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1. Introduction 

Traditional architecture of Intelligent Tutoring Systems (ITSs) does not offer sufficient 
modularity. There is a lack of open distributed ITS architectures, despite ITSs being systems 
that may need frequent changes due to the modifications of particular course or adaptation 
to new courses. The chapter focuses on usage of distributed technologies in development of 
open ITSs to increase the modularity of the ITSs and facilitate the implementation of needed 
changes into ITSs. The aim of the chapter is to propose open and highly modular ITS 
architectures, using two distributed paradigms – intelligent software agents and services. 
To realize intelligent tutoring various types of learning materials and problems have to be 
presented to the learner, moreover it should be done intelligently enough to successfully 
simulate the human tutor. Thus all known ITSs concentrate on a certain problem domain 
or course to provide specific functionality for problems and examples of the domain. For 
example, the system has to be capable to analyse learner’s actions during the problem 
solving. Each new type of problems needs corresponding code to handle it. Problems 
differ from course to course and may change if the course is changed. As a consequence 
the functionality of ITS may be modified to adapt to the changes in the course or to a new 
course. The system should be open for certain types of components handling new types of 
problems, materials, feedback, etc. The architecture of ITS should support such an 
openness. 
ITSs traditionally have modular architecture consisting of four modules, namely tutoring 
module, expert module, student diagnosis module and communication module 
(Grundspenkis & Anohina, 2005). The main principle is to build components using only 
one type of knowledge (pedagogical knowledge, domain knowledge and knowledge 
about the learner). As a result, the architecture does not have sufficient modularity for 
complex ITSs. To facilitate modularity and change management distributed technologies 
like services and agents are used in ITSs. Well known examples of agent based ITSs are 
Ines system for nurse education (Hospers et al., 2003), Formal Languages and aUTomata 
Education system FLUTE (Devedzic et al., 2000), IVET virtual training environment (de 
Antonio et al, 2005) and WADIES – a Web- and agent-based adaptive learning 
environment for teaching compilers (Georguli et al., 2003). Grundspenkis and Anohina 
(2005) have concluded that agent based ITSs mainly implement traditional modules as 
sets of agents. The authors have defined customizable set of agents that implements the 
system as a set of distributed components and at the same time maintains the traditional 
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idea of ITS’s modules separating different types of knowledge. Nevertheless, there is a 
need for a distributed architecture, because the set of agents only defines ITS components 
and does not solve architectural problems of ITSs. 
As of author’s knowledge no specific service oriented architectures (SOA) for ITS 
development exist, except the ones presented further in the chapter. The only known 
distributed ITS architectures are a few multi-agent architectures for ITS development. 
These architectures mainly consist of agents from the set of agents defined by 
Grundspenkis and Anohina. The architectures are closed in the sense that system’s 
functionality can not be changed just by adding/removing agents from the system. 
Examples of such architectures are ABITS (Capuano et al, 2000), IVET (de Antonio et al, 
2005) and X-genitor (Triantis & Pintelas, 2004). Several open architectures are proposed to 
allow adding new student agents and create a learning environment for multiple learners, 
for example, JADE (Silveira & Vicari, 2002) and two level multi-agent architecture for 
distance learning environment (Webber & Pesty, 2002). Still, these architectures are open 
only for new student agents to join the system and are closed for any other types of 
agents. As a consequence there is a need for architectures enabling usage of all advantages 
of distributed technologies, including the possibility to change system’s functionality by 
just adding and/or removing distributed components from the system. The chapter 
describes such ITS architectures. The remainder of the chapter is organized as follows. 
The Section 2 gives a brief introduction to ITSs by describing the tutoring process carried 
out by ITSs and presenting the traditional architecture of ITSs. The Section 3 is dedicated 
to agent based ITSs. It analyses the related work about the agent based ITS architectures 
and describes open holonic multi-agent ITS architecture. The Section 4 compares 
intelligent agents to web services. It analyses the lessons learned in the development of 
holonic multi-agent architecture and possibilities to apply them to SOA. The Section 5 
describes service oriented ITS architecture that implements each module as a set of 
services. The Section 6 proposes hybrid architecture that includes both agents and 
services. Agents implement higher level deliberative components while services realize 
lower level reactive components. The Section 7 concludes the chapter. 

2. Intelligent tutoring systems 

ITSs can be defined as computerized systems used for tutoring and having the following 
characteristics (Anohina, 2007): (1) they use principles and methods from artificial 
intelligence (like, knowledge representation, reasoning, natural language processing and 
machine learning); (2) are adaptive systems that adapt the tutoring process to the 
characteristics of the learner, so carrying out adaptive or individualized tutoring; (3) 
simulate human tutor; (4) are based on the cognitive theory. One of the main 
characteristics of ITSs is that they try to simulate human tutor to implement adaptive 
tutoring. To cover all activities done by the human tutor the system has to do the 
following tasks: generate curriculum, provide learning materials and problems for the 
learner to solve in each topic, evaluate learner’s knowledge and give meaningful feedback 
to the learner to help him/her improve his/her knowledge (Lavendelis, 2009). In adaptive 
tutoring these activities must be carried out adaptively – each learner should receive 
individual approach that fits his/her characteristics and/or preferences. Curriculum 
should be generated to meet the needs of individual learner as well as materials and 
problems should be adapted to each learner.  
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Simulation of the human tutor is a complex task for the system. It requires intelligent 
choices and actions to be made. All actions by the teacher, like creation of the curriculum, 
choice of the appropriate learning materials or evaluation of the learner’s knowledge are 
complex actions and require intelligence. As a consequence, various intelligent mechanisms 
are needed for an ITS to simulate such actions. Intelligent mechanisms used to implement 
adaptive tutoring vary from system to system. Still, the main types of knowledge used in 
different ITSs are the same. Knowledge about the domain or subject is needed to know what 
to teach. Knowledge about the learner is needed to know whom to adapt and knowledge 
about the tutoring process is needed to know how to teach and how to adapt to the learner’s 
characteristics. The goal of ITSs is to use the above-mentioned three types of knowledge to 
carry out adaptive tutoring. Usually each type of the knowledge is used by different 
intelligent mechanisms. It is beneficial to define components corresponding to the three 
main types of knowledge used in ITSs. As a consequence traditional modular ITS 
architecture consists of three modules, namely, the expert module, the student diagnosis 
module and the tutoring module, all together named traditional trinity (Grundspenkis & 
Anohina, 2005). Additionally the communication module is added to manage the user 
interface, resulting in the modular architecture consisting of 4 modules. The modular 
architecture is widely used in intelligent tutoring systems, for example, in Ines (Hospers et 
al, 2003), AlgeBrain (Alpert et al, 1999), FLUTE (Devedzic et al, 2000) and IKAS (Vilkelis et 
al, 2009) systems. Modules have the following features (Grundspenkis & Anohina, 2005): 

 The expert module represents the domain expert’s knowledge and includes problem 
solving characteristics. The task of the module is to solve domain problems. It serves as 
a standard to compare learner’s knowledge to. 

 The student diagnosis module collects information about learner’s knowledge and 
misunderstandings, creating the student model. 

