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Dictyostelium discoideum: A Model System to
Study LRRK2-Mediated Parkinson Disease

Arjan Kortholt, Bernd Gilsbach, and Peter ].M. van Haastert
Department of Molecular Cell Biology, University of Groningen
The Netherlands

1. Introduction

Parkinson disease (PD) is a neurodegenerative disease that affects more than 5 million
people worldwide and one in hundred people over the age of 60. PD is both a chronic and
degenerative disorder that is characterized by loss of dopaminergic neurons in the
substantia nigra, associated with the formation of fibrillar aggregates composed of a-
synuclein and other proteins (Lees et al., 2009). PD is clinically characterized by tremor,
bradykinesia, rigidity and postural instability. Initially PD was considered to have no
genetic cause, however many patients have one or more family member with the disease
and genome-wide association studies identified a number of genetic factors segregating
with PD (Satake et al., 2009; Simon-Sanchez et al., 2009). Therefore, it is now general
believed that PD is caused by a combination of genetic and environmental factors. Recently,
missense mutations in LRRK2 have been linked to autosomal-dominant, late-onset PD
(Zimprich et al., 2004;Paisan-Ruiz et al., 2004). LRRK2 is a member of the novel Roco family
of complex Ras-like GTPases that have an unique domain architecture (Fig. 1) (Bosgraaf and
van Haastert, 2003). Roco proteins are characterized by the presence of a Ras-like Guanine
nucleotide binding domain, called Roc (Ras of complex proteins), followed by a conserved
stretch of 300-400 amino-acids with no significant homology to other described protein
domains called the COR domain (C-terminal of Roc; Fig. 1). The Roc and COR domains
always occurs as a pair, and so far no proteins have been identified containing either the Roc
or COR domain alone, suggesting that these two domains function as one inseparable unit.
Roco proteins were first identified in the social amoeba Dictyostelium discoideum and are
found in prokaryotes, plants and metazoa, but not in Plasmodium and yeast (Bosgraaf et al.,
2003). Besides a Roc and COR domain, all Roco proteins contain an N-terminal stretch of
leucine-rich repeats (LRR), which are supposed to be involved in protein-protein interaction.
A large group of Roco proteins, which is only present in Dictyostelium and metazoan,
contains an additional C-terminal kinase domain of the MAPKKK subfamily of kinases.
Next to this general domain composition, individual Roco proteins are found to be
combined with a diversity of additional domains such as Guanine nucleotide exchange
factor (GEF) and Regulator of G-protein Signalling (RGS) domains, implicating a link
between traditional G-protein signalling pathways and Roco proteins (Bosgraaf et al., 2003).
The identification of missense mutations in LRRK2 has redefined the role of genetic
variation in PD susceptibility. LRRK2 mutations initiate a penetrant phenotype with
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complete clinical and neurochemical overlap with idiopathic disease (Khan et al.,
2005;Hernandez et al.,, 2005;Aasly et al., 2005). The various mutations that have been
identified in PD are concentrated in the central region of the protein: one amino acid change
within the LRR domain, one amino acid change in the Roc domain, one in the COR domain
that can have multiple mutations and two amino acids change in the kinase domain (Fig.
1A, (Cookson, 2010). Identified mutations outside of these domains do not segregate in a
Mendelian fashion with PD. The mutations are found in 5-6 % of patients with familial PD,
and importantly also have been implicated with sporadic PD with unprecedented 1-2 %
prevalence (Gilks et al., 2005). Although much progress has been made during the last few
years, the exact pathogenic role and associated biochemical pathways responsible for
LRRK2-linked disease are slowly emerging. However, recent evidence suggests that these
pathways involve other proteins that have been linked to PD, especially a-synuclein and tau
(Cookson and Bandmann, 2010;Cookson, 2010). The considerable number of described
disease-linked LRRK2 mutations represent an unique opportunity to biochemically explore
the pathogenicity of LRRK2 and identify therapeutic targets for related neurodegenerative
disorders. Importantly, all known pathogenic mutations in LRRK2 result in decreased
GTPase activity and enhanced kinase activity, suggesting a possible PD-related gain of
abnormal/toxic function (West et al., 2005;Greggio et al., 2006;Guo et al., 2007;Ito et al,,
2007;Luzon-Toro et al., 2007;Lewis et al., 2007;Li et al., 2007;West et al., 2007). Since LRRK2
kinase activity is critically linked to clinical effects, it presents a viable target for therapeutic
modulation.

