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1. Introduction  

Today’s unsustainable use of fossil fuel reserves or green fuel is predicted to destabilize the 

global climate and lead to reduced food security.  The key challenge for the coming decades 

are to meet local needs for food, in terms of both quantity and quality, while conserving 

natural resources and biodiversity (Ruane & Sonnino, 2011) and to develop a supply 

industry based on renewable plant-derived products. Indeed agricultural crops can be 

viewed as a source of or starting point for a plant based economy, potential input to a bio 

refinery in which all parts of the plant are processed and used to yield (i) food, both 

traditional and with enhanced nutritional safety, stability and processability; (ii) industrial 

products, including polymers, fibbers, industrial oils and packaging materials as well as 

basic chemical building blocks (green chemistry); (iii) fuels such as ethanol and biodiesel; 

(iv) molecules with pharmaceutical properties and health benefits. To reach these new 

agricultural perspectives, new varieties with the appropriate properties need to be selected 

(Tester & Langridge, 2010) through plant breeding, be it conventional, marker assisted, QTL 

mapping assisted, or genetically modified (GM) (Mittler & Blumwald, 2010). There are also 

growing demands for germplasm adapted to deal with changing climates and effective 

under a range of cultural practices and for foods with higher nutritional value. To decipher 

agronomical traits, functional genomics approaches can be of good use to understand 

physiological, molecular and genetic processes underlying complex traits. Appropriate 

functional genomics technologies such as transcriptomics, proteomics and metabolomics 

must be used together with detailed physiological and environmental information as a 

combined platform for ‘candidate’ gene identification or translational genomics approaches 

that aims to improve complex traits in plants (Sanchez et al., 2011). Without a 

comprehensive understanding of the plant physiology, molecular processes and genetics of 
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the components of complex traits, the development of new varieties will remain an 

empirical yet uncertain procedure. This integration of functional genomics data can be 

viewed as the first step to systems and predictive biology serving agricultural perspectives.  

Among the ‘omics’ technologies, metabolomics is one of the more recently introduced. The 
term ‘metabolome’ coined in 1998 (Oliver et al., 1998) refers to the richly diverse population 
of small molecules present in biofluids, living cells or organisms. Overall, there are two 
approaches to analyse small molecules, and they differ in the number of compounds 
analysed, the level of structural information obtained, and their sensitivity. The most 
common approach, metabolite profiling, is the analysis of small numbers of known 
metabolites in specific compound classes (e.g. sugars, amino acids or phenolics). At the 
other extreme, metabolic fingerprinting detects many compounds but their structures are 
rarely identified. Today metabolomics methods typically allow measuring hundreds of 
compounds, with a small number being definitively identified, a larger number being 
identified as belonging to particular compound classes, and many remaining unidentified.  

Over the past decade, metabolomics has gone from being just a simple concept to becoming 
a rapidly growing discipline with valuable outputs in plant biology (Hall, 2006; Saito & 
Matsuda, 2010; Hall, 2011a; Shepherd et al., 2011). Metabolomics has played a key role in 
basic plant biology and started having a potentially broad field of applications. Plants 
produce an astonishing wealth of metabolites estimated to figures ranging from 200,000 to 
1,000,000 metabolites (Dixon & Strack, 2003; Saito & Matsuda, 2010). The first significant 
advances have been made in the area of analytical technology for metabolite identification 
in order to increase our capacity to simultaneously analyse a chemically diverse range of 
metabolites in complex mixtures. The metabolomics community has set up analytical 
platforms with complementary analytical technologies (Moing et al., 2011) after having 
realized that no single technology currently available (or likely in the close future) will be 
able to detect all compounds found in living cells. Today these analytical platforms provide 
a combination of multiple analytical techniques such as gas chromatography (GC), liquid 
chromatography (LC) or capillary electrophoresis (CE) coupled to mass spectrometry (MS), 
or nuclear magnetic resonance spectroscopy (NMR) and much more (Kim et al., 2011; Lei et 
al., 2011).  

Considering metabolomics as a combination of knowledge and know-how in 
biochemistry, signal processing, data and metadata handling, and data mining, the 
challenge remains to perform in a cohesive and coordinated manner these 
multidisciplinary approaches to solve biological questions (Ferry-Dumazet et al., 2011; 
Hall, 2011b). Recently, plant biologists have used metabolomics approaches to understand 
fundamental plant processes (Leiss et al., 2010; Sulpice et al., 2010), to make a link 
between genotype and biochemical phenotype and to study plant responses to biotic or 
abiotic stresses by combining genomics and biochemical phenotyping capabilities 
(Redestig & Costa, 2011; Villiers et al., 2011). While full genome sequence annotations of 
the major crops have been published, many post-genomic studies using metabolomics 
approaches have tried to bridge the phenotype-genotype gap in order to link gene to 
function (Smith & Bluhm, 2011). Such integrated approaches have been helpful in 
assigning functions to a large class of function-unknown genes and their interactions with 
other pathways and also useful in applications such as metabolic engineering (Liu et al., 
2009) and assessment of GM plants (Kusano et al., 2011b).  
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As part of a more recent emerging area, robust data generated from metabolomics can be 
combined with computationally-intensive approaches based on modelling of pathways to 
steer this field towards systems biology, which promises to provide an integrated view of  
cellular processes (Joyce & Palsson, 2006; Wang et al., 2006). Bringing metabolomics data 
into the forefront of system biology is a challenging opportunity that implies using 
quantitative metabolomics data in the context of models to improve our understanding of 
metabolism and drive the biological discovery process. So far, computational studies on 
metabolomics data have often been restricted to multivariate statistical analyses such as 
principal component analysis or PLS discriminant analysis to look at trends among different 
data sets. Such work has proven useful in discovering potential biomarkers of stress and 
identifying key metabolic difference in GM plants, but provides minimal insight into the 
underlying biology or the means to modulate it for agronomic or industrial purposes. Now 
researchers are rising to the challenge by using omics data integration and specially high-
throughput metabolomics data within a constraint-based framework to address 
fundamental questions that would increase our understanding of systems as a whole.  

