling technologies require 
standards of known identity to accurately identify and measure specific metabolites thus 
limiting this potential advantage. In addition, in examples where a new traditionally bred 
plant variety has caused toxic effects, this has been attributable to increased levels of well-
known toxicants (Chassy, 2010). 

Profiling technologies have confirmed on a case-by-case basis the compositional 
“equivalence” of GM crops to their conventional near-isogenic comparators (Ricroch et al., 
2011). Profiling technologies are, however, unlikely to provide immediately interpretable 
data in safety assessments that would provide added value to, or otherwise enhance, 
rigorously quantitative assessments of known nutrients and anti-nutrients that comprise 
foodstuffs. In the case of metabolic profiling, this can be directly attributable to i) the 
intrinsically safe nature of food itself, ii) inconsistencies in metabolite coverage versus 
quantitative capabilities afforded by different data acquisition technologies, iii) the 
ubiquitous and innocuous nature of small molecule metabolites identified in profiling as 
well as extreme variability in metabolite levels even within homozygous genotypes, and iv) 
the “chasm” between the large number of data generated in profiling experiments and the 
ability to interpret them in a way that is meaningful to nutrition and food safety. We now 
expand on these observations and further emphasize that a clear distinction between 
“substantial equivalence” and food safety should be promoted. 

2. Key challenges for the omics  

1. Domesticated crops have been selected to serve human needs and have an extensive history of 
safe consumption. Extensive information on levels of nutrients and crop-specific antinutrients is 
available. These can be measured through highly quantitative assays to provide interpretable 
data of direct relevance to food nutrition and safety.  

Of over 250,000 plant species, only 7000 are considered as foodstuffs (Khoshbahkt and 
Hammer, 2008), and even fewer, 150, supply over 90% of all plant food. Three major crops, 
i.e. maize, wheat, and rice, supply over 66%. Choices made in crop domestication and 
breeding have enabled food and feed qualities that serve human needs. Numerous path 
changes between wild and domesticated plants are known and include e.g. loss of 
spontaneous shattering of seed head on ripening and greater uniformity of seed ripening 
and germination, both of which facilitate human harvest. A key path change however is 
reduction and even loss of toxic compounds in the edible parts of domesticated crops. In 
other words, human selection has resulted in crop phenotypes and compositions that 
distinguish domesticated varieties from their natural counterparts, are more suited to 
human diets and needs, and are safer  and more nutritious. Interestingly, one review (Jones, 
1998) asked “Why are so many food plants cyanogenic?” and concluded that “Cyanogenesis 
by plants is not only a surprisingly effective chemical defence against casual herbivores, but 
it is also easily overcome by careful pre-ingestion food processing, this latter skill being 
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almost exclusive to humans.” In other words, because “cyanogenic plants are surprisingly 
well protected from herbivory and yet can be readily detoxified by food processing, … early 
farmers fortuitously chose these plants above all others for cultivation.”  

Of course, many modern foodstuffs are still associated with “ancestral” secondary 

metabolites that may confer nutritional or safety concerns at elevated levels. Classic 

examples include glycoalkaloids in potato (NIEHS, 1998), ┚-N-oxalyl-L-┙,┚-

diaminopropionic acid (ODAP) in Lathyrus sativus (Bell, 2003), psoralens in celery (Beier and 

Oertli, 1983), and gossypol in cotton (Sunlkumar et al., 2006). Targeted measurement of 

these components as opposed to broad-based compositional screening is recommended by 

Herman et al. (2009); in other words, compositional assessments should focus on molecules 

explicitly associated with safety concerns. This is consistent with the observation that in the 

very few examples where a new plant variety has caused toxic effects it has been 

attributable to well-know toxicants associated with conventionally bred crops and not to a 

hitherto undetected metabolite (Chassy, 2010). 

It is noteworthy that such targeted assessments could easily facilitate a partnership with 

omics researchers conducting semi-targeted profiling on pathways associated with toxic 

metabolites to support both early development and commercialization of nutritionally 

enhanced products. Such a partnership could, at least in principle, mitigate the current 

regulatory burden imposed on new GM crops (Graff et al., 2009; Potrykus, 2010) and 

promote the application of omics within modern agricultural biotechnology.  