LRRK2

Roc COR Kinase gsmWD 286 kDa

I S

11122V R1441C Y1699C G2019S
R1441G 12020T
R1441H

Fig. 1. Domain structure and mutations of LRRK2. The most clearly definined pathogenetic
mutations are shown below the diagram.

Attempts to purify mammalian LRRK2 have failed so far in many laboratories. Therefore,
the detailed biochemical and structural understanding of LRRK2 is very limited. We have
used related proteins, which can serve as models to understand the complex structure and
regulatory mechanism of LRRK2. Previously the structure of the Roco protein from the
cyanobacterium Chlorobium tepidum was elucidated, which revealed that COR is a
constitutive dimerization device and that Roco proteins belong to the GAD class of
molecular switches (G proteins activated by nucleotide dependent dimerization) (Gotthardt
et al., 2008;Gasper et al., 2009). This class also includes proteins such as signal recognition
particle, dynamin and septins (Gasper et al., 2009). It is proposed that the juxtaposition of
the G domains of two monomers in the complex across the GTP-binding sites activates the
GTPase reaction and thereby regulate the biological function of these proteins. The
Chlorobium Roco structure revealed that the PD-analogous mutations of the Roc and COR
domain are in close proximity to each other, and are present in a region of the protein that is
strongly conserved between bacteria and man. PD mutations in Chlorobium, like that of
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LRRK?2, decrease the GTPase reaction. Based on the structure and the observed effects of
PD-mutations in LRRK2 it is thought that interaction with other proteins modify the dimer
interactions resulting in decreased GTPases and enhanced kinase activity (Gotthardt et al.,
2008;Gasper et al., 2009). This shows that mechanistic insight can even gained from very
distantly related proteins

2. Dictyostelium discoideum as model sytem to resolve the function of Roco
proteins

This chapter concentrates on Dictyostelium discoideum Roco proteins, which are excellent
models for LRRK2 and can thus be used to answer key questions for the intramolecular
regulation of LRRK2 and give insight in the function of the LRR, the mechanism by which
the Roc domain regulates kinase activity, the role that COR plays in this process and how
the PD-linked missense mutations alter the interactions between the different domains.

Roca 10
Roco 11

Fig. 2. Domain architecture of the Dictyostelium Roco proteins. All proteins contain LRR, the
Roc, COR and the kinase domain. Additional a variety of domains are found in specific
Roco proteins, such as RasGEFs ,RhoGEFs, RhoGAPs, Regulator of G protein signaling
(RGS), and Pleckstrin homology domains (PH).

2.1 Dictyostelium discoideum

Dictyostelium discoideum is a free living soil amoeba. In nature, single Dictyostelium cells are
feeding on bacteria. They chase bacteria by chemotaxing towards folic acid, which is
secreted by the bacteria. Upon starvation cells enter the developmental stage (Kessin, 2000).
During development single cells undergo a drastic change in gene expression and start to
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secrete cCAMP. Neighbouring cells respond by migrating toward the chemoattractant cAMP
and by secreting cAMP themselves. Thus a cAMP gradient is created around the initiation
point. After six hours of starvation, the chemotaxing cells have formed an aggregation
centre at the intiation point, which consists of up to 100.000 cells. Differentiation and
morphogenesis culminate in the formation of a fruiting body, or stalks of vacuolated dead
cells with a spore head on top. These spores can survive long periods without food, high
temperatures and drought. Recently the assembly of the Dictyostelium genome was
completed (Eichinger et al., 2005). The thirty-four Mb genome contains many genes that
are homologous to those in higher eukaryotes and are missing in other model system. Due
to the availability of the genome sequence, the well established molecular cloning and
imaging techniques, Dictyostelium provides a well-established model to study the basic
aspects of directed cell movement and development (Devreotes and Zigmond, 1988;Van
Haastert and Devreotes, 2004). Chemotaxis or directional movement towards a chemical
compound is an essential property of many cells and is fundamentally important for
processes as diverse as the sourcing of nutrients by prokaryotes, the organisation of the
embryo in metazoa, the formation of multicellular structures in protazoa and the migration
of lymphocytes during immune response (Baggiolini, 1998;Campbell and Butcher,
2000;Lijima et al., 2002;Crone and Lee, 2002). Chemotaxis is also linked to the development
and progression of many diseases including asthma, arthritis, atherosclerosis, and cancers
(Trusolino and Comoglio, 2002;Charo and Taubman, 2004;Eccles, 2005). Since the key
signalling pathways underlying chemotaxis are essentially similar to those of mammalian
cells, Dictyostelium has been used to study cell-motility related pathologies, including
deficiencies in the immune system and neurological disorders (Carnell and Insall,
2011;Escalante, 2011;Meyer et al., 2011). Dictyostelium also has been used as model in
pharmacogenomics and to characterize the molecular basis of human diseases associated
with the endocytic and secretory pathway (Williams et al., 2006;Van et al., 2007;Francione et
al., 2011;Maniak, 2011;Alexander and Alexander, 2011).