This article provides an overview of the technological trends in plant metabolomics to 

optimize the characterization of a large number of metabolites with accurate and absolute 

quantification in a few samples (concept of vertical high-throughput metabolomics) and 

present the needed technologies to increase the analysis capacity of samples for large-scale 

studies (concept of horizontal high-throughput metabolomics). This article also outlines 

how these technological developments in plant metabolomics can be used for systems 

biology, quantitative genetics and the emerging field of meta-phenomics to answer the key 

challenges of plant biology and agriculture in the future, and which technological and 

computational developments are necessary to meet these challenges.  

2. Technological trends in plant metabolomics 

For plant metabolomics, the analytical strategies reviewed a few years ago (Weckwerth, 

2007) are still widely used. Major improvements over the past five years have targeted 

spectra resolution and processing (http://www.metabolomicssociety.org/software.html), 

and the emergence of databases (http://www.metabolomicssociety.org/database.html). 

Thanks to technological and methodological progress, numbers of analytes and compound 

families that can be determined in a given sample are still increasing, but usually at the 

expense of the number of samples that can be analysed due to increasing costs and/or 

labour (Fig. 1). Conversely, novel experimental strategies produce increasing numbers of 

samples. Thus, not only the best compromise between analyte number (vertical high-

throughput approach) and sample throughput (horizontal high-throughput approach) has 

to be found, but also synergisms between such approaches.  

2.1 Vertical approaches 

Vertical high-throughput approaches, also called high-density approaches, are defined as 
strategies that promote sample variables over sample numbers. They are especially 
interesting for studies in plants given their enormous metabolic diversity. In the plant 
kingdom, the species number is estimated between 270,000 (observed) and 400,000 and 
the number of metabolites produced between 200,000 and 1,000,000 (Dixon & Strack, 2003; 
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Saito & Matsuda, 2010). Even the number of primary metabolites, defined as the type of 
compounds synthesized by all or most plant species, may exceed the number of 
compounds found in other eukaryotes since plants are true autotrophs (Pichersky & 
Lewinsohn, 2011). In addition, different plant lineages synthesize distinct sets of 
“specialized metabolites”, often mis-named “secondary metabolites” (Pichersky & 
Lewinsohn, 2011), with Arabidopsis thaliana estimated to make up to 3,500 of such 
specialized metabolites. Capturing such diversity is one of the challenges for plant 
metabolomics compared to animal metabolomics, which has to deal with ‘only’ 5,000 to 
25,000 different metabolites (Trethewey, 2004). However, the consumption of plant-
derived food is known to lead to a strong increase in metabolite diversity in animal or 
human derived samples, e.g. blood or urine. This implies that plant and nutrition 
scientists face a similar challenge. Indeed, specific plant metabolites are attracting 
attention due to their role/impact on health and nutrition. Vertical metabolomics mainly 
relies on sophisticated instrumentation such as NMR and MS, with or without 
hyphenation of chromatography or capillary electrophoresis (LC-NMR, LC-SPE-NMR, 
LC-MS, GC- MS, GC- SPE-MS, CE-MS, Fourier Transform-MS (FT-MS), Table 1). 

 

Fig. 1. Complementarities of high-throughput vertical and horizontal biochemical 
phenotyping. Costs and/or labour requirements are considered similar for each technology. 
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Metabolite classes Typical metabolites Instruments 

Amino acids and 
their derivatives 

Amino acids, beta-alanine, GABA, 
oxoproline 

CE-MS, GC-MS (after 
derivatization), LC-MS, NMR 

Amines Polyamines (putrescine, spermine, 
spermidine) 
Betaines, choline 

CE-MS, GC-MS, NMR 
 
NMR, LC-MS 

Organic acids in 
central metabolism 

TCA cycle intermediates  CE-MS, GC-MS (after 
derivatization), NMR, LC-MS 
(partially) 

Other organic acids Quinic acid, shikimic acid NMR, LC-MS,  
GC-MS (after derivatization), CE-
MS 

Sugars and their 

derivatives 

Mono-, di- and trisaccharides, 

sugar alcohols, sugar mono- and 

diphosphates 

Phytic acid 

GC-MS (after derivatization), CE-

MS (sugar phosphates), CE-PDA 

(partially), NMR 

NMR, LC-MS 

Alkaloids Polar alkaloids (e.g. pyrrolizidine 

alkaloids) 

LC-MS, NMR 

Fatty acids and their 

derivatives 

Saturated and unsaturated 

aliphatic monocarboxylic acids 

and their derivatives 

GC-MS (after derivatization)  

Polar lipids Phospholipids, mono-, di-, and 

triacylglycerols 

LC-MS 

Isoprenoids Terpenoids and their derivatives GC-MS (non-polar), LC-MS (polar) 

Nucleic acids and 

their derivatives 

Purines, pyrimidines, mono-, di-, 

and triphosphate nucleosides 

CE-MS, GC-MS (partially), NMR 

Pigments Carotenoids, chlorophylls, 

anthocyanins 

LC-PDA, LC-MS 

Volatiles Phenylpropanoid volatiles, 

aliphatic alcohols, aldehydes, 

ketones 

GC-MS, GCxGC-MS 

Other specialized 

metabolites 

Polar phenylpropanoids (e.g. 