2. Information on compositional variation in conventional crops with respect to their 
responsiveness to environmental and genetic factors is necessary to provide context to 
evaluations of new GM crops. The need to assess natural variation is also true for metabolomics 
yet little information on the impact of conventional breeding on metabolite profiles is available. 
The inconsistent coverage of metabolites offered through different data acquisition platforms may 
provide challenges in establishing a coherent literature in this area. 

Ironically, as mentioned earlier, continued confirmation that conventional breeding, 

environment, and germplasm contribute to compositional variation more than transgene 

insertion has coincided with increased interest in the use of ‘omics technologies. This 

paradox is compounded by the fact that results from these technologies have only 

further highlighted the equivalence of GM crops to their conventional counterparts and 

reaffirmed the substantial effect of environment and germplasm on compositional and 

biochemical variability (see Ricroch et al., 2011). Although there are complexities in the 

interpretation of data generated through modern profiling technologies (Broadhurst and 

Kell, 2006; Lay et al., 2006) including the fact that the data is not quantitative and there is 

no standardized framework for comparisons, the lack of variation between GM crops 

and their conventional comparators at the transcriptomic, proteomic, and metabolomic 

level has, nonetheless, been independently corroborated. These profiling evaluations 

extend to a wide range of plants including wheat (Baker et al., 2006; Gregersen et al., 

2005; Ioset et al., 2007), potato (Catchpole et al., 2005; Defernez et al., 2004; Lehesranta et 

al., 2005), soybean (Cheng et al., 2008), rice (Dubouzet et al., 2007; Wakasa et al., 2006), 

tomato (Le Gall et al., 2003), tobacco, Arabidopsis (Kristensen et al., 2005), and Gerbera 

(Ainasoja et al., 2008).  
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As with the compositional studies reported above, results from many of the ‘omics studies 
emphasize the need to understand natural variation in levels of endogenous metabolites in 
providing biological context to pair-wise differences in any recorded profiles (see Figure 1). 
Levels of compositional components are sensitive to environmental conditions. This has been 
established for, for example, protein and oil in key crops (Panthee et al., 2005; Lam et al., 2010). 
Protein levels in soybean seed generally average ~40% dry weight (dwt), with values reported 
in the USDA soybean germplasm collection, for example, ranging from 34.1 to 56.8% dwt 
(Wilson, 2004). In a recent meta-analysis of environmental effects on soybean composition, 
Rotundo and Westgate (2009) observed that water stress, temperature, and/or nitrogen supply 
all affected protein levels measured in mature seed.  

Variability is even greater for lower abundance small molecule metabolites. Vitamin E (-

tocopherol) is typically only a minor component in soybean but is known to be important in 

maintaining oxidative stability of soybean oil. Levels in soybean seed are affected by 

environment and germplasm. For example, Britz et al. (2008) showed a greater than 2-fold 

variation in levels across three locations in the U.S. over a period of four years. Levels in 

soybean seed harvested from six different locations in Eastern Canada over a single year 

ranged from 0.87 to 3.32 mg/100g dwt (Seguin et al. 2009). Seguin et al. (2010) point out that 

environmental factors associated with variability in vitamin E levels include drought, 

temperature, and even crop management systems. The “overwhelming variability” of 

isoflavones was mentioned in the introduction (see Figure 1). As will be discussed later, this 

“overwhelming variability” can be considered to apply to levels of small molecule 

metabolites in harvested seed and grain of most crops. 

Encouragingly, many comparative profiling studies on GM and non-GM crops have been 

designed to include at least one element of genotypic or environmental variability. This is 

exemplified in the following two examples, both of which reaffirm the need to provide 

biological context to pairwise-differences between two comparators. 