 The tutoring module holds teaching strategies and instructions to implement tutoring 
process. The primary tasks of this module are controlling selection, sequencing and 
presentation of learning material that is most suitable for the learner, determining the 
type and contents of feedback and help, and answering learners’ questions. Strategies 
contained by the module must be adapted to the needs of each individual learner 
without any help of humans. The goal of the module is to reduce the gap between 
learner’s knowledge and expert’s knowledge as far as possible or in ideal case eliminate 
the gap completely. 

 The communication module is the only module interacting with the learner. It has to 
manage the user interface of the system. It perceives all learners’ actions, receives all 
requests from learners and forwards them to other modules. It is responsible for 
presentation of all kinds of information (curriculum of the course, materials, problems, 
feedback, etc.) to the learner, too. 

Despite the acceptance of the modular architecture its main drawback is insufficient 
modularity to build complex adaptive ITSs because the modules have many tasks. 
Distributed computing technologies, namely, services and agents are used to split the higher 
level modules into lower level components to increase modularity of ITSs. Moreover, the 
functionality of ITSs includes many functions and corresponding pieces of code that differ in 
systems for various courses and even may be needed to change for the same course. Usage 
of distributed technologies also enables implementation of open ITSs allowing introduction 
of new functionality without changing existing code. The remainder of the chapter analyses 
use of the two types of distributed technologies in the architecture of ITSs. 
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3. Agent based intelligent tutoring systems 

Majority of agent based ITSs use the same approach. They implement traditional ITS 
modules as sets of agents. Popularity of the approach is based on the fact that each module 
contains functions that can be grouped in logical components. The defined agents 
correspond to these components. Modules may consist of various numbers of logical 
components. Each module can be realized as a single agent, a few agents or as a multi-agent 
system with its own architecture. Still, each module has some basic agents that with needed 
modifications are used in majority of agent based ITSs. The general set of agents to 
implement modules of ITS defined by Grundspenkis and Anohina (2005) is the following. 
The goal of the student diagnosis module is to collect and maintain information about each 
learner. While part of this information is known before starting the tutoring and does not 
change during the tutoring process, other parts, like the knowledge level, change during the 
tutoring process and have to be collected by the agents of the module. Agents have to collect 
information about the learning process, various characteristics of the learner (emotional, 
cognitive and character). The following agents are used to collect information 
(Grundspenkis & Anohina, 2005): 

 The knowledge evaluation agent that evaluates the level of the learners’ knowledge and 
skills. Mainly it is done based on learner’s results in the tests and problems. 

 The psychological agent that collects information about the learner’s preferences, 
learning style and emotions during the learning process. 

 The cognitive diagnosis agent determines and registers learner’s mistakes. It is also 
responsible for determining the causes of the learner’s mistakes. 

 The interaction registering agent registers history of learner’s interaction with the 
system and follows the usage of the system’s features. For example, if a learner does not 
use some important features of the system, the agent may suggest using them. 

Agents that build the pedagogical module have to create and modify (when needed) the 
curriculum, provide learning materials, generate problems and provide the feedback to the 
learner. All these tasks are more or less independent, thus they are assigned to separate 
agents and the module consists of the following agents (Grundspenkis & Anohina, 2005): 

 The curriculum agent that creates, evaluates and modifies the curriculum if needed. 

 One or a few teaching strategy agents that implement teaching strategies. These agents 
provide learning materials in each topic according to the teaching strategy. It is needed 
to vary teaching strategies, because learners have different learning styles. Some 
learners prefer to receive an example first while others prefer to read theory and only 
then receive an example (Bicans et al, 2011). 

 The problem generation agent that generates tasks, questions and problems. In the 
remainder of the paper all tasks, questions and problems given to the learner to 
evaluate his/her knowledge will be named problems. 

 The feedback agent that provides feedback to a learner after he/she has finished the 
problem solving. The agent is also responsible for providing hints and explanations 
requested by a learner. 

The expert module is responsible for solving problems and tasks in the domain taught by the 
system. This module consists of one or more expert agents that solve problems of the 
learning course. Usually each expert agent is responsible for problems in one topic or of one 
type. The communication module can be implemented as the interface agent and/or animated 
pedagogical agent (Grundspenkis & Anohina, 2005). The interface agent is responsible for 
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all tasks concerning the communication with a learner. It is responsible for the whole user 
interface. This agent may be responsible also for teacher’s user interface. Similarly, the 
animated pedagogical agent is responsible for interactions with a learner. The main 
difference from the interface agent is that the animated pedagogical agent is two or three 
dimensional animated person that uses voice, gesture and mimics to interact with the 
learner. Animated pedagogical agents are made to be perceived as teachers. They make the 
learning process more interesting to a learner. Additionally to the abovementioned tasks of 
the communication module, namely, displaying curriculum, providing learning materials, 
showing the knowledge evaluations and feedback the animated pedagogical agents 
accomplish one important task of the teacher – they motivate learners to study. The agent 
achieves it by showing systems emotions, so making the interaction with the ITS more 
human like. The agents of the communication module are the only agents that communicate 
with the learner and thus have to carry out all communication tasks. They have to present 
all information that has been prepared by all other agents of the system like curriculum, 
learning materials, problems, feedback, etc.). These agents also have to register relevant 
actions done by the learner and forward them to the agents of other modules that are 
interested in the corresponding actions. The agents also control the work of all 
communication devices used to interact with the learner: the user interface, keyboard, 
mouse as well as various specialized devices like data gloves, video cameras and other 
equipment of the learning environment (Grundspenkis & Anohina, 2005). 
Additionally the set of agents may contain manager agents that coordinate other agents of 
the set. These agents may be created differently. One manager agent can be created for each 
module or for a whole system. The Figure 1 depicts the described set of agents. The manager 
agents are not included in the set, because they can be defined differently. The described set 
of agents can be customized to meet the functionality of every individual ITS. Some agents 
can be removed from the set if the system does not need the corresponding functionality. If 
needed, some additional agents can be added to implement additional functionality that 
usually is connected with the problem domain, for example, the patient agent in the nurse  
 

 

Fig. 1. The set of agents used to implement ITSs (Grundspenkis & Anohina, 2005). 

www.intechopen.com



 
Methodologies, Tools and New Developments for E-Learning 

 