2.2 Dictyostelium discoideum and the Roco family of proteins

Four Roco proteins are detected in vertebrates, called LRRK1, LRRK2, DAPK1 and MFHASI.
Remarkably, in Dictyostelium eleven Roco family members were identified, that all share the
characteristic Roc, Cor and kinase domains and most also have LRR (Fig. 2, (Bosgraaf et al.,
2003)). Dictyostelium Roco proteins are structurally more varied than the Roco proteins found
in all the other species together; various domains are additionally fused to the conserved
region. Most likely all the Dictyostelium Roco genes have evolved quit recently by gene
duplication (Marin, 2006). From a functional point of view, the Dictyostelium Rocos have
provided the most significant data (van Egmond and van Haastert, 2010).

2.2.1 Functions for Dictyostelium GbpC in chemotaxis, streaming and osmotic stress

GbpC, also called Rocol, was originally identified in a bioinformatical screen for molecular
targets of the second messenger cGMP and is the founding member of the Roco family of
proteins (Bosgraaf et al., 2002;Bosgraaf et al., 2003). Besides the conserved Roco region, GbpC
has a unique regulatory C-terminal region, consisting of a Ras Exchange Motif (REM), DEP,
CDC25, and two cyclic nucleotide binding (cNB) domains with a GRAM domain inserted in
between (Fig. 3,(Goldberg et al., 2002)). In the contrary to LRRK2, the cellular function of
GbpC has been characterized in detail. GbpC is the only cGMP-signal transducing protein in
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Dictyostelium, it binds to cGMP with high affinity to its cNB domains (Bosgraaf et al., 2002).
cGMP mediated GbpC activation is essential for the proper regulation of myosin II during
chemotaxis, cell streaming and osmotic-stress (Fig.3, (Kuwayama et al., 1996;Bosgraaf et al.,
2002;Goldberg et al., 2002;Veltman and van Haastert, 2008;Araki et al., 2010)). Myosin II is an
essential regulator of the cytoskeleton at the rear of moving cells. The establishment of a
cellular gradient during chemotaxis leads to major changes in the cytoskeleton; actin
polymerization occurs at the leading edge of the cell, while acto-myosin filaments are
formed at the rear of the cell. The formed myosin-II filaments are preventing the formation
of lateral pseudopods and providing the power to retract the uropod (Levi et al., 2002). In
Dictyostelium, myosin assembly seems to be strictly dependent on the phosphorylation state
of the myosin heavy chain (MHC) (Bosgraaf and van Haastert, 2006). Phosphorylation by
MHCKSs inhibits filament formation (Cote and Bukiejko, 1987;Kolman et al., 1996), whereas
dephosphorylation by protein phosphatase 2A is essential for myosin disassembly (Murphy
et al., 1996). Phosphorylation of the myosin light chain (MLC) by MLCKSs, promotes myosin
motor activity, which is important for supplying contractile force to retract the rear of the
cell (De la Roche and Cote, 2001;De la Roche et al., 2002). Cells lacking cGMP formation or
GbpC have an impaired recruitment of myosin II to the cytoskeleton and impaired
chemotaxis. Cells with elevated levels of cGMP have increased activation of myosin-light-
chain kinase A (MLCKa) and subsequently an increased myosin motor activity (Bosgraaf et al.,
2002). The role of GbpC, becomes even more evident in longer developed cells, which begin to
secrete CAMP, neighbouring cells move towards the cAMP and relay the signal. Due to the
resulting wave of cAMP through the population, cells become polarized, connect to each other
in a head-to-tail fashion, and form streams of cells. Cells lacking cGMP or GbpC have a severe
streaming defect; these cells show extensive stream break up due to reduced cell elongation
and the inability to maintain stable head-to-tail cell contacts (Veltman et al., 2008). Together
these results show that cGMP and GbpC are important for the formation of stably polarized
and elongated cells by regulating myosin filament formation in the posterior of the cell, which
is important for both chemotaxis and cell streaming,.