chlorogenic acids), flavonols 

Phytohormones (e.g. auxins) 

LC-MS, LC-(SPE)-NMR, NMR 

 

LC-MS 

Table 1. A selection of examples of plant primary and specialized metabolites detected by a 
variety of analytical techniques. Adapted from (Kusano et al., 2011a). PDA, photodiode array 
detection; GABA, gamma-aminobutyrate; TCA, tricarboxylic acid cycle; SPE: solid-phase 
extraction. See (Saito & Matsuda, 2010) to have an overview of plant metabolomics pipelines.  
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Vertical approaches have to deal with a wide variety of chemical structures, which implies 
wide ranges of solubility, polarity and stability, as well as a high dynamic range of 
metabolite concentrations (>1012, (Sumner, 2010); 106, (Saito & Matsuda, 2010)). In addition, 
plant metabolites are usually extracted with sometimes sophisticated protocols including 
steps like heating or fractionation that may lead to losing or modifying metabolites, but also 
promote the synthesis or import of chemical artefacts. This is why the term analyte, which 
might be a metabolite or an artefact, is preferred. For example, during the derivatization 
process, which is required for non-volatile compounds when performing GC-MS, a single 
metabolite may produce multiple derivatives leading to different peaks. Similarly, adducts 
and product ions are formed during the desolvation step following the ionization process in 
LC-MS analyses (Werner et al., 2008). To cover the wide range of chemical diversity and 
concentrations of plant metabolites, careful experimental design is definitely required, 
including special care for harvest (Ernst, 1995), several extraction protocols and multi-
analytical platforms (see (Ryan & Robards, 2006; Allwood et al., 2011) and Tables 1-2). 

 

Plant Species Analytical instruments References 

Arabidopsis NMR, GC-MS, CE-MS, LC-MS, 
DI-FT-MS 

(Beale & Sussman, 2011) 
review 

Aspen GC-MS (Bylesjo et al., 2009) 

Broccoli NMR (Ward et al., 2010) 

Grape GC-MS 
NMR 

(Deluc et al., 2007)  
(Mulas et al., 2011) 

Tomato  NMR, GC-FID, LC-MS 
NMR, GC-MS, LC-MS, LC-FT-MS 
HRMAS-NMR 

(Mounet et al., 2009) 
(de Vos et al., 2011) review 
(Sanchez-Perez et al., 2010) 

 GC-MS, LC-MS, CE-MS (Kusano et al., 2011b) 

Maize NMR 
 
GC-MS 

(Cossegal et al., 2008; Broyart 
et al., 2010) 
(Skogerson et al., 2010) 

Medicago LC-MS (Farag et al., 2008) 

Melon NMR, GC-MS, LC-MS (Moing et al., 2011) 

Palm trees  NMR, GC-FID (Bourgis et al., 2011) 

Potato GC-MS (Urbanczyk-Wochniak et al., 
2005) 

Strawberry LC-MS, DI-MS 
GC-MS, LC-MS 

(McDougall et al., 2008) 
(Fait et al., 2008) 

Rice GC-MS, CE-MS, CE-DAD, FT-MS (Oikawa et al., 2008) 

Vanilla NMR (Palama et al., 2009) 

Medicinal species NMR, LC-MS, GC-MS, HPLC (Okada et al., 2010) 

Table 2. Representative examples of model-, crop- and medicinal-plant metabolomics 
studies using different analytical platforms. DI : Direct Infusion. FID, Flame Ionization 
Detection. HRMAS-NMR: High resolution Magic-Angle Spinning NMR. ICR: Ion Cyclotron 
Resonance. 

www.intechopen.com



 
New Opportunities in Metabolomics and Biochemical Phenotyping for Plant Systems Biology 

 

219 

Currently the number of quantified analytes in a given sample and in one shot is 
approximately 50 with proton NMR, 100-200 with GC-MS, >1000 with LC-High-Resolution-
MS (LC-HR-MS). This expansion of scale has been made possible through improved 
analytical capabilities, dissemination of routine procedures between laboratories, but also 
implementation of dedicated statistical and data mining strategies. However, a large 
proportion of the analytes detected in plant extracts cannot be annotated and identified 
based on chemical shift and multiplicity for NMR analysis, or on elemental formula (based 
on m/z ratio and isotopic ratio) and chromatographic retention time for GC- or LC-MS 
analysis, alone. Hence metabolite identification, which uses a variety of analytical 
techniques along with analyte/metabolite databases, remains difficult (Moco et al., 2007). 
Achieving standardization for naming compounds at the plant metabolomics community 
level is also an important issue, as it will enable researchers to share knowledge and speed 
up metabolite identification (Saito & Matsuda, 2010; Kim et al., 2011). Another challenge is 
the development of chimiotheques, where trusted reference compounds would be available 
for the community to validate analyte identifications, for example via spiking experiments.  