246 

education system Ines (Hospers et al, 2003). The set of agents can be taken as a basis and 
modified instead of designing the multi agent system from scratch. Nevertheless, 
implementation of ITSs based on the described set does not eliminate all drawbacks of 
modular architecture. Firstly, the set of agents does not define interactions among agents. 
Every agent may interact with any other agent, making the complexity of the interactions 
grow exponentially if the number of agents grows. Secondly, direct implementation of the 
set of agents does not ensure openness of the system. Introduction of new functionality into 
the system is impossible without changing existing components. Thirdly, some agents still 
are large and have many tasks, reducing modularity of ITSs. Reuse of large-scale agents is 
complex, too, because agents have many tasks and it is unlikely that there will be two 
systems that will need all these tasks unchanged. At the same time direct reuse of single task 
is impossible too, because it is only a part of the component. 
A few distributed ITS architectures that facilitate ITS design by providing agents, their 
tasks and interactions, exist. Majority of them modify or extend the set of agents described 
above. Examples of such architectures are the multi-agent architecture for distance 
education systems (Dorca et al, 2003), the IVET architecture (de Antonio et al, 2005), the 
ABITS architecture (Capuano et al, 2000), the JADE architecture (Silveira & Vicari, 2002) 
and the X-Genitor framework (Triantis & Pintelas, 2004). Nevertheless, they do not solve 
the architectural problems in the ITSs. As they are similar to the defined set of agents, 
they have the same problems with modularity and reuse. Some of the architectures are 
defined to be open, for new agents of one type. New interface agents can be added to the 
system to represent new learners. Examples of open architectures in this sense are X-
GENITOR and JADE. These open architectures facilitate group learning and collaborative 
learning in ITSs. Still they are not open for new components that add new functionality to 
the system without changing existing code. For example, it is not possible to add new 
agent that is capable to generate new types of problems, but the code of existing problem 
generation agent has to be changed. Moreover, it has to be analysed how the changes 
made in the problem generation agent will affect other agents. As a consequence these 
architectures do not allow benefiting from one of the main advantages of agent 
technologies – open and distributed computing.  
Additionally, existing architectures have the following drawbacks. Agents have many tasks 
making the development complex. Agents used in ITS are not capable to deal with problems 
that can be solved by multiple agents, like resolution of various conflicts. Example of such 
tasks is choice of appropriate learning strategies using various criteria. As a consequence, it 
can be concluded that known agent based ITS architectures do not take full advantage of the 
distributed and open nature of multi-agent systems. Thus, there is a need for distributed ITS 
architectures to enable full usage of all these advantages in ITS development. The remainder 
of the section presents holonic multi-agent architecture that tries to implement open and 
highly modular ITSs as well as the MIPITS system (Lavendelis & Grundspenkis, 2010), 
which is an agent based ITS developed using the described architecture. 

3.1 Multi-agent architectures 

Small scale multi-agent systems can be developed just by defining agents and specifying 
interactions among them. This approach starts to fail if the number of agents increases, 
exponentially increasing the complexity of interactions, because every pair of agents may 
interact each other. To solve this problem, the concepts of architecture and organization are 
introduced into the multi-agent systems. Additionally, these concepts are used for agents to 
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create teams and cooperate in problem solving. Two best known multi-agent system 
architectures are holonic multi-agent systems (Fischer et al, 2003) and multi-multi-agent 
systems (Nimis & Stockheim, 2004). The idea of holonic multi-agent systems is that autonomy 
of agents is reduced and agents are merged into holons, which appear to outside as a single 
entity (Fischer et al, 2003). The term “holon” (Greek word “holos” has meaning “whole” and 
suffix ”-on” denotes “part”) is adopted from biological system research done by A. Koestler 
(1967). Holon is a self-organizing structure which consists of substructures and is a part of 
larger superstructure. In terms of multi-agent systems holon or holonic agent is an agent 
that consists of other agents named subholons. 
In holonic multi-agent systems agents form a hierarchical structure, i.e., each holon can be a 
part of a higher level holon and consist of lower level holons. It allows adapting the system 
to the structure of the domain. Hierarchy makes holons suitable for task and result sharing. 
If the holon has a task assigned to it, the task can be decomposed into some subtasks that are 
assigned to subholons, which can decompose them into the next level subtasks and so on. If 
the agent receives a task that it is not able to accomplish it can also find other agents to 
create a holon with, to accomplish the task together (Fischer et al, 2003).  
The autonomy of agents that form a holon is usually reduced by giving one agent (called 
head or head agent) the privilege to do resource and task allocation in the holon. It can 
have partial or total control over other agents. Agents that are parts of the holon, but are 
not head agents are called body of the holon (Gerber et al, 1999). To outside the holon 
appears as a single entity represented by the head of the holon. The body agents do not 
communicate outside the holon. So, holons have an interface (head) and they can be 
developed separately as modules of traditional software engineering. Holons also make 
change implementation easier, because changes of an agent in one holon directly affect 
only agents from the same holon. Lavendelis & Grundspenkis (2008) have concluded that 
ITSs comply well with the main criteria of holonic domains defined by the authors of the 
holonic approach (Gerber et al, 1999), namely operator abstraction, hierarchical structure, 
partial decomposability and cooperative system. Thus the holonic multi-agent systems are 
suitable for ITSs. 
The second well-known multi-agent architecture - multi-multi-agent system has been 
developed inside the Agent.Enterprise methodology (Nimis & Stockheim, 2004). The main 
goal of the project is integration of several multi-agent systems. It is similar to the holonic 
multi-agent systems in the sense that both architectures propose to create systems that 
consist of subsystems - holons and multi-agent systems, respectively. Multi-multi-agent 
systems offer the concept of the gateway agent that accomplishes routing and message 
conversion between different message formats used in different multi-agent systems. 
Interactions among agents of various multi-agent systems are enabled. Still, comparing 
holonic multi-agent systems and multi-multi-agent systems one may conclude that in the 
context of ITSs there are significant advantages of holonic multi-agent systems. The main 
of them is that heads of holons unlike the gateway agents can accomplish not only 
mediator tasks, but also many other tasks. It allows implementing great part of the 
intelligent mechanisms into the heads of holons. One more important advantage is that 
holons can be dynamically changed and allow to build open systems. For other 
advantages of holonic multi-agent systems see (Lavendelis & Grundspenkis, 2011), where 
it is concluded that the holonic multi agent systems are more suitable for the ITSs and 
should be used to develop a specific agent based ITS architecture. The next subsection 
describes such architecture. 
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3.2 Open holonic multi-agent ITS architecture 

Despite the fact that holonic multi-agent systems are suitable for agent based ITS 

development it is not clear how to use holons in ITSs without any specific architecture. Such 

architecture is proposed in (Lavendelis & Grundspenkis, 2008). From outside it is a single 

holon. The only agent that represents the system outside is the interface agent, which 

implements all interactions with the learner. So, it is the head of the higher level holon and 

the only agent implementing the communication module. The remaining modules are 

implemented as subholons and are included in the body of the higher level holon. Each 

module can be realized as one or more holons. Modules that carry out wide functionality 

(pedagogical module and student module) are implemented as multiple holons. The 

functionality of the student module contains the following two groups of functions: 

learner’s knowledge evaluation functions (usually evaluation of the learner’s solution) as 

well as building and maintaining of the student model. Thus the student model is realized 

as two holonic agents – student modelling and knowledge evaluation agent. The 

pedagogical module similarly to the above defined set of agents consists of the following 

holonic agents: the curriculum agent, the teaching strategy agent, the problem generation 

agent and the feedback agent. The expert module is implemented as a single agent – the 

expert agent. So, the higher level of the architecture contains 7 body agents (see Figure 2). 

The higher level agents have the same functionality as the agents from the above defined 

agent set, except three agents of the student modelling holon are merged into one higher 

level holon that has all the functionality of the three merged agents. Interactions among the 

higher level holons are defined in two degrees of detailed elaboration. Firstly the 

acquaintance diagram is developed showing which holons have any interactions. Secondly, 

messages sent among agents are defined in the interaction diagrams (Lavendelis, 2009). 
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Fig. 2. The higher level of the holonic ITS architecture. 