The cGMP pathway is not only activated in response to cAMP, but also by folic acid and
osmotic stress (Hadwiger et al., 1994;Kuwayama et al., 1996;Kuwayama and van Haastert,
1998). Dictyostelium can bind folic acid, secreted by bacteria, to the so far unidentified folic acid
receptor, resulting in activation of Go4 and subsequently activation of the cGMP pathway
(Hadwiger et al., 1994). In the contrary, cGMP production in response to osmoshock is
independent of heterotrimeric proteins (Kuwayama et al., 1998). Also the kinetics of the cGMP
responses are completely different, cGMP production occurs in minutes after osmoshock and
in seconds after stimulation with cAMP or folic acid (Kuwayama and van Haastert, 1996). The
transcription factor StatC and the protein kinase SAPKo show osmotic stressed-induced
phosphorylation (Sun et al., 2003;Araki et al., 2003;Araki et al., 2010). Phosphorylated StatC
subsequently translocates to the nucleus to bind its transcriptional targets. Activation of both
SAPKa and StatC occurs downstream of cGMP and GbpC; SAPKa and StatC are rapidly
phosphorylated after treatment with 8-bromo-cGMP and gbpC-null cells are lacking the
osmotic-stress-induced StatC translocation (Araki et al., 2010). Although the phosphorylation
state of Myosin Light Chain Kinase, the protein kinase SAPKa and transcription factor StatC
are cGMP-dependent (Sun et al., 2003;Bosgraaf et al., 2006;Araki et al., 2010), no direct binding
of GbpC to these proteins could be detected. To completely understand the function of GbpC
in vivo, it will be important to identify its direct substrates.
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2.2.2 Biological role of QKGA and PATS1
Initially two proteins similar to GbpC were found in Dictyostelium, Qkga (now also called

Roco3) and Patsl (now also called Roco2). Qkga (Quick growth factor a) only consist of the
central Roco region (Fig. 2), and was first described in a study for a new method to create
gene disruptions in Dictyostelium (Abe et al., 2003). Cells lacking gkgA grow faster
suggesting a role in cell proliferation. Consistently, Qkga overexpressed in gkgA null cells
results in slower groth, indicating that higher amounts of QkgA lead to slower cell
proliferation, thus confirming a role for QkgA in this process (van Egmond et al., 2010).

cAMP

v

cAR1 Gu2By Ras GCA sGC

<V -
R S

LRR Roc-COR MAPKKKinase N-GEF DEP GEF cNBD GRAM cNBD

v

Effector Proteins-P

\/ \/
MLC-P MHC-P
\/
Myosin Il assembly

v

Chemotaxis

Cell streaming
Fig. 3. The cGMP/ GbpC pathway in Dictyostelium discoideum. Extracellular cAMP binds to a
G-protein coupled receptor cAR1 that stimulates a specific G-protein and Ras. cGMP is
synthesised by two guanylyl cyclases, GCA and sGC that are unrelated to mammalian
guanylyl cyclases, but are homologs of respectively mammalian membrane and soluble
adenylyl cyclase. GbpC, the only target of cGMP, modulates the phosphorylation and
assembly of conventional myosin into filaments.
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Pats1 was identified in a screen for proteins involved in cytokinesis (Abysalh et al., 2003)
and consist, like LRRK2, of LRRs, a ROC, COR, MAPKKK domain and WD40 repeats, and
has additionally an N-terminal myotub-related and PTP (Protein Tyrosine Phosphatases)
domain (Fig. 2). In a first study, patsl1 was disrupted in DH1 cells, resulting in large
multinuclear cells in shaking culture, but these cells divide normally when grown on plate
(Abysalh et al., 2003). DH1/patsI-null cells show improper localization of MHC to the
cleavage furrow and an interaction between the WD40 repeats and the actomyosin was
found, suggesting a role for Patsl in regulating myosin II formation during cytokinesis
(Abysalh et al., 2003). In a second study by van Egmond et al., where pats1 was disrupted in
an AX3 background, cells showed large multinuclear cells when grown on plate, but not in
shaking culture, which is opposite to patsI-null cells that were created in DH1 background
(van Egmond et al.,, 2010). Furthermore, re-expression of the Patsl kinase domain in
pats1/DHI cells, led to rescue of the phenotype and overexpression in DH1 resulted in large
multinucleated cells again (Abysalh et al., 2003), whereas no rescue or overexpression effect
was observed in the AX3 background (van Egmond et al., 2010). Together these results show
that Patsl has an important role in cytokinesis, but the division-mechanism that it is
involved in might vary among different wild-type strains.

