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1. Introduction 

It is well known that postnatal maturation of the central nervous system is critically 
dependent on thyroid hormone levels (Thompson & Potter, 2000) and this might influence 
the neuromuscular system (Barakat-Walter et al., 2000). Previous neuroanatomical and 
biochemical investigations demonstrated that development of skeletal muscles including the 
masseter is affected by both neuronal and thyroid hormonal effects (Adams et al., 1999; d’ 
Albis et al., 1989, 1990; Butler-Browne et al. 1984; Gambke et al., 1983; Rubinstein et al., 
1988). Under normal condition the phenotypic properties of motoneurons and muscle fibers 
in the neuromuscular unit are matched (Copray & Kernell, 2000; Hughes & Salinas, 1999; 
Akihiko Ishihara, Kawano, Okiura, Morimatsu, & Ohira, 2005). 

A pronounced shift in oromotor behavior occurs with the transition from sucking to 
chewing in humans and other mammals (Green et al., 1997; Saito, Ohnuki, Yamane, & Saeki, 
2002). It has been reported that the transition from neonatal to adult fast MHC is however 
dependent on thyroid hormone (Soukup & Jirmanová, 2000). In the rat there is a significant 
rise to peak T4 serum levels at 15 days followed by a slight decline to mature values 
(Gambke et al., 1983). The diameter of muscle fibers enlarges progressively from slow to fast 
type in order to adapt to the rapid functional changes from weaning to chewing motion 
(Miyata et al., 1996). 

During development, hyporthyroidism results in an inhibition in the expression of adult fast 
MHC isoforms and a persistence of the slow isoforms in the masseter muscle (Agbulut et al., 
2003; Butler-Browne et al., 1987; Pette & Staron, 2000) which is also associated with a 
decrease in fiber diameter of the masseter muscle (Sugasawa & Mori, 1998). The increase in 
the circulating levels of thyroid hormone in suckling rats is involved in development of the 
masseter (Maeda et al., 1981a, 1981b). This effect is explained first as a result of an 
orthograde mechanism through the trophic factors secreted by different motoneuron types 
at the neuromuscular junction. The second explanation invokes a retrograde mechanism, so 
that, once muscle fibers are differentiated into slow or fast types they may modify properties 
of motoneurons via retrograde transport of substances (Barakat-Walter & Riederer, 1996; 
Munson et al., 1997). Based on these hypotheses, Sickles et al. (Sickles et al., 1987) and Bakels 
et al. (Bakels et al., 1998) reported considerable alteration in the adult rats' soleus 
motoneurons morphology due to hyper- and hypo-thyroidism respectively. In regard to the 
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masseter muscle, neuroanatomical evidence related to the mechanisms of shifting from 
sucking to biting was first reported by Kubota et al. in mice (Kubota et al., 1988). Upon their 
observation the differentiation of the trigeminal motoneurons related to biting is rapidly 
accelerated after birth. Miyata et al. have reported morphometric alteration of superficial 
masseter motoneurons from sucking to chewing in normal rats in a way that the diameter of 
the largest motoneurons increases rapidly from 5 to 21 postnatal days (Miyata et al., 1996).  

Calcitoin-gene related peptide (CGRP), a co-transmitter, along with acetylcholine in the 
neuromuscular system is released at motor end plates, where the muscle cells demonstrate 
binding sites for CGRP (Popper & P. E. Micevych, 1989; Terrado et al., 1997). In fact, CGRP 
is synthesized in the motoneuron cell bodies, transported down to the motor terminals, 
stored in dense-core vesicles and released upon nerve stimulation (Buffelli et al., 2001). This 
neuropeptide exerts a variety of effects on skeletal muscle such as spontaneous acetylcholine 
release from motor nerve terminals, enhancement of neurally evoked muscle contraction 
and regulation of the rate of the acetylcholine receptor (AChR) at the neuromuscular 
junction (Kimura, 1998; van Rossum, Hanisch, & Quirion, 1997). CGRP functions are 
mediated by cell membrane receptors that belong to the family of G-protein-coupled 
receptors (van Rossum et al., 1997). CGRP may thus serve as an anterograde trophic agent 
released by motoneurons that contributes to the maintenance of a high density of 
neuromuscular junctional AChRs (H L Fernandez, Chen, I Nadelhaft, & Durr, 2003; Roa & 
Changeux, 1991). Indeed, motoneuronal CGRP acts as a physiological transducer through its 
complex receptors in muscle motor endplates (Hugo L. Fernandez, Ross, & Irving 
Nadelhaft, 1999). It has been proposed that the levels of CGRP present in individual 
motoneurons are related to the type of muscle unit that is innervated by the respective 
motoneuron (Popper & P. E. Micevych, 1989). It has also been claimed that there is a 
relationship between the type of myosin composition of different rat muscles and the CGRP 
mRNA expression in conveying motoneurons (Blanco, Popper, & P. Micevych, 1997). 
Hypothyroid muscles show a nearly 50% reduction in AChRs density when compared to the 
control muscles (Kragie & Smiehorowski, 1993), therefore during weaning, when feeding 
behavior needs to transform from suckling to chewing (Saito et al., 2002), prenatal slow 
myosin persists, preventing faster muscular contraction due to severe decrease in the 
density of neuro- muscular junction AChRs (Miyata et al., 1996). According to the available 
target, motoneuronal CGRP levels alter in relation to the type of muscle fibers (Blanco et al., 
1997; Popper & P. E. Micevych, 1989).  