Higher level agents are realized as holons that consist of a single head agent and some 
subholons (body agents). The head of the holon is responsible for the coordination of all 
subholons that is done by centralized planning and task allocation to the body agents. The 
heads use directory facilitator service to find body agents and their capabilities. Heads are 
responsible for tasks that need one unique performer, like, the head of student modelling 
agent is responsible for building complete student model and providing it to other agents. 
The architecture is open and contains two types of holons: open and closed. Open holons 
consist of the head and a certain type of body agents, however, the number and exact 
instances of body agents are not defined during the design of the system and can be freely 
changed during the maintenance and runtime, so modifying the system’s functionality.  
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Body agents have to register their services at the directory facilitator agent. Heads of open 
holons use the directory facilitator agent to find actual body agents in open holons. Closed 
holons consist of agents that are specified during the design and can not be changed during 
the runtime of the system. Body agents are responsible for certain types of tasks that are 
subtasks of the holon’s tasks. Body agents of closed holons usually carry out principally 
different tasks. Contrary, body agents of open holons are responsible for different subtypes 
of one type of tasks. So, it is possible to add a new body agent to an open holon that is 
responsible for a new subtype of the task. For example, each body agent of an open holon is 
responsible for generation of one type of problems. New type of problems can be introduced 
by adding new body agents. Student modelling, curriculum and feedback agents are closed 
holons, while problem generation, teaching strategy, expert and knowledge evaluation 
agents are open holons. The interactions in all open holons as well as algorithms used by 
heads are similar. The main steps carried out to fulfil the task of the holon are the following: 
1. The head of the holon receives request to carry out a task. If the task can be done by the 

head of the holon, it is performed and the result is sent to the requester and the 
algorithm ends. Otherwise, it continues with the Step 2. 

2. The head of the holon queries the directory facilitator agent to find all body agents.  
3. If the directory facilitator has found at least one appropriate agent, the head queries the 

body agents. Depending on the holon only one body agent or all appropriate agents are 
queried. One agent is queried if only one type of subtasks suites the request. All agents 
are queried if all types of subtasks suite the request. If no body agents are found a 
system error is generated. 

4. After receiving the request from the head of the holon, body agents carry out the task 
and send the results to the head. 

5. If more than one body agent is queried during the Step 3, the head waits for replies 
from all of them or until the time-out has occurred. Then, it finds the most appropriate 
result provided by the body agents. For example, if each body agent has generated a 
problem of some type, then the head chooses the most appropriate one for the learner. 

6. The head forwards either the only result or the result chosen during the Step 5 to the 
agent that sent the request during the Step 1. The head may also send the result to some 
other agents, if needed. 

Interactions in the closed holons are simpler than in open ones. There is no need to use 
directory facilitator service, because all body agents and their services are known. After the 
head of the holon receives the request for some task, it just has to find the corresponding 
performer for the task. Usually there is only one such performer in closed holons. It might 
be the head of the holon (usually for global tasks of the holon, like building full student 
model in the student modelling holon) or any of the body agents. If it is one of the body 
agents, it is requested to carry out the task and its result is forwarded to the initial requester. 
Open holons allow addition of new functionality of certain types without changing existing 
code. It is possible to add new body agents in the open holon and so add new types of 
subtask that holons are capable to accomplish. For example, each body agent of the problem 
generation holon generates some type of problems. To add new type of problems to the 
system, a new body agent is added to the open holon. Still, it is not the only agent that has to 
be added to the system, to add new type of problems. New body agents must be added to 
all open holons where each type of problems is treated differently. Such holons are expert 
agent’s holon and knowledge evaluation agent’s holon, because each type of problems must 
be solved and evaluated in different ways. Additionally, all new functionality must be 
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provided to the learner. For, example new type of the problems must be shown to the 
learner by the interface agent. Thus the functionality of the interface agent should be 
extendable, too. To achieve it, the conception of hierarchical holonic multi agent systems is 
extended by implementing the head of the higher level holon (the interface agent) as an 
open holon. The most common tasks in the user interface are done by the head of the 
interface agent’s holon, while other tasks are done by the body agents. So, a corresponding 
body agent must be also added to the interface holon to add new type of problems. The 
whole holonic multi-agent ITS architecture is given in the Figure 3. 
 

 

Fig. 3. Holonic ITS architecture (modified from (Lavendelis & Grundspenkis, 2008)). 

3.3 Case study – The MIPITS system 

The holonic multi-agent ITS architecture is approbated in the case study. An ITS named 
MIPITS has been developed using the proposed architecture (Lavendelis & Grundspenkis, 
2010). The system supports the traditional classroom tutoring for the undergraduate course 
“Fundamentals of Artificial Intelligence” taught at Riga Technical University, because after 
attending lectures a learner can repeat the theory given at the lectures using the learning 
materials provided by the system and assess his/her knowledge with problems provided by 
the system. After finishing each problem, learner’s knowledge is evaluated and he/she 
receives feedback about his/her solution explaining his/her mistakes. The main focus of the 
system is on problem solving. The following types of problems are included in the initial 
version of the system: (1) Different types of tests, including single and multiple choice tests 
and tests, where a learner has to write the answer by him/herself. (2) Search algorithm 
problems, where a learner has to do a state space search using the specified algorithm and 
lists OPEN and CLOSED (Luger, 2005). (3) Two person game problems, where a learner has 
to apply the MINIMAX algorithm or Alpha-Beta pruning to the given state space (Luger, 
2005). The system adapts the problems to the following learner’s characteristics. Difficulty 
level of the problem is adapted to the learner’s knowledge level, practicality of the problem 
and size of the problem are adapted to the corresponding learner’s preferences provided by 
the learner during the registration. Finally, the system follows the types of problems given 
to the learner and tries to minimize the repetition of problems of the same type.  
The adaptation of problems is carried out in the problem generation holon showing that 
such holons can be efficiently used to implement adaptive tutoring. Previously described 
general algorithm of the heads of open holons is used to generate the most suitable problem. 
The suitability of the problems to the learner is measured by calculating the weighted sum 
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of the differences between desired values of criteria and real ones. The problem with the 
minimal weighted sum is considered to be the most suitable one. The following equation is 
used to calculate the appropriateness of the problem (Lavendelis & Grundspenkis, 2010): 

 
pref r d pref s pref r p f( dif -dif *c  + s *c  + -pr *c  + f *c ), wherer tA s pr    (1) 

difpref – the preferred difficulty of the task;  
difr – the real difficulty of the task; 
cd – the weight of the difficulty; 
spref – the preferred size of the problem; 
sr – the real size of the problem; 
cs – the weight of the size;  
prpref – the preferred practicality; 
prr – the real practicality of the problem; 
cp – the weight of the practicality; 
ft – the frequency of problem’s type; 
cf – the weight of the frequency. 

Weights are determined empirically and are the following: cd=2, cs=3, cp=3, cf=6, because 
with these weights all criteria have significant impact on the appropriateness. 
As the MIPITS system has specific functionality with the main focus on problems, the 
general architecture is customized to meet the particular requirements of the system. There 
is only one type of materials in the MIPITS system; thus, there is no need for open holons 
dealing with the materials. The corresponding agents are implemented as monolith agents 
instead of holons. The main teaching strategy agent generates all materials and the main 
interface agent visualizes them in the interface. Similarly, there is only one type of the 
curriculum and it is not changed after generation. The student modelling and feedback 
agents also do not have complex functionality in the MIPITS system, thus these agents also 
are implemented in a monolith way. The agents that deal with the problems are 
implemented as open holons to allow adding new types of problems. At the initial version 
of the system agents for the described three types of problems are implemented in each of 
the open holons, namely, the problem generation, the knowledge evaluation, the expert and 
the interface holons. For example, the problem generation holon contains the head (the main 
problem generation agent), the test generation agent, the search algorithm problem 
generation agent and the game tree problem generation agent. The actual architecture of the 
system is shown in the Figure 4. The heads of open holons are denoted with grey colour. 
 