2.1.1 Optimization and combination of the different current techniques 

As already mentioned (see Tables 1-2), a combination of different current techniques is 
needed to cover the wide diversity of metabolites found in plants. Thus, a combination of 
different MS technologies is helpful for identification purpose. Among HR-MS technologies, 
LC- Time-Of-Flight (TOF) (resolution of 8,000-20,000, accuracy 1-5 ppm), Orbitrap® 
(resolution of 100,000, accuracy< 1 ppm) and FT-ICR-MS (resolution> 100,000, accuracy< 1 
ppm) are currently the most powerful ultra-high resolution (UHR) mass spectrometers. 
They provide molecular formula information, thus offering great possibilities in terms of 
metabolite identification (see (Werner et al., 2008) for the strategy, pitfalls and bottleneck of 
metabolite identification). Nevertheless, the poor reproducibility and fragmentation 
variability between instruments from the same brand require a home-made metabolite 
database for each instrument. In addition it should be kept in mind that plant extracts 
contain many isomers, i.e. with identical elemental compositions and accurate masses. UHR-
MS analysis of a selection of extracts may help to identify marker-metabolites revealed using 
HR-MS on a larger range of samples. Besides, multidimensional separation techniques have 
emerged in order to enhance metabolite coverage in the GC-MS (Gaquerel et al., 2009; 
Allwood et al., 2011) and LC-MS (Lei et al., 2011) fields. Further methodologies such as Ion 
Mobility MS (Dwivedi et al., 2008), which have not been tested in plants so far, might also 
prove useful. Anyway, processing and integrating data still remain the major bottlenecks 
and thus the most labour intensive steps for all these different analytical platforms. 
Developments are nevertheless underway to automate them (see (Redestig et al., 2010) for 
MS and hyphenated technologies). 

2.1.2 From relative to absolute quantification of biological variability 

Whereas the “convenient” relative quantification is often used in MS studies, absolute 
quantification will be increasingly required. For example, various modelling approaches 
require precise concentrations of metabolites. Furthermore, the sharing and integration of data 
obtained on different analytical platforms will be greatly facilitated if expressed as absolute 
quantities. To face the challenge of quantification, in GC-MS and LC-ESI-MS impaired by ion 
suppression or enhancement and matrix effects, a solution is to use stable-isotopomers of 
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target metabolites or to run whole 13C metabolome isotope labelling (Feldberg et al., 2009; 
Giavalisco et al., 2009). However, even with a stable isotope the matrix effects may impair the 
quantification (Jemal et al., 2003) and few isotopically-labelled metabolites are currently 
commercially available (Lei et al., 2011). In contrast to MS-based technologies, NMR, although 
less sensitive, provides ease of quantitation since the resonance intensity is only determined by 
the molar concentration, and high reproducibility (Ward et al., 2010; Kim et al., 2011). 

Surprinsingly, a unique extraction protocol (sometimes one-step protocol) is typically used for a 

given analytical technique, regardless of the vast variety of plant matrices (plant species, organs 

and tissues). Very few metabolomic publications are prolix on extraction recovery and stability. 

Running blanks (solvent blank and extraction blank) in the same conditions as the biological 

samples is also important, as it is needed to identify impurities originating from solvents (Kaiser 

et al., 2009) or consumables (i.e., phthalates from plastic ware) (Allwood et al., 2011; Weckwerth, 

2011). Although metabolomics is by definition an untargeted approach, highly selective 

extraction protocols along with targeted analysis should not be forgotten, especially to reach 

high and reproducible extraction recovery as well as quantification accuracy (Sawada et al., 

2009). Then, replication is required to achieve statistical reliability. Biological replicates should 

be preferred to technological replicates assuming biological variance almost always exceeds 

analytical variance (Shintu et al., 2009). Five biological replicates of five pooled-tissue samples 

or of five individuals and two to three technological replicates are recommended in plant 

metabolomics to get statistically reliable information (Tikunov et al., 2007). Quality control 

samples should also be run (Fiehn et al., 2008; Allwood et al., 2011).  

2.2 Horizontal approaches  

Horizontal approaches are defined as strategies that promote sample number over number 

of variables being measured. Mutant screens and quantitative genetics are typical examples 

requiring horizontal high-throughput, as they typically involve experiments with hundreds 

to thousands of samples. Targeted assays are usually preferred due to their low needs in 

terms of labour and/or costs, although several untargeted strategies such as bucketing and 

fingerprinting are also amenable to very high numbers of samples. While the processing of 

raw data still represents the slowest step in vertical strategies, the toughest bottleneck in 

horizontal high-throughput approaches is probably sample logistics.  

2.2.1 Sample logistics 

In large scale experiments, harvesting, grinding and weighing become extremely work 

intensive (>75% of the time), especially when samples need to be kept at very low 

temperatures to avoid alteration of their biochemical composition. Due to the highly 

dynamic nature of the metabolome, harvesting and quenching of samples into liquid 

nitrogen should also be achieved as quickly as possible (Ap Rees et al., 1977). Unfortunately, 

fast solutions are very limited (e.g. leaf punchers), and thus recruiting as many as possible 

helpers probably remains the best way to achieve a reliable large-scale harvest. Sample 

storage may also become problematic when sample turnover dramatically increases. A good 

way to avoid losses of samples and overfilling of -80°C freezers is to use software enabling 

sample management. Although costly, available automated storage solutions may also 

dramatically improve the handling of samples.  
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Most analytical technologies require sample grinding prior to extraction and analysis. Mills 
enabling the parallel grinding of large numbers of samples (e.g., 192 samples) are now 
available at affordable prices. However, they usually do not allow multiparallel grinding of 
samples of large size, suggesting that further developments are needed to enable large-scale 
studies with organs such as fruits or ears and with most crops. Last but not least, the 
weighing of aliquots is a tedious task, especially when the material needs to be kept at very 
low temperature. A robot combining grinding and weighing of up to 96 samples has been 
developed recently (http://www.labman.co.uk), opening the way for unprecedented 
horizontal high-throughput. 