A review of literature regarding to motoneurons development shows that detailed 
morphometric data on the developing masseter innervation has been neglected in prenatal 
hypothyroid rats. Thus in this chapter the morphological features of the developing 
masseter motoneurons labeled by injection of HRP into the superficial masseter muscle were 
analyzed in normal and congenital hypothyroid rat's offspring. HRP retrograde reaction 
product is observed as dark blue intracellular granules varying in quantity from 
motoneuron to motoneuron even in the same trigeminal motor nucleus (Kawagishi et al., 
1992). As hypothyroidism reduces neuronal process growth, synaptogenesis, axonal 
transport velocity (Biesiada et al., 1996; Stein et al., 1991) and neurotransmitter synthesis 
(Barakat-Walter et al., 2000; Behzadi & Ganji, 2005), it was of especial interest to investigate 
the alteration in the morphological characteristics of masseter motoneurons as well as HRP 
uptake and transport from the neuromuscular junction. In this regard the labeling quality of 
HRP backfilled masseteric motoneurons along with their size distribution profile under 
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developmental hypothyroidism were evaluated. Furthermore the oro-facial motoneuronal 
CGRP immunoreactive responses under the congenital thyroid hypofunction were 
examined and also usig the Golgi staining method, the morphology of the masseteric 
motoneurons including their dendritic arborization pattern in normal and hypothyroid 
weaned rat pups was studied. These studies may lead to better understanding of the 
ontogenic changes in mastication. 

2. Materials and methods 

2.1 Animals 

Timed pregnant Sprauge-Dawley rats (Pasteur’s Institute, Tehran, Iran) were housed 

individually in plastic cages with free access to food and water. The animal room was 

maintained at constant 22-24º C temperature under a 12 hour light/ 12 hour dark cycle. The 

studies were performed according to the guidelines for laboratory animal use and care set 

forth by the research council at Shahid Beheshti University of Medical Sciences (Tehran- 

Iran). Neonatal hypothyroidism was induced by adding 50mg/liter PTU (Sigma) to the 

drinking water of pregnant dams beginning at gestational day 16 to postnatal day 23. It 

should be noted that this concentration represents the same amount of PTU which is 

received by the pups during suckling period (Blake & Henning, 1985). Control dams 

received tap water. Usually litters were culled to 8 pups on postnatal day 1 for each dam. 

2.2 Intramasseter HRP injection  

On the 1st, 5th, 13th and 21st days after birth several male pups in each age group were 

anesthetized by i.p. injection of Ketamine (100mg/Kg) and Xylazine (5mg/Kg). A small 

incision was made in the chick skin to expose the surface of the superficial masseter muscle. 

Then 1-5µlit of 40% HRP (type VI- Sigma) dissolved in sterile saline was injected slowly into 

the 2-5 loci above as well as under the parotid duct in the left masseter using a Hamilton 

syringe as demonstrated by Kawagishi et al. (Kawagishi et al., 1992). After each injection the 

needle was left in situ for 1 min to avoid backflow of the injected HRP, following which the 

needle was removed, the injection sites were cleaned with sterile saline, and the opening 

was sutured. 

2.2.1 Histochemical procedure 

After 24-48h of survival time, the pups were deeply anesthetized and perfused 
transcardially with 20-50 ml saline (37°C) followed by 50-100 ml of fixative ( 1.25% 
glutaraldehyde and 1% paraformaldehyde in 0.1 M phosphate buffer at pH 7.4, 4°C). 
Following perfusion and fixation the lower brainstems were removed and post fixed for 24h. 
The blocks of tissue were cut serially into 50μm thick coronal sections using a Vibratome. 
Then the sections were processed for HRP reaction using TMB method (Mesulam, 1982) and 
counterstained with 0.1% neutral red. 