 

Fig. 4. The architecture of the MIPITS system. 
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The interface of the MIPITS system consists of two main parts (see Figure 5). The interface 

is in Latvian, because it is the language of the course. The left side of the main window 

shows the curriculum. It is shown as a hierarchy. The higher level shows the modules of 

the course, while lower level shows topics. When the learner chooses the topic to start 

learning the corresponding learning material is shown in the right side of the interface. The 

right side is used also to show problems that are given to the learner when he/she submits 

that he/she has finished the theoretical material and is ready to evaluate his/her 

knowledge. The layout of the right side differs for various problems. This part of the 

interface is created and managed by the corresponding body agents of the interface holon. 

The example of the problem is given in the Figure 5. It is an interface for two-person games 

algorithm MINI-MAX (Luger, 2005). It is created by the two-person games problem 

visualization agent. It has typical structure for the problems used in the MIPITS system. 

The top part of the right side (denoted with 1 in Figure 5) contains the description of the 

problem and defines what a learner has to do. The middle part (denoted with 2 in Figure 5) 

contains graphical information. In this case it is the game tree. The bottom part (denoted 

with 3 in Figure 5) contains controls for student to solve the problem. For the particular 

type of tasks it contains controls for assigning values to the vertexes in the state space. The 

student has to show how the hierarchical evaluations of the vertexes change during the 

execution of the algorithm. 

The MIPITS system is open – it can be extended with new types of problems by adding four 

new body agents to corresponding holons: a problem generation agent, an expert agent, a 

knowledge evaluation agent and a problem visualisation agent for the particular types of 

problems. The extendibility of the MIPITS system has been proven by adding new type of 

problems to already running system without changing existing code. A topic about 

propositional logic and inference was added (Lavendelis & Grundspenkis, 2011).  

 

 

Fig. 5. The user interface of the MIPITS system. 
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4. Intelligent agents and web services 

Despite being two independently developed technologies, services and agents have many 
similarities, because both of them are based on the principles of distributed computing. 
Thus it is worth to analyze how the lessons learned from the agent based architectures can 
be applied to the service oriented ITSs. Lavendelis and Bicans (2011) have indentified the 
most important similarities between agents and services in the context of ITSs: 

 High modularity. Both services and agents offer high modularity, because they support 
systems that consist of small distributed entities. 

 Openness. Both technologies allow dynamical addition of components (agents and 
services, respectively) to the system, to implement changes into the system. Both 
technologies offer mechanisms to find newly added components. 

 Reactiveness. Reactive agents can be considered as services. For example lower level 
agents from the holonic agent architecture provide specific service upon request. 

 Usage of protocols. Both agents and services use some kind of protocols to interact. 
Still agents and services have come from two different fields of research. Intelligent agents 
have been proposed by artificial intelligence researchers, while services have been 
introduced by the software engineering specialists. Lavendelis & Bicans (2011) state that 
there are the following significant differences between agents and services that have to be 
taken into consideration during the ITS development: 

 Reasoning capabilities. Services usually have no reasoning capabilities while agents are 
considered as reasoning entities. 

 Autonomy. Agents are autonomous entities that are capable of proactive actions. 
Services are strictly reactive and have no autonomy. They are not capable to carry out 
any goal driven actions. 

 Industrial acceptance. At the moment services appear to be industrially accepted and 
widely used technology. At the same time, agents are mainly used in research projects. 

 Complex interaction protocols. Various interaction protocols like negotiations, auctions, 
etc, can be used in the multi-agent systems to reach agreements and solve problems. 
Agents have social capabilities to participate in these protocols. Services use simple 
protocols and have no social capabilities to participate in any complex interactions. 

One can conclude that both distributed technologies can be used for ITS development and 
both of them have their advantages and disadvantages. ITSs contain components that are 
more suitable to develop as services and components that are more suitable to develop as 
agents. The main criterion to determine which technology is more suitable is the following. 
If there is no proactivity one can use services instead of agents to implement components of 
ITS and benefit from the industrial standards of SOA. Actually, services may be used in the 
same way as agents to implement modules of ITS. The remainder of the section analyzes 
how the similarities of the agents and services allow to use the lessons learned in the agent 
based ITS research in the service oriented ITSs. Additionally, some common principles of 
software architectures are analysed to include them in the architecture of ITSs. 
General software architecture concepts say that the user interface should be separated from 
the logical part of the system. Usually it is done by creating a layered architecture that also 
allows separation of components that are dedicated to the repositories (like the learning 
object repository) and such fundamental technologies like video streaming. So it is beneficial 
to create a layered architecture that consists of three layers (Lavendelis & Bicans, 2011). 
Layer one or the lower layer contains repositories and fundamental technologies used in the 
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ITS. Layer two or the logical layer is a logical part of the system. It contains all three main 
modules of the ITS’s modular architecture, namely, the student module, the tutoring 
module and the expert module. Layer three or the presentation layer contains all technologies 
needed to present the contents to the learner. It contains the communication module. The 
idea of layered architecture complies well with modular and agent oriented architectures. 
It allows keeping the traditional ITS modules and only separates components working 
with the repositories. These components usually are completely reactive and have no 
intelligence. Thus the layered approach allows to separate the intelligent part of the ITS 
from other parts. 
The main lessons learned in the holonic multi-agent ITS architecture are the following. The 
implementation of the architecture showed that it is beneficial to keep the modules of the 
traditional ITS architecture and to implement them with distributed components. It allows 
keeping the main advantage of the modular architecture – the separation of the intelligent 
mechanisms that work with different types of knowledge. It allows for each component to 
process only one type of knowledge and abstract from other types. So the modules should 
be kept in the ITS architecture regardless of the technology used for implementation. 
The distributed implementation gave two advantages to the architecture. Firstly, the 
realization using small-scale components increased the modularity of the system. Secondly, 
the introduction of holons decreased the coupling of the system, because each body agent is 
allowed to interact only with agents of the same holon. The head of the holon serves as an 
interface of the holon. It removed traditional drawback of distributed systems that 
complexity of interactions increases rapidly if the number of components increases. So, it 
may be concluded that some forms of organization should be included in distributed 
architectures. Despite, services do not support such hierarchical structure as holons, the 
organization and, as a consequence, increased modularity and decreased coupling can be 
sustained in the service oriented architecture in the following way. One or a few interface 
services should be introduced in each module. These services would fulfil the role of the 
heads of the higher level holons. If the higher level components are created the same way as 
in the holonic architecture, the expert module would have one main service, while the 
tutoring module, the student module and the communication module would have more 
than one. The interactions in the system are organized in the following way. The main 
service receives service requests from other main services. It uses the service registry to find 
other services (named lower level services) of the module and forwards the request to the 
appropriate service. The lower level service does its job and returns the result to the main 
service, which forwards it to the initial requester. So, like in holonic architecture, 
interactions take place only among main services and between main services and the lower 
level services of the corresponding module. It decreases the coupling of the system and 
facilitates its modularity. For example, the main interface service sends the request for 
problem in a topic to the main problem generation service, which finds the service that can 
generate a problem in the topic or even the most suitable problem for particular learner. 
The holonic architecture implements modules of ITS in an open manner. The 
implementation of the MIPITS system proved that openness is important feature if the 
system is modified by adding some new features (Lavendelis & Grundspenkis, 2011). New 
type of problems that needs completely different processing in all holons was added to the 
system without changing anything in existing code. Thus, the open implementation of 
distributed ITSs makes the change implementation and adaptation of the ITS to new course 
or modifications of the existing course much easier. 
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Implementation of the multi-agent architecture proved that majority of intelligent 
adaptation mechanisms are included in the heads of the holons. Heads are not only the 
mediators, but they make intelligent choices, using different algorithms and reasoning. The 
heads of the higher level holons are the most important components to provide adaptivity. 
For example, body agents are capable to generate problems, but the head of the holon 
chooses the most appropriate problem to the particular learner. The body agents mostly 
work with repositories. They implement certain actions like extracting or generating 
materials or problems. So these agents fit more the concept of the service instead of 
intelligent agents because they are not proactive and execute reactive behaviour by 
accomplishing some task upon the request of the head of the holon. All proactive and 
intelligent actions are carried out by the heads of the holon, that fit the logical layer of the 
general architecture. The body agents on their hand implement the interface between the 
layers one and two because these agents are used by the agents from the second layer to 
access the first layer – the repositories. 
To conclude, the main advantages of the holonic architecture can be sustained in the service 
oriented ITS architecture. Still, some features of agent architecture can not be implemented 
using services. Services do not have built in reasoning mechanisms that are natural to 
agents. So by implementing components as services the built in intelligent mechanisms are 
lost and it is not clear how to implement such mechanisms as reasoning inside the services. 
Potentially this is the main disadvantage in moving from multi-agent to service oriented ITS 
architecture. If some proactive behaviour is needed, then usage of agents is preferable. Still 
intelligent mechanisms and proactivity are mostly included in the logical part of the ITS and 
are rare in other parts. Thus there are components that can be successfully built using 
services instead of agents. As a consequence there is a point in both pure service oriented 
ITS architecture and hybrid ITS architecture, where deliberative components are 
implemented as agents while reactive components are implemented as services. Such 
architectures are presented in the following two sections. 