2.2.3 Developmental role for Roco4

The complete Roco protein family was identified by Bosgraaf and van Haastert (2003) in a
bioinformatic search with the Roc and COR domain of GbpC. Phylogenetic analysis showed
that roco4, gkga and rocoll are higly similar and are resulting from an ancestor roco4 gene
that was duplicated late in evolution (later than 300 million years ago) (van Egmond et al.,
2010). Interestingly, Roco4 has the same domain architecture as LRRK2 (Fig. 1 + 2). The
expression of many Dictyostelium genes is strictly regulated during the life cycle. RT-PCR
experiments showed that roco4 expression is also developmentally regulated, with a strong
elevated expression levels during the slug stage, suggesting a role for Roco4 in late
development (van Egmond et al., 2010). To study the function during development, the roco4
gene was disrupted, and roco4-null cells were subjected to starvation on nutrient-free agar
plates. During the first hours of development, no difference between roco4-null and wild-
type could be observed. Cells start to aggregate and form characteristic streams after 6 hours
starvation. After 9 hours, aggregation is complete and both cell strains have formed
mounds. Developmental defects of roco4-null cells become visible after 12 hours of
starvation, when wild-type cells are at the onset of forming slugs and form first fingers,
while in roco4-null this process is first observed after 16 hours of starvation. After 24 hours,
wild-type cells culminate in the formation of a fruiting body, while roco4-null slugs migrate
for many hours before making multiple attempts to culminate, a process that sometimes
takes up to 72 hours after the onset of starvation. Eventually, this aberrant culmination
results in fruiting bodies consisting of sporeheads that are located on the agar surface,
because a proper stalk is not present to lift the sporehead into the air (Fig. 4, (van Egmond et
al., 2010)). Re-expression of Roco4 completely rescues the phenotype of roco4 disruption.
Consistent with the developmental defects, Roco4 expression is highly enriched in the
prestalk cell and roco4-null cells have severely reduced cellulose levels. Cellulose is known
in Dictyostelium to be the cement of stalking cells, necessary for stability (van Egmond et al.,
2010). Together these results show that Roco4 is a prestalk-specific protein involved in the
proper production of cellulose.
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Fig. 4. Phenotype of roco4-null cells. Wild-type, roco4-null cells, and roco4-null cells re-
expressing Roco4, were allowed to develop on nutrient-free agar. roco4-null cells fail to
make a normal fruiting body due to defective synthesis of cellulose.

2.2.4 Function of other Dictyostelium Roco proteins

To further investigate the role of Roco proteins during the Dictyostelium life cycle, van
Egmond et al, (2010) knocked out the 8 remaining roco genes and analysed their
developmental phenotypes. Dictyostelium Roco proteins have distinct expression patterns
during development; no major differences in expression were found for Roco5, Roco8 and
Rocol0 during development. In contrast, Roco6 and Rocoll show, like Pats1, QkgA and
Roco4, elevated expression levels during the slug phase. Roco7 and Roco9 are expressed
mostly during aggregation, similar to GbpC. Although roco5-null cells were previously
identified in a large screen for mutants with defects in the developmental cycle (Sawai et al.,
2007), they did not show any recognizable developmental phenotype. In the contrary roco11-
null cells show mild developmental defects: these cells develop significantly larger fruiting
bodies; in particular, the multicellular structures have longer stalks compared to wild-type
cells, re-expression of Rocoll in rocoll-null cells rescues this defect. All other roco-null
mutants did not show any phenotype in development and it will be interesting to see which
biological function these proteins have in Dictyostelium.