In Baker et al. (2006) NMR-based metabolic profiles of three GM wheat varieties and the 

corresponding parents were generated. The incorporated transgenes encoded high-

molecular weight subunits of the storage protein, glutenin. The wheat varieties were grown 

at two different sites over three different growing seasons (1999 -2001). Differences between 

the GM and parental lines were within the same range as the differences between the 

control lines grown on different sites and in different years. Analogous to the approach 

adopted in targeted compositional analyses adopting OECD recommendations, this study 

emphasized the importance of data from multiple years and multiple sites and that 

environmental variation influences metabolome composition. 

In Catchpole et al. (2005) two GM potato varieties modified in fructan chemistry were 
grown over two different seasons (2001, 2003). Metabolic profiles of the GM and five 
conventional crops were generated using flow-injection MS (FIE-MS), GC-MS, and LC-MS. 
These demonstrated that differences between the GM and conventional potatoes were due 
to the intended metabolic changes, but aside from these targeted changes, the GM crops 
were “substantially equivalent to traditional cultivars”. A major finding recognized by the 
authors was the large variation in the metabolic profiles of the conventional crops and, as 
such, the study emphasized the importance of understanding genotypic variability in 
assessments of compositional changes.  
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An often overlooked aspect of the Catchpole et al. (2005) paper is their demonstration 

that levels of glycoalkaloids (-chaconine and -solanine) were normal in the GM 

potatoes, a result that is easily interpretable from a food and feed perspective. Our 

understanding of nutrients and anti-nutrients forms the basis of attempt to modify crops 

through conventional breeding or agricultural biotechnology. It has allowed crops to be 

developed by conventional breeding that are deliberately non-equivalent to their 

parental progenitors in a wide range of nutritional (and agronomic) characteristics.. As 

Rischer et al. (2006) point out “For centuries, conventional plant breeding programs have 

produced new traits, higher yields and improved quality. However, little attention has 

been paid to metabolic changes occurring in successive generations. The issue has gained 

importance only recently in the context of defining thresholds for safety assessments of 

GM crops.” It is not immediately obvious why these hitherto neglected metabolites 

should now be at the center of such attention. Indeed, there are few studies on small 

molecule metabolite changes in crops where macro-molecular composition has been 

deliberately changed through conventional breeding (e.g. high oil and high protein corn, 

high oil soybean).  

Catchpole et al. (2005) in their demonstration of the compositional equivalence of GM 

potatoes to conventional lines also remark on the large metabolite variation in 

conventional potato as follows; “These significant differences [between conventional 

cultivars] were never sought as desired traits in traditional breeding programs, and 

overall composition has not given cause for public safety concerns”. Overall, however, 

experimental designs that will both account for natural variation and have enough power 

to identify differences that can be attributed to transgene insertion will offer opportunities 

to maximize the value of omics technologies as tools in plant breeding and the 

development of new crops. 

3. Metabolomics offers opportunities to generate data on large numbers of metabolites. Most of 
these metabolites will be low in abundance and levels will be highly variable. They are also more 
likely to include central (and hence ubiquitous) metabolites such as sugars, organic acids, and 
free amino acids; metabolites that are not immediately associated with safety or nutritional 
relevance.  

Compositional assessments of new foodstuffs generally focus on the article of commerce, 

most typically harvested seed or grain. This material is generally characterized by high 

levels of starch, protein, fat, and fibers, with the small metabolite pool being low in 

abundance. For example, approximately 95-98% of maize grain is comprised the 

aforementioned materials; the small metabolite pool in grain, is of low abundance (~2-5% of 

grain biomass) and its levels are highly dependent on changes in the macromolecular pool. 

Soybean seed is comprised 40% protein, 20% fat, and 15% fiber. The residual 15% is 

comprised mainly of sugars (e.g. sucrose, raffinose, stachyose, glucose, galactose, fructose) 

of which the principal two, raffinose and stachyose, are measured in regulatory assessments. 

The fact that the small molecule metabolite pool in seed or grain is of low abundance and 

influenced by levels of the major macromolecular nutrients accounts for its extensive 

variability (Skogerson et al., 2010; Harrigan et al., 2007).  