2.2.2 Microplate technology  

The first microplate was fabricated in 1951 by the Hungarian Gyula Takátsky (Takatsy, 

1955). It was made of 72 wells machined in a polymethyl methacrylate block and was used 

to speed up serial dilutions. This invention was driven by the need for a fast and reliable 

diagnostic for influenza, as Hungary was facing a major epidemic at that time. Sixty years 

later, the microplate format has driven the development of a huge diversity of labware and 

equipment, and hundreds of millions of microplates are sold every year. Sample storage, 

extractions and dilutions can be achieved in microplates, which remain the fastest and 

cheapest solution to process large numbers of samples in parallel. The quantification of 

various metabolites can be achieved in microplates via chemical or enzymatic reactions 

yielding products that can be quantified in a wide range of dedicated readers. The most 

common and cheapest readers are filter-based UV-visible spectrophotometers. They enable 

the quantification of a wide range of metabolites, including major sugars, organic acids and 

amino acids using endpoint methods (Bergmeyer, 1983, 1985, 1987), and metabolic 

intermediates that are present at much lower concentrations using kinetic assays (Gibon et 

al., 2002). Fluorimetry (Hausler et al., 2000) and luminometry (Roda et al., 2004) also provide 

high sensitivity and benefit from many commercially available fluorigenic substrates. Their 

use is nevertheless restricted in plants, due to the quenching of the emitted light that occurs 

in the presence of e.g. polyphenols that are usually present in plant extracts.  

Throughput on microplates can be dramatically increased by using pipetting robots, which 
can handle up to 1536 samples in parallel and down to the nanoliter scale, depending on the 
brand. Thus, using one 96-head robot equipped with microplate handling and a series of 
microplate readers, a single person can run the determination of a given metabolite in 
thousands of samples per week. Increasing the number of analytes would nevertheless 
result in a decrease in sample throughput, roughly by a factor 2 at each supplemental 
analyte. It is estimated that at equal costs, such an approach might be of advantage for 10 to 
20 analytes over other targeted technologies such as LC-MS/MS, which have already 
proven efficient for the capture of relatively large numbers of metabolites from the same 
class at high-throughput (Rashed et al., 1997) and 2.2.3 Section below. Microplates of 
increasing density formats (up to 9600 wells per plate) have been released to increase the 
overall throughput of analyses and decrease the costs per assay. Such miniaturisation 
nevertheless faces physical constraints of delivering very small volumes to wells and of 
detecting responses in a manner that is both sensitive and rapid (Battersby & Trau, 2002). 
The use of volumes in the nanoliter range is also limited by quick evaporation of the solvent 
used for analysis. A further drawback is high costs in terms of equipment (e.g., pipetting 
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robots and readers able to handle high density plates), which implies that very high 
numbers of samples will have to be processed before decreasing costs per assay. These 
limitations probably explain why the use of high density microplates has not been adopted 
by a wide research community so far.  

2.2.3 Targeted MS technologies: Quantification of selected biochemical markers 
using LC-MS 

Targeted analysis for small molecules using MS may use different technologies: GC-MS 
(Koek et al., 2011) , CE-MS (Ramautar et al., 2011), LC-MS and more recently MALDI-MS 
(Shroff et al., 2009). Here only LC-MS will be dealt with. LC-MS technology has been used 
for quantification long before the ages of the "omics". Despite its high-skilled technical need 
and its expensive cost, it has gained popularity in the metabolomics field. Triple 
quadrupoles analyzers (TQMS) are the workhorse of LC-MS quantification. They are mostly 
operated in multiple reaction monitoring (MRM) mode to achieve high selectivity and 
sensitivity. A new promising approach is the use of high resolution extracted ion 
chromatograms from full scans of high resolution instruments (Lu et al., 2008). Main 
advantages over MRM are the virtually unlimited number of monitored compounds and the 
possibility to reanalyze data after acquisition by extracting ion chromatograms 
corresponding to new compounds of interest. 

Calibration of these methods involves most of the time internal calibration, with or without 
use of stable isotope analogs (Ciccimaro & Blair, 2010). For instance, quantification of amino 
acids by LC-MS (MRM) in barley was calibrated using d2-Phe as an internal standard. The 
interday precision of the method ranged from 3.7 to 9.4 % RSD, depending on the amino-
acid (Thiele et al., 2008). However an isotopic dilution calibration is not always possible due 
to the lack of the corresponding labelled metabolite or its cost. These targeted LC-MS 
methods must undergo a complete method validation. They need fast separation, high 
selectivity, linearity range and limits of quantification in agreement with the metabolite 
level. For methods involving atmospheric pressure ionization, a careful evaluation of matrix 
effect on quantification and its minimization should be addressed (Trufelli et al., 2011). 
Moreover, to be relevant, these methods must obviously be applied after an exhaustive 
extraction evaluated by recovery procedures.  

Targeted approaches have been applied in functional genomics. A "widely targeted" 
metabolomics approach based on LC-MS (MRM) has been proposed (Sawada et al., 2009). It 
consisted in repeated UPLC-TQMS analyses performed on a same sample. Each 3 min 
analytical run allowed simultaneous detection of 5 compounds. Expected throughput was 
estimated 1,000 biological samples per week for quantification of about 500 metabolites. This 
methodology was later applied on mature seeds of 2656 mutants and 225 Arabidopsis 
accessions for 17 amino-acids, 18 glucosinolate derivatives and one flavonoid, leading to 
characterization of amino-acids hyper-accumulating genotypes (Hirai et al., 2010). They 
have also been applied in phytochemistry and phytomedicine. For instance, Chinese 
medicinal herbs were tested for two secondary metabolites inducing nephrotoxicity. The 
UPLC-MS (MRM) run was 5 min and was amenable for high-throughput analyses (Jacob et 
al., 2007) This method was however impaired by a strong matrix effect that could not be 
prevented and another approach was preferred. At last, these techniques have been also 
shown to be a must for some classes of compounds such as hormones (Kojima et al., 2009), 
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intermediates of central metabolism (Arrivault et al., 2009) and pesticides (Kmellar et al., 
2010). In fact, they provide together the appropriate selectivity, sensitivity and throughput. 