2.3 Activation mechanism of Roco proteins
Pathogenic mutations in LRRK2 result in decreased GTPase activity (West et al,

2005;Greggio et al., 2006;Guo et al., 2007;Ito et al., 2007;Luzon-Toro et al., 2007;Lewis et al.,
2007;Li et al., 2007;West et al., 2007). Furthermore, it has been shown that activity of the Roc
domain is required to modulate downstream kinase activity, but kinase activity does not
have a significant effect on GTP-binding of the Roc domain (Luzon-Toro et al., 2007;West et
al., 2007). These results lead to the unifying model that the pathogenetic gain-of-function of
LRRK2 relates to increased kinase activity, either directly through mutation of residues in
the kinase domain, or indirectly through mutations in the GTPase domain or predicted
protein binding domains. However, detailed information about the activation mechanism is
missing; it is for example still unclear by which mechanism the Roc domain regulates kinase
activity, the role that COR plays in this process and importantly how the PD-linked
missense mutations alter the interactions between the different domains. The strong and
diverse phenotypes of the Dictyostelium Roco disruption mutants provide a strong tool to
investigate the activation mechanisms of Roco proteins.
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Fig. 5. GbpC: An intramolecular signalling cascade on one protein.

2.3.1 GbpC an intramolecular signaling cascade on one protein

The biochemical properties of GbpC were investigated by rescue analysis of the chemotactic
defects of gbpC-null cells (van Egmond et al.,, 2008). Whereas, re-expression of GbpC
completely rescued the phenotype, mutants that lack a functional GEF, Roc or kinase
domain are inactive. G-proteins function as molecular switches; they cycle between an active
GTP- and inactive GDP-bound state. Consistently, in GbpC and LRRK2 the Roc domain is
also activated upon GDP/GTP exchange, which subsequently increases kinase activity. The
conventional Ras cycle is strictly regulated by guanine nucleotide exchange factors (GEFs)
that catalyze the exchange of GDP for GTP, thereby activating the Ras protein. GTPase
activating proteins (GAPs) stimulate an otherwise low intrinsic GTPase activity by many
orders of magnitude, reverting the conformation back to the inactive GDP-bound form
(Bourne et al., 1991). So far it is unclear whether the GDP/GTP cycle of Roco proteins is
regulated by GEFs and GAPs, and which structural consequences the GDP and GTP binding
has. GbpC differs from the other Roco family members, in the sense that it already contains
its own putative GEF domain (Bosgraaf et al., 2003). In vitro nucleotide exchange assays
showed that the RasGEF of GbpC specifically activates its own Roc domain. Furthermore,
cGMP-binding to GbpC strongly stimulates binding of GbpC to GTP-agarose. Together
these results suggest that GbpC contains a complete intramolecular signal transduction
pathway; cGMP-binding to the cNB domains causes activation of the GEF domains, the
subsequent GDP/GTP exchange of the Roc-COR domain, leading to the activation of the
MAPKKK domain and phosphorylating downstream targets (Fig. 5, (van Egmond et al.,
2008).

2.3.2 Roc and kinase activities

Dictyostelium Roco4 has the same domain architecture as LRRK2, but in contrast to LRRK2,
Roco4 is biochemically and structurally more tractable. The strong developmental
phenotype of roco4-null cells was used to determine essential structural elements in the
protein. Furthermore, high yields of Roco4 and combinations of its domains can be
produced in E. coli. Similar to LRRK2, a functional Roco4 Roc domain is essential for kinase
activity, the COR domain functions as dimerization device and disruption of Roc or the
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kinase domain by a single point mutation leads to the complete inactivation of the protein,
which was also found for all other biochemically studied Roco proteins so far. Also, kinase
inactivation does not lead to loss of GTP-binding, thus suggesting that Roc activation occurs
upstream of kinase activity. These results indicate that Roco4 has properties very much
resembling those described for LRRK2, indicating that Roco4 protein can serve as a valid
model to understand the complex structure and regulatory mechanism of LRRK2. As to the
relevance for understanding Parkinson we have demonstrated that all Roco4 PD-related
mutants show a decreased GTPase and increased kinase activity, except the Roco4 L1180T
mutant (LRRK2 12020T) which shows a large decrease in kinase activity. Strikingly, also for
LRRK?2 I2020T a reduced kinase activity has been reported, and it has been postulated that
the higher neurotoxity of this mutant might be due to a higher susceptibility of the mutant
to intracellular degradation (Jaleel et al., 2007;0hta et al., 2010).