Skogerson et al. (2010) sought to assess genetic and environmental impacts on the 
metabolite composition of corn grain. Their data acquisition technology (gas 
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chromatography-mass spectrometry) measured 119 identified metabolites including free 
amino acids, free fatty acids, sugars, organic acids, and other small molecules in a range of 
corn hybrids derived from 48 inbred lines crossed against two different tester lines (from the 
C103 and Iodent heterotic groups) and grown at three locations in Iowa (Table 1). Different 
metabolic phenotypes were clearly associated with the two distinct tester populations. 
Overall, grain from the C103 lines contained higher levels of free fatty acids and organic 
acids, whereas grain from the Iodent lines were associated with higher levels of amino acids 
and carbohydrates. In addition, the fold-range of genotype mean values [composed of six 
samples each (two tester crosses per inbred × three field sites)] for identified metabolites 
ranged from 1.5- to 93-fold with sugars and polyols being particularly variable. 
Interestingly, some grain metabolites showed a non-normal distribution over the entire corn 
population, which could, at least in part, be attributed to large differences in metabolite 
values within specific inbred crosses relative to other inbred sets.  

 

Metabolite class No. of analytes Affected by Testera 
Affected by 

Locationb 

free amino acids 26 14 2 

sterols, amines, and 
others 

17 6 1 

organic acids 17 6 0 

free fatty acids and 
related metabolites 

17 5 0 

sugar alcohols 18 5 0 

mono-, di-, and 
trisaccharides 

16 1 0 

sugar acids 8 0 1 

aThis indicates a statistically significant difference (p<0.0001) between hybrids derived from a cross 
with one tester (C103 heterotic group) versus another tester (Iodents heterotic group) bThis indicates a 
statistically significant difference (p<0.0001) across the three locations in this study 

Table 1. Variation in Metabolites due to Genotype or Environmental Variation 

In an analogous report on the same samples, Harrigan et al. (2007) concluded that, given such 
variability, measurement of the small metabolite pool, was unlikely to prove useful to a 
comparative assessment of GM crops unless a given metabolite was an intended nutritional or 
toxicological endpoint. In fact, it is not immediately obvious how the data generated in 
Skogerson et al. (2011) could be used to determine which hybrids in this study were the safest. 

In its report in 2004 the US National Research Council made pointed remarks about this 
disconnect as summarized in the following quotes. “.. severe imbalances between highly 
advanced analytical technologies and limited ability to interpret the results and predict 
health effects that result from the consumption of food that is genetically modified” and 
“….inherent difficulties, however, in identifying all of the constituents detected in profiling 
methods or understanding the activity and potential biological consequence of all genes in 
an organism severely limit the usefulness of these methods for predictive purposes..” 
Unable to bridge this gap, many profiling proponents make an assumption of safety on the 
non-GM comparator and consider statistical differences to equate with unintended effects. 
This tendency is described later. 
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4. Another challenge in establishing a coherent literature on the impact of conventional and other 
approaches to breeding on natural variability in metabolite as well as determining a framework 
to establish nutritional meaning from metabolite analysis is the differential coverage of 
metabolites offered through the numerous data acquisition platforms available to omics 
researchers. 

As described in numerous articles on metabolomics, (e.g. Goodacre et al., 2004; Rischer and 
Oksman-Caldentey, 2006; Kusano et al., 2011) the large physico-chemical diversity of small 
molecule metabolites renders comprehensive metabolomic profiling through a single data 
acquisition technology impossible. A range of technologies associated with different 
detection capabilities (metabolite coverage and sensitivity), precision, resolution, 
throughput and reproducibility are now extensively deployed by the research community. 
Nuclear magnetic resonance spectroscopy (NMR), gas-chromatography mass spectrometry 
(GC-MS), liquid-chromatography (LC)-MS utilizing different ionization modes, Fourier-
transform MS, and capillary electrophoresis (CE)- MS have all been applied in comparative 
assessments of GM and non-GM crops. MS approaches predominate over NMR analyses 
given their greater sensitivity and coverage; however this advantage does come at the 
expense of quantitation (i.e. MS would need an internal standard for every metabolite to be 
quantitated) and with a large number of unidentified MS signals in any metabolite profile. 
Whilst it has been suggested that untargeted profiling techniques are unbiased, it is clear 
that selection of a specific data acquisition technology is a bias and that this type of 
analytical bias would need to be justified by pre-specified experimental hypotheses. This 
justification would be critical in a Regulatory environment. 