2.2.4 Further technologies 

Other technologies involve miniaturization of the separation step used prior to detection. A 
key step in miniaturization and automation of chromatography is the development of 
microfluidic systems, which process or manipulate very small volumes (down to 10-18 L) 
using channels of micrometre dimensions (Whitesides, 2006). The fact that factors such as 
surface tension and viscosity are getting very different in such systems brings many new 
possibilities to control concentrations and behaviours of molecules, particles or even cells 
(Nagrath et al., 2007) in space and time. Thus, the performance of soft lithography on e.g. 
poly(dimethylsiloxane) (McDonald et al., 2000) or polypropylene (Vengasandra et al., 2010) 
enables the design of reservoirs, channels, valves, and reaction chambers that can be used to 
separate and transform a wide range of molecules. Combined to detection systems such as 
laser induced fluorescence (Jiang et al., 2000), infrared spectroscopy (Shaw et al., 2009) or 
electrochemical electrodes (Eklund et al., 2006), they are well suited for massively parallel 
assays and provide the advantage of using very small amounts of reagents and samples. 
Further advantages are high resolution and sensitivity as well as fast analysis.  

The use of microfluidic systems for metabolite analysis has just begun. Whereas applications 
targeting one molecule, e.g. glucose (Atalay et al., 2009), have been developed, the possibility 
to separate molecules has already enabled the profiling of classes of metabolites such as 
glucosinolates (Fouad et al., 2008) or flavonoids (Hompesch et al., 2005). Furthermore, the ease 
of creating systems able to distribute fluids into multiple channels enables the performance of 
several assays in parallel (Moser et al., 2002), or even n-multidimensional separations (Tomas 
et al., 2008) that would eventually be coupled to various detection devices, opening 
unprecedented possibilities for targeted and untargeted metabolomics.  

Unfortunately, microfluidics have not yet benefited from standardisation, which hampers 

their adoption by a wide research community. Besides involving complex designs and 

fabrication techniques prohibiting widespread use due to cost and/or time for production, 

microfluidic systems may require unfamiliar laboratory habits. Therefore, one logical next 

step is the integration with the standardized microplate layout, thus taking advantage of the 

extensive work of the lab automation community (Choi & Cunningham, 2007; Halpin & 

Spence, 2010). Strikingly, such integration might ultimately result in methodologies 

enabling high density analyses on very large numbers of samples, thus breaking the 

relationship depicted in Figure 1. Finally, microfluidics and more generally 

nanotechnologies have almost certainly much more to offer, as future developments could 

for example lead to portable systems that would allow metabolite profiling directly in the 

field, thus shortcutting sample handling, or even to chips embarked on growing plants that 

would be able to monitor fluxes in situ.  

2.3 Complementarities of vertical and horizontal approaches  

The combination of horizontal and vertical high-throughput approaches (Fig. 1) is of 
particular interest, as it has the potential to dramatically speed up the process of discovery. 
Thus, depending on the objectives of the study, an untargeted approach can be used first on 
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a selection of samples to identify the most discriminating biomarkers that would then be 
analyzed on a much greater number of samples using a targeted approach (Tarpley et al., 
2005). For example, such strategy has been successfully used in maize where a number of 
enzymes were first profiled in a small panel of eight highly diverse maize inbred lines, 
revealing a highly heritable variation in NAD-dependent isocitrate dehydrogenase activity. 
The use of a panel of about hundred lines then allowed the identification of a novel amino-
acid substitution in a phylogenetically conserved site, which is assoaciated with isocitrate 
activity variation (Zhang et al., 2010). On the contrary, a horizontal approach can be used to 
screen large numbers of samples, thus revealing the most extremes or representative ones, 
on which a vertical approach can then be used to search for unexpected modifications, to 
study the system as a whole in the best possible matrix of samples, or simply to find novel 
biomarkers. As an example, the easy to measure glucose-6-phosphate, which is a good 
temporal marker of carbon depletion (Stitt et al., 2007), has been used to define a precise 
time frame to study transcriptomic and metabolomic responses to carbon starvation in 
Arabidopsis leaves (Usadel et al., 2008), thus avoiding unnecessary and costly analyses. 

3. Key challenges for plant metabolomics 

An increasing number of approaches benefit from plant metabolomics. Among them, 

systems biology, quantitative genetics and meta-phenomics offer particularly exciting yet 

challenging perspectives. 

3.1 Systems biology 

In the context of plant functional genomics, the combination of metabolomics, proteomics, 

and transcriptomics has permitted to decipher and understand dynamic interactions in 

metabolic networks and to discover new correlations with biochemically characterized 

pathways as well as pathways hitherto unknown (Zhang et al., 2009; Williams et al., 2010). 

The main lesson from the latter or similar studies is that metabolic pathways are highly 

interactive rather than operating as separate units. In each biological system (cell, tissue, 

organism) there are metabolic networks in place, which are highly flexible and present a 

huge capacity to provide compensatory mechanisms through regulatory process. These 

observations actually explain why many dedicated GMO strategies ended up with silent 

phenotype (Weckwerth et al., 2004) and also convinced a large set of researchers to study 

metabolic networks as a whole, and not as a sum of parts, moving from reductionist to 

holistic approaches.  