5. Service oriented intelligent tutoring systems 

It has been concluded in previous sections that there are several advantages to implement 
components of ITSs as services that are better known to software developers than intelligent 
agents. At the same time the principles of holonic multi-agent ITS architecture can be reused 
in the service oriented ITSs development. The following ideas have been identified to be 
adopted from the agent based ITSs and reused in the service oriented ITSs. Firstly, each 
module is implemented as a set of distributed components. Secondly, only some of the 
components interact with other components outside the corresponding module to decrease 
coupling of the system. Thirdly, the ITS is implemented as an open system and new 
functionality can be added to the system by adding new distributed components, in 
particular services. The service oriented ITS architecture that realizes all the identified 
principles is described in the following subsection. The case study of the architecture is 
given in the section 5.2 by presenting an ITS developed using the architecture. 

5.1 Service oriented intelligent tutoring system architecture 

The service oriented ITS architecture (Lavendelis & Bicans, 2011) consists of two levels, 
namely the higher and the lower level. At the higher level of the architecture each module 
contains one or a few main services that are used from the outside of the module. These 
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services implement interfaces of the modules. At the lower level unlimited number of other 
services may be included in each module. These services are used only by the main services 
of the corresponding module. They are not used from the outside of the module. The service 
oriented ITS architecture implements the main ideas of the layered architecture described in 
the previous section. Services of the communication module implement the third layer of 
the layered architecture. All main services of the remaining three modules (the pedagogical 
module, the expert module and the student diagnosis module) implement the logical part of 
the system and thus correspond to the second layer. Lastly, all lower level services 
implement all particular actions with all repositories and with all fundamental technologies 
like video streaming. Thus these services implement the interface to the third layer of the 
layered architecture. 
Similarly to traditional ITS architectures the communication module is the only module 

interacting with the user. It manages the user interface and has to visualize the curriculum, 
learning materials, problems and feedback. It receives learner’s requests and forwards them 

to the corresponding services. The module consists of the following higher level services:  

 The main interface service, whose role is to register learner’s actions and forward them 
to the corresponding services. 

 The main material visualisation service that processes requests to visualize learning 
materials of different types. 

 The main problem visualisation service that similarly to the main material visualisation 
service processes requests to visualize problems of different types. 

 The curriculum visualisation service visualizes the curriculum of the course. 

 The feedback visualisation service that has only one function – to give feedback to a 
learner, when he/she has finished solving the problem or has requested a hint. 

To make the architecture open for new types of materials and problems, the communication 

module contains two types of lower level services that interact only with the corresponding 
main services. Firstly, the main material visualisation service has one lower level service for 

each type of materials that is needed to be visualised differently, like video streams and text 
materials. If new types of materials are introduced in the system, the corresponding lower 

level service will be added to the module. Secondly, the main problem visualisation service 
uses the lower level services corresponding to the types of problems used in the system. 

Thus the main material and problem visualisation services are only mediators – they only 
have to find appropriate lower level services to visualize materials and problems 

respectively. Lower level services also have only one task – to visualize the particular type 

of materials/problems. The higher level services that do not have corresponding lower level 
services do all tasks by themselves, for example, the curriculum visualisation service is 

responsible for visualisation of the curriculum. Still, the general architecture can be 
customized by adding new types of lower level services, if needed. For example, if various 

types of curriculum are used, corresponding lower level services can be added. 
The services of the pedagogical module have the same tasks as the module has in the modular 

architecture. To accomplish them it consists of the following services:  

 The curriculum generation service has to provide the curriculum of the course. It may 
be generated automatically by the service or created by the teacher and stored in the 

database for the service to read from. 

 The main material generation service that is responsible for material generation 

corresponding to the chosen topic from the curriculum of the course. It uses lower level 
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services capable to generate particular types of materials. Each type of materials 
supported by the system has corresponding lower level material generation service. For 

example, separate lower level material generation services can be created for each of the 
abovementioned different formats of learning materials. 

 The main problem generation service, that is responsible for problem generation. 
Similarly, to materials, each type of problems has a corresponding lower level service, 
that generates the corresponding type of problems upon the request of the main service. 
Such an approach implements similar openness to the multi-agent architecture. The 
openness of the architecture is further discussed below. 

 The feedback generation service, which is responsible for providing feedback to the 
learner. It receives the knowledge evaluation and creates meaningful feedback that can 
vary from comments about answer‘s correctness to detailed explanation of mistakes.  

The main material and problem generation services use similar algorithm to carry out 

interactions during the generation. In fact, majority of the main services use similar 

algorithm. The following steps are carried out when the main service receives a request to 

generate a material/problem in the particular topic. The definition of the algorithm will 

include also actions done by other services to illustrate all interactions: 

1. The main service receives generation request. 

2. The main service requests student model from the student modelling service described 

below to know the characteristics of the learner to adapt to. 

3. When the main service receives the student model, it queries the service registry to find 

the corresponding lower level services. 

4. If at least one lower level service is found, the request for materials or problems in the 

certain topic together with needed characteristics is sent to the lower level services.  

5. Lower level services create or retrieve from the repository the most suitable 

materials/problems for the learner’s characteristics in the current topic.  

6. The lower level services send their results to the main services.  

7. The main service receives responses from all services requested before. If more than one 

service provides a result, the main services chooses the most appropriate result and 

forwards it to the main interface service and other main services, if needed. 