Recognizing inherent limitations for any given data acquisition technology Kusano et al. (2011) 

applied a multi-platform approach to an evaluation of transgenic tomato. These authors used a 

combination of GC-MS, LC-MS, and CE-MS with each technology covering distinct metabolite 

classes. Free amino acids, sugars and organic acids were covered by GC-MS, larger molecules 

(e.g. flavonoids) by LC-MS whereas CE-MS measured specific cations and anions. Overall, the 

data generated 175 unique identified metabolites but a total of 1460 with “no or imprecise 

metabolite annotation.” Of the identified metabolites, only 56 were observed in at least two 

platforms. A total of 261 peaks showed no correlation with experimental factors (transgene, 

cultivar, tissue type) and had to be removed from statistical analyses.  

It is worth pointing out that two studies that assessed the metabolic profiles of grain from GM 

maize containing the Cry1ab gene and that utilized the same data acquisition platform (NMR) 

differed in their conclusions on the impact of transgene insertion on levels of free amino acids 

(Manetti et al., 2006; Piccioni et al., 2009). Manetti et al. (2006) reported that the GM crop 

included higher levels of sugars (glucose, sucrose, meliobiose), GABA, glutamine, and succinate 

and decreased levels of alanine, asparagine, and choline. Piccioni et al. (2009) reported lower 

levels of all amino acids, lower sugars, and lower succinate (and other organic acids). Piccioni et 

al. (2009) were also able to report on metabolites observed in their NMR profiles but absent in 

those of Manetti et al. (2006). Key design differences between the two studies include different 

parental lines, different growth conditions, and sample extraction protocols. 

Levandi et al. (2008) utilized CE-MS to compare levels of 27 metabolites in three different 
GM maize lines also containing the Cry1ab gene. Some of these metabolites (e.g., certain free 
amino acids, choline, GABA) were also recorded in the NMR platforms of Mannetti et al 
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(2006) and Piccioni et al. (2009). No consistent association of these metabolites with the GM 
trait when assessed over all three GM lines was observed, a conclusion in line with the 
combined results of Mannetti et al. (2006) and Piccioni et al. (2009). Several of the 
metabolites reported by Levandi et al. (2006) are more typically associated with other 
taxonomic groupings, for example, graveolin (Ruta graveolus, Rutaceae) and lunarine, 
(Lunaria annua, Brassicaceae). The assignment of peaks to metabolites not typically 
associated with a genus or family would almost certainly require extensive validation in a 
Regulatory environment. 

Leon et al. (2009) utilized FT-MS on the same samples assessed by Levandi et al. (2008). This 
allowed coverage of 5500 mass signals of which approximately 1000 could be assigned an 
elemental composition. Those elemental compositions could be associated (through 
MasstTRIX) with specific metabolic pathways (KEGG); these associations are referred to as 
“isomeric hits”. This approach would identify any differences in GM and non-GM metabolic 
profiles, especially where an elemental composition could be assigned, to be tentatively 
associated with biochemical differences. Overall, it was shown that a greater number of 
isomeric hits in pathways such as arachidonic acid metabolism, free amino acid metabolism, 
purine metabolism, and folate biosynthesis were associated with the GM samples. A list of 
33 possible compounds that could distinguish the GM and non-GM varieties was generated, 
of which 12 could be confirmed in an orthogonal assay (CE-MS). The authors then indicated 
that only four of these could be considered as potential GM “biomarkers”; L-carnitine, 
apigenidin, 5, 6-dihydroxyindole, and one unidentified metabolite. There is little further 
literature on levels of these metabolites in maize and the association of these metabolites as 
GM biomarkers is almost certainly premature. Further, the interpretability of the Levandi et 
al. (2009) approach is not at all clear; there are fewer isomeric hits associated with inositol 
phosphate metabolism, yet levels of phytic acid have been well-established to be near-
identical in GM and non-GM maize. The association of isomeric hits for bile acid 
biosynthesis, which is not typically associated with plant metabolism, is also difficult to 
interpret. 