Although systems biology may mean different things to different people, there is a common 
understanding that this discipline is a comprehensive quantitative analysis of the manner in 
which all the components of a biological system (cell, tissue, organisms, communities) 
interact functionally over time. Systems biology aims at combining omics data resulting 
from complex networks into computational models. Besides integration with upstream 
levels (genome, transcriptome, proteome), metabolite data also have to be integrated with 
downstream levels (e.g. growth, performance) data. The quantitative data are the initial 
point for the formulation of mathematical models, which are refined by hypothesis-driven, 
iterative systems perturbations and data integrations. Cycles of iteration result in a more 
accurate model and ultimately the model explains emergent properties of the biological 
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system of interest. Once the model is sufficiently accurate and detailed, it allows biologists 
to accomplish two tasks (1) predict the behavior of the system given any perturbation such 
as a modification of the environment, and (2) redesign or perturb the gene regulatory 
network to create completely new emergent systems properties (Vidal, 2009; Westerhoff et 
al., 2009; Arkin & Schaffer, 2011).  

Exciting examples of integrated system biology to solve biological questions in plant science 
have been published such as identification of key players in the branched amino acid 
metabolism in A. thaliana (Curien et al., 2009), analysis of carbohydrate dynamics during 
acclimation to low temperature in A. thaliana (Nagele et al., 2011), or understanding the 
metabolism of tobacco grown on media containing different cytokins (Lexa et al., 2003). 
Systems biology will benefit from close collaborations between different teams covering 
complementary sectors of metabolism, e.g. central metabolism and different sectors of 
secondary metabolism. The challenges in establishing such systems approaches rely on 
collecting reliable, quantitative and systemic “omics” data, including metabolomics data, for 
developing modelling able to predict de novo biological outcomes given the list of the 
components involved. Advances in plant genome sequencing, transcriptomics and 
proteomics have paved the way for a systematic analysis of cellular processes at gene and 
protein levels. For metabolomics, some limitations remain for real system biology 
approaches, in terms of analytical sensitivity, throughput and access to specific tissue or 
subcellular compartments. Moreover, the high turn-over rate of many metabolic 
intermediates has to be taken into consideration. In addition, the absolute quantification of 
metabolites under physiological, in vivo and dynamic conditions remains a major challenge. 
The combination of existing multiparallel analytical platforms with special attention to 
metabolite quantification (see Sections 2.1.2 and 2.2.3) in a cohesive manner may not be 
sufficient and emerging microtechnologies such as microfluidics will certainly help (see 
Section 2.2.4 and (Wurm et al., 2010)).  

Recently, plant systems biology has been redefined from cell to ecosystem (Keurentjes et al., 

2011). For these authors, in a holistic systems-biology approach, plants have to be studied at 

six levels of biological organization (from subcellular level to ecosystem) in an orchestrated 

way, with special attention to the interdependence between the various levels of biological 

organization. The corresponding challenge will be to generate accurate experimental data 

for communities, populations, single whole plants, down to cell types and their organelles 

that can be used to feed new modelling concepts. For example, at the subcellular level 

molecular signaling pathways are crucial to understand cell development, defense against 

pathogens and many more intermediate processes in plants. The highly sensitive and high-

throughput method developed for the simultaneous analysis of 43 molecular species of 

cytokinins, auxins, ABA and gibberellins (Kojima et al., 2009) has opened a big opportunity 

to routinely describe basic molecular signaling pathways in plant cells. Others challenges 

need to be considered in terms of dry labs. Because systems biology heavily relies on 

information stored in public databases for the different levels of biological organization, 

which is often incomplete, not standardized or improperly annotated, it is essential that 

collective efforts are developed for the validation of large data sets. Plant network biology is 

in its infancy and other current needs range from the development of new theoretical 

methods to characterize network topology, to insights into dynamics of motif clusters and 

biological function. 
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3.2 Quantitative genetics 

Quantitative genetics, which aim at associating quantitative traits with genomic regions 
called quantitative trait loci (QTL), represent a great opportunity to understand the diversity 
of plant metabolism and its relationship to nutritional value or biomass production. Studies 
combining metabolomics and quantitative genetics performed in Arabidopsis seedlings 
(Keurentjes et al., 2006) and tomato fruits (Schauer et al., 2006) have shown that variations in 
metabolite levels are for a large part heritable, and have identified large numbers of 
metabolite QTL, implying that levels of metabolites of interest could be controlled by 
manipulating small genome regions (Saito & Matsuda, 2010). Conversely, genetic diversity 
has been used to study the behaviour of metabolic networks and the way they integrate 
with whole plant traits, eventually revealing links between metabolic composition and 
growth (Meyer et al., 2007). Such findings appeal for multivariate QTL mapping (Calinski et 
al., 2000), thus opening exciting perspectives for the manipulation of plant performance.  

The identification of the molecular bases underlying QTL has usually been a major 

challenge, and several years of hard work were typically necessary to unravel just one of 

them. However, thanks to the development of increasingly powerful methodologies 

exploiting genetic diversity that combine linkage and/or association mapping and high 

density genotyping, the elucidation of such molecular bases can now be achieved much 

quicker (Myles et al., 2009). The other side of the coin is that these methodologies require 

experiments of increasing sizes. Thus, the nested association mapping (NAM) approach 

recently developed in maize (Yu et al., 2008) already involves 5,000 genotypes (25 mapping 

populations of 200 genotypes each), which would represent at least 5,000 samples to 

process. Unfortunately, due to technical and financial limitations, the processing of so many 

samples remains very unusual in plant metabolomics. Furthermore, taking into account 

different growth scenarios, temporal aspects or different organs or tissues would result in 

factorial increases in numbers of samples. As mentioned above, combinations of horizontal 

and vertical metabolomics might nevertheless be very useful to decrease costs and labour. 

For instance, small sub-panels with high genetic diversity can be used first to assess 

heritability for a large number of metabolic traits, selected ones being then evaluated in full 

panels using inexpensive and fast methods.  