The expert module contains only one higher level service named main expert service. It is 

responsible for solving problems given to the learner. Each type of problems has its own 

second level service that solves the problem. The main service just has to find the correct 

second level service. The student module contains two higher level services, namely, the main 

knowledge evaluation service and the main student modelling service. The student 

modelling service is responsible for collecting information about a learner, his/her actions 

priorities and knowledge evaluations. It also creates full student model and provides it 

upon request of other services. The knowledge evaluation service is responsible for 

evaluating learner’s knowledge level by comparing his/her solution of particular problem 

to the so called system’s solution provided by the expert agent. 

Similarly to the multi-agent architecture, the service oriented architecture is open in the 

following sense. New types of materials and problems can be added to the system without 

changing the code of existing services. Only new services corresponding to the new type of 

problem or material must be added in each component of the architecture where each type 

of material/problem is handled by separate service. If any new type of materials is added to 

the system then two services must be added to the system, namely corresponding lower 
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level material generation service and lower level material visualisation service. Four new 

lower level services must be added to introduce new type of problems. Corresponding 

problem generation service, expert service, knowledge evaluation service and problem 

visualisation service must be added to the system. The service oriented ITS architecture is 

given in Figure 6. Besides the described components the figure contains repositories used to 

store data, but links among services and repositories are omitted to keep the figure readable. 

The following repositories can be used in the ITS: the student data repository with personal 

data and student models, the course repository with data about courses and topics, learning 

material repository and the problem repository (for details, see (Lavendelis & Bicans, 2011). 

The described openness is not the only way to customize the architecture. Specific 

functionality that does not correspond to any of the traditional modules may be needed, 

Additional separate modules can be created to include such functionalities. For example, 

teacher’s interface is needed in any practically used ITS to modify the course by adding, 

removing and changing topics, learning materials and problems used in the system. 

Similarly, to the traditional modules additional ones are implemented as sets of services 

(Lavendelis & Bicans, 2011). 

 

 

Fig. 6. Service oriented ITS architecture. 

5.2 Case study 

The described service oriented ITS architecture has been tested during the implementation 
of the ITS for the graduate course “Artificial Intelligence” taught at Riga Technical 
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University (Bicans et al, 2011). The course covers general artificial intelligence topics, like 
agents, planning, ontologies and reasoning. It has video and text learning materials with 
different levels of granularity. The video LOs are filmed lectures of the course. Materials 
cover theory, examples and tasks about the topics of the course. The aim of the ITS is to 
provide out of classroom tutoring, that takes into consideration learning styles of students 
by presenting a single or a combination of appropriate materials in each topic. The ITS 
stores and identifies all kinds of LOs describing them with standardized metadata. Links 
between topics and corresponding learning materials are not stored in the repositories. They 
are created dynamically. A keyword based algorithm is used to find the materials that can 
be used at the current topic and select the most suitable materials for the learner’s 
preferences. LOs and topics are described with keywords and if the intersection between the 
sets of LO’s topic’s keywords is possible, the LO is considered as linked to the topic. Then 
only those LOs that match the preferences stored in the student model are selected from the 
results’ set of the first step (Bicans, et al, 2011). Such an approach provides ITS with option 
to use more LOs from different repositories without manually linking LOs and topics. The 
curriculum of the course is encoded by a topic map that is a graphical knowledge 
representation form using topics and associations among them. In the developed ITS a topic 
map is used to show the hierarchy of the topics, because it visually shows the place of each 
topic in the course.  
The general service oriented ITS architecture is customized during the development of the 
system to meet its specific needs. The main focus of the developed ITS prototype is on the 
adaptive LO presentation to learners. Therefore, only corresponding services dealing with 
LO selection, student model development, tutor’s functionality are implemented in the 
current version of the system. The actual architecture of the ITS is shown in Figure 7. The 
communication module contains the main interface service and two more higher level 
services – the topic map viewer service (visualizes curriculum) and the main material 
visualisation service, which also has two lower level services that visualize both types of  
 

 

Fig. 7. The actual architecture of the implemented ITS prototype. 
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LOs used in the system – text and video LOs. The student module just has to maintain static 
student’s profiles. Thus it contains just one service named student modelling service. The 
tutoring module is implemented using two higher level services, named topic map creation 
service (curriculum generation service) and LO loading service used to retrieve LOs. It has 
two lower level services corresponding to both types of LOs. The teacher’s module besides 
the main interface service has services for editing topic maps, as well as for LO metadata 
editing and LO storing. Finally, the system has one additional module – system evaluation 
module, whose main task is to collect evaluations of the system provided by the learners. 
The user interface of the system is given in Figure 8. The given screenshot is shown to the 

student when he/she chooses the topic to watch the video about. The menu is in the top left 

corner of the window (not included in the figure). The centre of the screen is occupied with 

the video player. One of the main parts of the system is shown in the bottom part of the 

figure. During the video session the system displays topics that are covered within lecture 

and related content that corresponds to the selected topic. Also, related topics, lectures and 

LOs are shown, allowing the learner to navigate to any related topic or material. 

 

 

Fig. 8. The user interface of the developed ITS prototype. 

The group of 19 students have approbated the developed ITS. They watched videos, red 

theoretical materials of lectures and explored examples. The feedback showed that 

granularity of LOs should vary, because some students like LOs with low granularity, while 

others prefer LOs with high granularity. The videos were used frequently and on average 

each student viewed 90% of available videos at least once. Another encouraging result is 

that 90% of students pointed out topic maps as appropriate tool to visualize the curriculum. 

6. Hybrid intelligent tutoring system architecture 

As concluded above, agents are more suitable to implement some components than services 
and vice versa for other components. To benefit from the advantages of both technologies 
hybrid architecture is proposed. It preserves the approach used in the previously described 
architectures in two senses. Firstly, each module from the traditional ITS architecture is 
implemented as a set of distributed components. Secondly, the architecture consists of two 
levels. Still the implementation differs from the previously described architectures. The 
higher level consists of agents that implement the logical or deliberative part of the system. 
The agents correspond to the higher level holons of the multi-agent architecture. The lower 
level of the architecture is mainly implemented as services that carry out simple reactive  
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behaviour upon request like retrieving data from repositories. Agents have the same 

functions as heads of the holons in the multi-agent architecture – they make all intelligent 

choices to carry out the tutoring process and use services for particular tasks. Services of the 

hybrid architecture are used instead of the body agents of the multi-agent architecture. It 

allows keeping the advantages of both previously described architectures, like openness to 

new functionality and high modularity. The proposed architecture is presented in the 

following subsections by specifying agents of each module as well as services used by these 

agents and, as a consequence, included in the corresponding modules. 

6.1 The tutoring module 

The tutoring module is responsible for four types of functions, namely, curriculum 

sequencing, material retrieval or generation, problem generation and providing feedback to 

the learner after he/she has finished the problem. As a consequence the module contains the 

following four agents: curriculum agent, teaching strategy agent, problem generation agent 

and feedback agent. The curriculum agent creates the curriculum of the course for each 

learner. The agent uses topic retrieval service to retrieve topics from the database. The 

teaching strategy agent is responsible for choosing the most suitable material for the learner in 

each topic from the materials available in the repository. To retrieve materials from the 

repository it uses services. There is one service for each type of materials used in the system. 