In summary, different metabolic profiling platforms applied to similar biological questions 
will yield non-overlapping solutions. This is due to differential metabolite coverage (even 
within similar data acquisition technologies) and is compounded both by the number of 
unidentified signals observed in current metabolite profiles and, in some cases, 
“identification” of metabolites not previously known to be biosynthetically associated with 
the plant species or genus in question.  

3. Equating statistical equivalence with biosafety 

Predetermined criteria would need to be established for any study protocol, data acquisition 
steps or statistical analyses utilized in a safety assessment. As alluded to earlier, sampling 
from multiple replicated field sites would be required. Discussions on the number of 
replicates required to generate meaningful results from omics experiments are available as 
well as on the potential for bias and over-fitting (Broadhurst and Kell, 2006; Goodacre et al., 
2007). Here we focus on the routine misinterpretation of “statistical significance” (Goodman, 
2008) and the tendency to associate statistically significant differences between GM and a 
non-GM comparator as, minimally, an unintended effect, and often to imply the statistical 
difference raises a question about the safety of a newly evaluated crop.  
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As indicated earlier, compositional assessments of GM crops involve direct comparisons of 
levels of key nutrients and anti-nutrients in the new crop variety to those of a near-isogenic 
conventional comparator. Statistical evaluations of the compositional data have typically 
utilized classical frequentist significance testing. There are, however, several features of 
significance hypothesis testing that impact its application to compositional comparisons 
between crops with different agronomic qualities (Lecoutre, et al., 2001). Berger (1985), for 
example, stated, “We know from the beginning that the point null hypothesis is almost 
certainly not exactly true, and that this will always be confirmed by a large enough sample. 
What we are really interested in determining is whether or not the null hypothesis is 
approximately true.” There are many factors that impact crop composition, including 
agronomic traits we seek to modify through plant breeding, (e.g. Scott et al., 2006; Uribelarrea et 
al., 2004; Dornbos and Mullen, 1992; Hymowitz et al., 1972; Wilcox and Shibles, 2001; Yin 
and Vyn, 2005) and any compositional changes that accompany enhanced agronomic 
quality may confound interpretation of results generated through significance testing.  

Statistical significance is used only as a first step in comparative assessments. The 

interpretation of statistical significance from a p-value, the probability of an observed result or a 

more extreme result occurring if the null hypothesis were true, does not imply biological 

significance (Goodman, 2008). Statistically significant differences do not imply large 

differences between GM and conventional comparators or that these comparators can be 

easily distinguished from a biological perspective. In fact, the power of the experimental 

designs (multiple highly replicated field trials) adopted in current compositional 

assessments allows statistical significance to be assigned even where there are very small 

difference in mean values of a given component but where the distribution of component 

values overlap extensively. As such, significance approaches must be accompanied with 

further data analysis encompassing discussion of magnitudes of differences, assessments of 

component ranges, and the sensitivity of component values to environmental factors such as 

location. This is consistent with the recommendation by Codex Alimentarius (2008, Ch. 44) 

that “The statistical significance of any observed differences should be assessed in the 

context of the range of natural variations for that parameter to determine its biological 

significance.” It is further consistent with observations of high variability in crop 

composition recorded in the scientific literature. The current scientific consensus is that, in 

most if not all cases, statistically significant differences between GM and near-isogenic 

conventional controls represent modest and nutritionally meaningless differences in 

magnitude. For example, a recent review of studies on GM crop composition showed that 

over 99% of all nutrient and antinutrients comparisons, where significant differences at the 

5% level (=0.05) in mean values were observed, had a relative magnitude difference less 

than 20%. These differences are considerably less than the range of values attributable to 

germplasm and environmental factors (Harrigan et al., 2010).  