Finally and importantly, genetic divergence and phenotypic divergence are too different 
things (Kozak et al., 2011). Accordingly, one single gene can be responsible for huge 
phenotypic variations and one single trait can be controlled by many QTL. One consequence 
is that molecular marker-assisted breeding might not always be the best and/or cheapest 
solution to select genotypes yielding phenotypes of interest. Therefore, it is pertinent to 
explore the possibility to use alternative biomarkers, including metabolites that can be 
measured at reasonable costs in very large populations.  

3.3 Meta-phenomics 

Comparing different species is a powerful way to extend knowledge about biological 
processes. Thus, comparative genomics facilitate the assignation of gene function in non 
sequenced organisms, enable the quick annotation of newly sequenced genomes and greatly 
contribute to studies of gene function and evolution. For example, extensive synteny 
between genomes of Graminae species has been shown (Salse, 2004) and QTL controlling 
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similar traits have been found in orthologous regions of e.g., maize and sorghum 
(Figueiredo et al., 2010). Conversely, the fact that orthologous genes do not necessary have 
the same functions in different species (Buckler et al., 2009) opens fascinating perspectives 
regarding evolution of gene function (Wang et al., 2009).  

Finding common and divergent phenotypes among large numbers of species is also a 
promising way to better understand biological functions in the context of evolution. 
Meta-phenomics, which has recently been proposed by Poorter and colleagues (Poorter et 
al., 2009; Poorter et al., 2010), defines as the study of plant responses to environmental 
factors by performing meta-analyses. This novel ecophysiological approach aims at 
generalising plant responses by integrating phenotypic and environmental data gathered for 
large numbers of species. Thus, by using accurate normalisation procedures generic 
response curves were found for surface leaf area as related to major abiotic factors. 
Noteworthy, data for >300 species had to be collected and curated manually throughout 60 
years of literature. One exciting finding is divergences between groups of species could be 
pinpointed, for example C3 and C4 species. There is no doubt that meta-phenomics is 
amenable to the cellular level, and in particular to metabolic pathways, and C3 and C4 
metabotypes are indeed easy to distinguish when comparing their respective metabolomes. 
However, this might be considerably complicated given the heterogeneity of available 
metabolic data (in terms of e.g., annotation and normalisation). Furthermore, descriptions of 
environmental conditions found in literature are almost always text-based, and thus very 
difficult to compute. Fortunately, the adoption and use of standardised conceptualisations 
with explicit specifications to report data and metadata (i.e. minimum checklists) is 
progressing in the field of metabolomics (Fiehn et al., 2007a; Fiehn et al., 2007b). It will 
nevertheless be of central importance to prefer absolute quantification and to enable 
quantitative descriptions of environmental factors, which will probably be facilitated via 
collaborations with ecophysiologists.  

4. Conclusion 

As metabolomics in general (Hall et al., 2011), plant metabolomics is moving towards 
biology with a growing variety of applications from ‘simple’ diagnostic of culture practices 
to translational studies towards systems biology. However, for some of the emerging 
applications, the optimization of analytical and computational technologies for the 
acquisition, handling and mining of metabolomics data remains necessary. Some of the 
crucial bottlenecks that still have to be adressed concern quantification for modelling, time 
and spatial resolved experiments, multi-experiments and data sharing.  

The promotion of multi-experiments and multi-labs combined analyses (Allwood et al., 
2009; Ward et al., 2010) for high sample numbers, indispensable for some ecology or 
quantitative genetics studies for instance, requires shared plant biological standards (labeled 
or non-labeled) and standardization of their use. The absolute quantification data, needed 
for metabolism modelling in systems biololy approaches, also requires isotopically labelled 
plant standards or at least labelled reference compounds for MS approaches. The 
generalisation of time-resolved experiments for instance for the study of fine metabolism 
regulation or short-term responses to stresses will need further increases in horizontal high-
throughput using microplate, microfluidics or other technologies. Besides increased 
throughput, increased sensitivity for all the analytical technologies listed in this review may 
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open new insights into the use of metabolomics for plant development studies. Spatial-
resolved experiments with analysis of laser-microdissected samples by NMR or MS (Moco 
et al., 2009; Kim et al., 2011) will be particularly useful for the study of plant-pathogen 
interactions. The generalization of metabolite compartmentation studies in plant tissues at 
the cellular and subcellular levels, possibly with non-aqueous fractionation (Krueger et al., 
2011), will also request increases in both horizontal high-throughput and sensitivity.  

Moreover, the systematic sharing, combining, and re-exploring of the data produced using 
targeted metabolic phenotyping or untargeted metabolomics will produce new knowledge. 
Cataloging the metabolome itself by experimental data and literature data, stored in curated 
databases can complement genomic reconstructions of metabolism (Fiehn et al., 2011). 
Access to the regulation of the plasticity and flexibility of  metabolic networks implies that 
the metadata of each experiment, including environment metadata (Hannemann et al., 2009) 
have to be carefully documented and uploaded into a central or distributed network 
repository dedicated to plants. This suggests that the MSI initiative (Fiehn et al., 2007a) has 
to continue to propose and promote standardization criteria that will be integrated by the 
bioinformatics developments of open repositories and used by the community. In addition, 
sophisticated but easy-to-use tools for metabolomics data combining, integration with other 
phenotyping or omics data, and integrated statistical analyses and modelling are needed. 
The plant metabolome community may benefit from more interaction with the human 
metabolome community for the use and development of such tools, and both may address 
combined analyses of food quality determinants (Hall et al., 2008) and food human 
consumption monitoring (Wishart, 2008). 
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