2.3.3 Different roles for the WD40 repeats in Roco4 and LRRK2

For LRRK2 it was found that deletion of the WD40 repeats leads to lower kinase activity in
vitro, which could be restored by introduction of one of the PD-mutations (laccarino et al.,
2007). Surprisingly, we found that deletion of the Roco4 WD40 repeats does not lead to
effects on Roco4 activity in vivo (van Egmond et al., 2010). This suggests that in the contrary
to LRRK2, the WD40 repeats of Roco4 are apparently not needed for full activation of the
kinase domain. A possible explanation for this discrepancy comes from phylogenetic data;
Roco4, QkgA and Rocoll have a common ancestor that was duplicated only relatively
recently in evolution. QkgA and Rocoll do not have the WD40 repeats that are present in
all Roco4 proteins, suggesting that during or after duplication, gkgA and rocol1 have lost
the WD40 repeats. Apparently, the WD40 repeats were not important enough for the
regulation of Roco proteins, that they had to be maintained during evolution (van
Egmond et al., 2010).

2.3.4 The LRR are essential for biological activity

The LRR of LRRK2, and Dictyostelium GbpC and Roco4 are not involved in Roc or kinase
activation in vitro, but are absolutely essential for activity of the protein in vivo (laccarino et
al., 2007;van Egmond et al., 2008). Recent data suggest that the LRR are directly involved in
determining input/output specificity of the roco proteins, most likely by binding upstream
proteins that activate specifically the Roco protein and/or by selectively binding of the
substrate (unpublished data).

2.3.5 Subcellular localization of Roco proteins important for activity and function
Recent data suggest that also the subcellular localization of LRRK2 is important for the

activity and function. LRRK2 is present both in the cytosol and at the membrane, and the
membrane-associated LRRK2 dimer most likely represents the physiologically active form
of the protein (Berger et al., 2010). The regulation of membrane association is not well
understood, but probably includes dimerization, post-translational modifications and
protein-protein interactions (Sen et al., 2009;Berger et al., 2010;Nichols et al., 2010). To better
understand the distribution of Roco proteins in the cell, we studied the localization of GbpC
(ms in preparation). In resting cells, the protein is present uniformly in the cytosol, but
during stream formation and osmotic stress the protein localizes to the membrane. Also
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Fig. 6. GbpC translocates to the membrane upon cAMP-stimulation. Starved gbpC-null cells
expressing GbpC-GFP were stimulated with 106 M cAMP and movies were recorded with
time frames of one or two seconds. Shown are confocal images of three frames, at the point of
cAMP-stimulation (A; t = 0 s), 4 seconds after stimulation (B), and 20 seconds after stimulation
(C). To highlight membrane localization, D-F show equivalents of A-C after subtraction of the
average cytosolic fluorescence intensity. Panel (G) shows the decrease of the fluorescence
intensity of the cytosol averaged over 8 cells, which was analyzed using Image]
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stimulation with the chemoattractant cAMP induces a rapid translocation to the cell
membrane (Fig 6.). This translocation occurs independent of cGMP and the below described
intramolecular signaling cascade in GbpC (van Egmond et al., 2008); GbpC still translocates
in mutants that lack cGMP production or a functional GEF, Roc or kinase domain. In the
contrary, mutations in the GRAM domain of GbpC lead to disturbed membrane association
upon cAMP-stimulation; furthermore, the GRAM domain itself associates with cellular
membranes and binds various phospholipids in vitro. Furthermore, mutants in the GRAM
domain cause inactivation of GbpC in vivo. Together, the results show that GbpC receives
multiple input signals: cAMP-stimulation induces a cGMP-dependent signaling cascade
leading to kinase activity, and independently GRAM-dependent translocation of GbpC to
the membrane is needed for proper functional activity.