Most metabolic profiling experiments utilize significance testing and Rischer and Oksman-
Caldentey (2006) refer to unintended effects as “effects which represent a statistically 
significant difference (e.g. in chemical composition of the GM plant compared with a 
suitable non-GM plant)” although they acknowledge that such differences would have to be 
evaluated in the context of natural variability. One review that endorses the use of omics in 
safety assessments suggests that “the amount of variation from genetic engineering should 
be small (~3%).” (Heineman et al., 2011). Whilst this particular number is unrealistic since it 
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falls well within the natural variability of metabolite levels and is even less than typical 
experimental error, setting a universal threshold for relative magnitude of differences as a 
trigger for further safety assessments of GM crops has been considered. In 2000, the Nordic 
Council of Ministers recommended that if a component in a GM crop differed from the 
conventional control by ±20% in relative magnitude, additional analyses of the GM crop 
were warranted (cited in Hothorn and Oberdoerfer, 2006). This concept was refined to 
account for the nutritional relevance of a component and the experimental precision of its 
measurement (Hothorn and Oberdoerfer, 2006). Threshold ranges for GM components were 
suggested as follows; 0.833-1.20 of the conventional control for “nutritionally very relevant” 
components (minerals, vitamins, anti-nutrients, bioactives, essential amino acids, and fatty 
acids), 0.769-1.30 for “relevant” (non-essential amino and fatty acids), and 0.667-1.50 for 
components of “less relevance” (proximates, fiber). Suggestions for the use of limits and 
triggers of this kind have been criticized for their failure to fully account for the role and 
contributions of the specific crop in the human diet; and with GM crops in particular since 
they are often not eaten as such but are used as a source of macronutrients such as oil, starch 
and protein (Chassy, 2008; Chassy, 2010). As noted previously, most plant foods in the 
human diet make significant contributions to the total intake of just a few macro- and 
micronutrients and therefore even large compositional changes in a single crop plant might 
produce little impact on the nutritional value of the overall diet. Chassy (2010) has observed 
that composition cannot be viewed in isolation since the composition of the diet is far more 
important than the composition of a single variety of a single crop. Strictly numerical 
approaches have not been adopted in compositional studies and there is no reason they 
would be relevant to profiling experiments. 

At least one profiling study has attempted to apply statistical equivalence testing but again 
falls prey to the dubious association of equivalence with safety. Kusano et al. (2011) 
compared a GM-tomato (a miraculin protein expressor) to not only to the parental line but 
to a panel of conventional reference varieties. The statistical design (described by the 
authors as a proof-of-safety test) involved comparing the difference between test and control 
and the determining whether these differences fell within equivalence limits established by 
the reference varieties. However such a design makes more of a statement about the 
selection of the reference substances and the control to which the GM-trait is introgressed, 
and not about the effect of transgene insertion; the same test-to-control differences can be 
equivalent or non-equivalent contingent on whether a limited or diverse range of genotypes 
is available. The overall conclusion from the study however was that “miraculin over-
expressors are remarkably similar to the control line”.  

In summary, there are no defined data analyses strategies currently being consistently 
applied to profiling data that would facilitate interpretability of data. 

4. Conclusion 

There are clearly divergent views about the utility of ‘omics sciences in food safety 
assessments. This paper has discussed some of the reasons metabolic profiling technologies 
are, however, unlikely to provide immediately interpretable data in safety assessments that 
would otherwise enhance rigorously quantitative assessments of known nutrients and anti-
nutrients that comprise foodstuffs. Indeed, it is not clear to the present authors that any new 
types of data are in fact necessary to judge GM or other foods as safe. We are also unaware 
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of any “gaps” in our compositional knowledge that might compromise safety and in fact, 
our current understanding of plant anti-nutrients and toxicants, allows GM solutions to 
enhancing food safety (e.g. Sunilkumar et al., 2006). The last 25 years of research on GM 
plants and 15 years of commercial experience planting GM crops without harm or incident 
suggest that no difference in safety that would require further analysis exists between GM 
and crops bred by other strategies. All breeding induces genetic changes and these changes 
give rise to transcriptomic, proteomic and metabolomic alterations.  