The problem generation agent is responsible for generation of problems that are suitable to the 

learner’s characteristics. The agent gets the student model from the student modelling agent 

described below. It determines the most suitable type of the problem and calculates 

parameters like the difficulty level of the problem. The agent uses the problem generation 

service to generate the problem of the given type with given parameters. The feedback agent 

generates feedback for a learner each time he/she submits his/her solution of the problem. 

During the creation of the feedback the evaluation of the learner’s solution provided by the 

knowledge evaluation agent is used. Components that implement the tutoring module are 

shown in Figure 9. Services are shown together with the agent that is using them. 
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Fig. 9. Components of the tutoring module. 

6.2 The communication module 

The communication module contains single agent – the interface agent that is responsible 
for carrying out all interactions with the learner. Firstly, it perceives learner’s actions and 
forwards them to agents of other modules that need information about corresponding 
actions. Secondly, it is responsible for presenting all information to the learner. It uses 
services of the module for this purpose. Separate services are created for each type of 
information given to the learner, namely, materials, problems, curriculum and feedback. To 
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make the architecture open, the additional lower levels of services are introduced in the 
communication module. The abovementioned services (for example, material visualisation 
service) are responsible for presentation of all types of the given information (materials). In 
case such service is implemented as a monolith component, it’s code must be changed to 
support new type of materials. For, example, if there is a need to add an audio material the 
code of material visualisation service must be changed. Thus such services are implemented 
only as dispatchers that find the corresponding lower levels service that is capable to 
visualize the corresponding type of information. The visualisation job is physically done by 
the lower level service. It allows implementing visualisation of new information just by 
adding new lower level service, for example, by adding audio material visualisation service. 
The architecture of the module is given in the Figure 10. 
 

 

Fig. 10. The architecture of the communication module. 

6.3 The expert module 

The expert module is implemented identically as in the holonic multi-agent architecture. 
Both layers of the architecture are implemented as agents, because solving any problem 
given to the student is a complex task that usually requires some intelligent mechanisms like 
reasoning which are easier to implement inside agents not services. The higher level of the 
module’s architecture contains only one agent – the expert agent. It receives all requests to 
solve problems. It finds the corresponding lower level agent and forwards the request to 
that agent. The lower level consists of agents corresponding to the types of problems used in 
the system. The architecture of the expert module is depicted in the Figure 11. 
 

 

Fig. 11. The expert module’s architecture. 
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Fig. 12. The student module’s architecture. 

6.4 The student diagnosis module 

The higher level of the student diagnosis module’s architecture consists of two agents, 

namely, student modelling agent and main knowledge evaluation agent. The student 

modelling agent is responsible for creation of the student model and providing it to other 

agents upon request. The student modelling agent uses data storing and data retrieval 

services. Data storing service stores facts about the learner (for example, actions done by 

him/her) upon the request by the agent. The data retrieval service retrieves the stored facts 

for the agent. The student modelling agent receives all facts about the student, analyzes 

them and creates the student model. The knowledge evaluation agent is responsible for 

evaluating learner’s knowledge in certain topic using the solution of some problem 

provided by him/her. The knowledge evaluation is done by comparing learner’s solution to 

the correct solution provided by the expert agent. Comparison of two solutions and 

knowledge evaluation may require complex intelligent mechanisms. Thus, the components 

of the second level are implemented as agents instead of services. Each type of problems 

used in the system have corresponding lower level knowledge evaluation agent. The 

architecture of the student diagnosis module is shown in Figure 12. 

6.5 The whole hybrid ITS architecture 

The whole hybrid architecture is given in Figure 13 that shows components implementing 

all four modules. Additionally, interactions among components of different modules are 

shown. Only agents of the architecture’s higher level interact to components of other 

modules. So, interfaces with other modules are implemented in one or a few agents of each 

module. The hybrid architecture is open in the similar sense to both above described 

architectures. Some kinds of new functionality can be added to the system by adding new 

lower level components and without changing existing components. The most common 

changes are additions of new types of materials (e.g., audio materials) and new types of 

problems (e.g., course specific tasks). New type of materials usually needs corresponding 

functionality like audio streaming to be implemented. New types of problems need the 

corresponding problem generation, problem solving and knowledge evaluation 

functionality. To enable easy addition of such functionality the architecture specifies open 

sets of lower level components corresponding to the functionality that varies from type to 

type of materials and problems. Open sets are denoted by double boxes in the Figure 13. 

New components may be added to these sets at any time. 
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Thus the hybrid architecture preserves the main strengths of the above described service 

oriented and multi-agent architectures, namely, high modularity and openness for new 

components. Moreover, it adds significant advantage by implementing each component in 

suitable technology. The logical layer with all intelligent mechanisms is realized by intelligent 

agents, while reactive components without any proactive or intelligent actions are realized 

using simpler technology – services. It removes the main drawbacks of both homogenous 

architectures. Neither simple components without any intelligent behaviour are implemented 

as agents, nor are the intelligent mechanisms developed from scratch in the services. 
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Fig. 13. The hybrid ITS architecture. 

7. Conclusion 

ITSs based on the traditional architecture have problems with modularity and as a 

consequence complex development and change implementation, as well as reuse of ITS 

components is almost impossible. Distributed technologies may be used to eliminate these 

drawbacks. Still, majority of the known agent based ITSs do not fully use advantages of 

distributed technologies. They are not open and do not enable reuse of small scale 

components. To solve these drawbacks three open architectures for ITS development are 

proposed. The main advantages of the proposed architectures are the following. All of the 

proposed architectures are open and consist of small-scale components that have one or 

very few tasks. The openness of the architectures allows creation of systems that are 

extendable with certain types of functionality by just adding new components and without 

changing existing code. Such option enables easy adaptation of the ITS’s functionality to the 

www.intechopen.com



 
Distributed Intelligent Tutoring System Architectures 

 

265 

changes made in the course as well to any new courses. Usage of small scale components 

that have only one task means that these components can be reused in any system that 

needs this task. Additional advantages of the proposed architectures are increased 

modularity and decreased coupling and as a consequence complexity of interactions 

achieved by introduction of the organisational principles into the distributed technologies, 

namely multi-agent systems and service oriented architectures. 

Two technologies analyzed in the chapter are similar because of their distributed nature. 
Therefore the architectures of systems using these technologies should be built using the 
same principles. Thus the lessons learned in usage of one technology can be used in 
building systems with another technology. The chapter shows how the lessons learned in 
agent based ITS development can be used in service oriented ITSs. 
Agents and services have significant differences. While agents offer natural implementation 
of the intelligent mechanisms needed in the logical part of the system, services are easier to 
implement, and better known for developers. Services also support easy integration of 
various technologies, like various tools for the user interface of the system, video streaming 
tools, etc. These characteristics are important for implementation of the lower level 
components and the user interface. Thus agents are more suitable for some components 
(more deliberative components), while services are more suitable for other components 
(more reactive components). That is a reason why in this chapter the multi-agent and the 
service-oriented architectures are proposed to use as a basis to develop hybrid architecture 
implementing each component in the technology that fits the nature of the component. The 
main direction of the future work is to implement the proposed hybrid architecture and test 
how does it work in the practically implemented prototype of an ITS. Additionally, the 
possibilities to use hybrid architectures consisting of services and agents to other systems 
with some reactive and some deliberative components should be analysed.  
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