2.4 Model for the activation of Roco proteins

Together these data show that although there is a high variation of additional regulatory
domains among the Roco proteins, the Roco core itself functions in a similar way in all
proteins. We have translated our biochemical, genetic and structural data into a model for the
regulatory mechanism of LRRK2 (Fig 7). LRRK2 is a constitutive dimer by interaction of the
COR domains. In the GDP-bound inactive state the G-domains are flexible, but in the active
form the G-domains come in close proximity to each other. This conformational change is
transmitted to the kinase domains to allow the activation loops of the two kinase protomers to
be autophosphorylated and activated. The GTPase reaction is also dependent on dimerization,
because efficient catalytic machinery is formed by complementation of the active site of one
protomer with that of the other protomer. In this way the GTPase reaction functions as a
timing device for the activation of the kinase and the biological function of the protein.
Consistently, PD-related mutations have reduced GTPase activity and enhance kinase activity
(unpublished data, (Cookson et al., 2010) ). Since the GTPase reaction is regulated by
homodimerization and Roco proteins have a low nucleotide affinity ( in the uM range),
regulation by GEFs and GAPs is not necessary (Gotthardt et al., 2008). However in some
transient responses, as shown for GbpC, additional stimulation of the already high intrinsic
exchange rate by GEF protein might be required. To completely understand the mechanism it
will be important to know how the GDP-GTP cycle changes the RocCOR tandem and how it
might influences the output of other parts of the protein. Therefore it will be important to solve
structures of wild-type and/or PD-analogous mutants of Roco proteins in the different
nucleotide states. The N-terminal segment, including the LRRs, is determining the
input/output specificity of the proteins, but the exact mechanism is not clear. We propose two
non-exclusive mechanisms: the N-terminal segment may selectively bind its substrates, brings
it in close proximity of the Roco kinase domain and is subsequently phosphorylated.
Alternatively, the N-terminal segment is binding upstream protein that activates specifically
the Roco protein. In the context of LRRK2, 14-3-3 might be one of these upstream regulators:
14-3-3 binds in a phosphorylation dependent way to the N-terminal segment of LRRK2,
thereby regulating its subcellular localization (Sen et al., 2009;Nichols et al., 2010).

3. Conclusion

Together, our results show that Dictyostelium provides an excellent model to study the
function and activation mechanism of LRRK2. Roco proteins are the result of recent gene
duplications, and are very homologous to mammalian LRRK2. Disruption of Dictyostelium
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Pi+

Fig. 7. Proposed model for the function and mechanism of LRRK2. GTP binding to the Roc
domain results in dimerization of the Roc domain and subsequently activation of the kinase
domain. The GTPase reaction is also dependent on dimerization; the efficient catalytic
machinery is formed by complementation of the active site of one protomer with that of the
other protomer. The LRR are directly involved in determining input/output specificity of
the Roco proteins, most likely by binding upstream proteins that activate specifically the
Roco protein and/or by selectively binding of the substrate.

Roco genes leads to very different phenotypes, indicating that they are involved in multiple
cellular processes: they participate in cell division, osmotic-stress-response and
development (van Egmond et al., 2010). The strong and diverse deletion phenotypes
provide a unique opportunity to study PD-related mutations in living cells. These roco2- or
roco4-null cells also provide a tool to express chimera proteins of Roco2, Roco4 and LRRK2
(full length proteins with domains derived from different sources). In contrast to LRRK2,
many large parts of Roco4 can be expressed in E.coli to high levels in a stable and active
form. Sufficient Roco4 protein and combinations of its domains could be purified for
biochemical studies and crystallization. All Roco4 constructs both of wild-type and PD-
related mutants show properties very much resembling those described for LRRK2. We
have translated our results in a model, which can serve as a framework for the basic
understanding for the complex regulatory mechanism of LRRK2, and provides a new
starting point to answer major questions in the Parkinson field (Cookson, 2010): i) what are
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the upstream activators of Roco proteins, ii) what is the 3D structure of Roco proteins and
how are they activated, iii) what are the output substrates of activated kinase, and iv) can
we identify small molecule inhibitors of the activated kinase to revert the activity of the PD-
associated mutations. Our studies in Dictyostelium might be instrumental in this enterprise
and can give important insights in the molecular mechanism of LRRK2 activation, and how
mutations of LRRK2 result in neuronal toxicity. In this way we hope to contribute to the
understanding of the biochemical pathways responsible for LRRK2-linked PD and help to
identify therapeutic targets for PD and related neurodegenerative disorders.
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