We consider that metabolic profiling could increase its value in food safety science as well as 
in the development of nutritionally enhanced crops as follows; 

1. Improved compositional analysis. One potential target for future research could be to 

develop metabolic screening methods that afford a comprehensive compositional 

assessment in a single suite of determinations rapidly and at lower cost than traditional 

targeted analysis. It is known that the metabolites in a cell form a large, complex and 

interconnected network; one possible approach would be elucidation of key metabolic 

compound whose determination might provide insight into the global concentrations of 

numerous other metabolites. If such a validated analytical method could be developed 

it would great aid research and development and would be particularly valuable in 

assessments of nutritionally enhanced crops where changes in a specific pathway are 

sought. However, metabolomic technologies are not able to supply this kind of analysis 

and data. 

2. Detection of novel toxicants. Targeted analysis is inherently incapable of assessing levels 

of metabolites that are not selected (targeted) for analysis. Proponents of metabolic 

profiling have argued that profiling might detect the emergence of previously unknown 

novel toxicants presumably created by the breeding process. However, the abundance 

of a few macro-components (protein, fiber, carbohydrate, lipids) and numerous minor 

metabolites leaves little compositional “space” for novel toxicants. If wholly new 

molecules were created by the spontaneous evolution of a new pathway or pathways 

necessary for its biosynthesis, the chances that sufficient quantities would be present to 

exert an adverse effect are small indeed. Perhaps this is why such effects have not yet 

been observed by science or why coherent hypotheses as to how a novel toxicant would 

be generated by a specific breeding process appear to be sparse in the literature.  

3. Detection of unintended effects. Proponents of metabolic profiling often suggest that a 

profile itself may be an indicator that unintended changes had occurred. Methods to 

draw safety conclusions based on differences in metabolic profiles do not yet exist, and 

certainly as we have discussed above, no reason to assume that differences in profiles 

imply a safety concern; in fact, by any objective measure, there is no such technique as 

metabolomic profiling. What we have today is a series of distinct and emerging 

powerful scanning techniques each of which surveys a slightly different molecular 

landscape with variable degrees of resolution. Clearly, the number of metabolites 

present in crops is very large and the power of targeted metabolic profiling will become 

increasingly useful in analyzing the chemical complexity of prospective commercial 

releases as they progress through initial research and development phases.  

Metabolomics is an expanding and exciting field of research. The rapidly expanding scope 
of the metabolomic profiling technologies tempts us to test their applicability to a wide 
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array of analytical challenges. We have, on the other hand, a long history of safe experience 
with plant breeding. We know that many unintended changes take place in plant breeding, 
however, these are almost without exception innocuous. There is no reason to believe that 
GM breeding should require any new or different data set than other forms of breeding.  

It seems clear to the present authors that there is no role for metabolic profiling in food 
safety assessment. We agree that modern targeted metabolic profiling technologies can 
rapidly identify pathway perturbations and, if judiciously applied and interpreted, might 
enhance food safety science, although traditional analytical methods can still be used to 
assess if changes in pathways and metabolite pools have occurred. If incorporated into the 
early selection stages of a prospective new trait targeted metabolic profiling may greatly aid 
in the selection of metabolites that need to be considered during the compositional phase of 
a risk assessment. To quote Larkin and Harrigan (2007) “However, it should be self-evident 
that GM crops ought not to be considered a single monolithic class that is either good or bad 
for the economy, agriculture or the environment. Each novel crop should be considered on 
its own merits and demerits. If we ever get to that point we will have achieved something 
positive out of the GM controversy.” It is our hope that colleagues will take this as a 
challenge to further metabolic profiling in the advancement of food safety and nutritional 
enhancement of crops. 
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other 'omics analyses, such as genomics and proteomics, metabolomics plays an important role in functional

genomics and systems biology studies in any biological science. This book will provide the reader with

summaries of the state-of-the-art of technologies and methodologies, especially in the data analysis and

interpretation approaches, as well as give insights into exciting applications of metabolomics in human health

studies, safety assessments, and plant and microbial research.
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