2.2.2 Microscopic study 

In each experimental group, three pups with the most reliable labeling in their trigeminal 

motor nucleus (Mo5) were chosen for microscopic study. From rostral to caudal part of Mo5, 
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eight cross sections were selected per animal for each age group of normal and hypothyroid 

pups. The HRP labeled motoneurons showing a nucleolus or with visible primary dendrites 

were counted and upon their HRP labeling profile they were semi-quantitatively divided 

into strong (S) and weak (W) intensities. The cell body area of 500 HRP labeled neurons with 

both intensities were measured through the cross sections using a computer based image 

analysis system (Olympus BX60, DP12, Olysia soft imaging system, Japan). To measure the 

soma areas images of labeled cells were displayed on a monitor and their cell bodies 

perimeters in continuous with soma-dendritic transitional regions were outlined. 

Photomicrographs were arranged using CorelDRAW12. 

2.2.3 Statistics 

Differences between normal and hypothyroid groups were analyzed with two tailed 
student’s t-test. Two- way analysis of variance (ANOVA) was employed to assess the 
variation of soma size in relation to labeling intensity of masseteric motoneurons in different 
groups. The level of significance was set at P<0.05. Values are means ± SEM 

2.3 CGRP immunohistochemistry 

At the onset of weaning period (post natal day 23), 12 deeply anaesthetized (100 mg/kg 

ketamine and 5 mg/kg xylazine) male pups (6 hypothyroid and 6 controls) underwent 

transcardial perfusion with saline followed by 4% paraformaldehyde, 1.33% picric acid and 

0.1% glutaraldehyde in phosphate buffer, pH 7.4. The brainstems of all 12 rats were cut 

serially into 50 micron thick coronal sections with a Vibratome. Tissue sections were 

collected in phosphate buffered saline (PBS) containing 0.3% Triton X-100 (PBST) and 0.3% 

hydrogen peroxide. The sections were rinsed with bovine serum albumin (0.1% in PBST, for 

1 h) and then they were incubated in a rabbit polyclonal CGRP antibody solution (Sigma, 

USA, 1:2500 dilution) at 4 ◦C for 72 h. Thereafter, the sections were washed in PBST and 

incubated in biotinylated goat anti-rabbit IgG (Vector Laboratories, 1:2000 dilution) at 4 ◦C 

overnight with stirring. After two further rinses, the sections were placed in a 1:1000 

dilution of avidin–biotin complex (Vector Laboratories) for 2 h. The immunohistochemical 

reaction product was revealed with 0.05% 3, 3’-diaminobenzidine (DAB, Sigma) and 0.5% 

nickel in Tris–HCl buffer, pH 7.6, in the presence of 0.005% hydrogen peroxide. Finally, 

tissue sections were washed in Tris–HCl buffer, mounted on gelatinized slides and 

counterstained with neutral red before coverslipping 

2.3.1 Microscopic study  

Eight sections containing main and accessory trigeminal (Mo5 and Mo5-AC) and facial 

(Mo7) motor nuclei were selected per animal. A semiquantitative CGRP-like intensity of 

these motoneurons was unilaterally evaluated as strong, moderate, weak and negative 

staining. The mean soma diameter of the motoneurons showing a nucleus were obtained by 

taking the average of two diameters, measured at the maximal and minimal axes of soma 

(Honma et al. 2002; Ishihara et al. 1988), using a computer- based image analysis system 

(Olympus BX60, DP12, Olysia soft imaging system, Japan). Photomicrographs were 

arranged using CorelDRAW12. Statistical significance was analyzed by Student’s t-test. The 

level of significance was set at P < 0.05. 
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2.4 Golgi staining method 

Time pregnant female Wistar rats weighing 180 g were randomly divided into control and 

PTU-treated groups. PTU-treated group received 50ppm propylthiouracil (PTU) in their 

drinking water from 16th day of pregnancy, continued to 22nd day post-partum. Control 

group received tap water. After transcardial perfusion, brain stems of 6 male 23 day old 

pups in each experimental group were processed for Golgi-Hortega staining method. Using 

rotary microtome brain stem paraffin embedded blocks were cut to 70 micron slices. Mo5 

tissue sections were selected for photomicrography and morphological analysis. Using 

Image Analysis Starter software (Olympus, Japan) the cross section area of selected 

motoneurons in both experimental groups were measured and their primary and secondary 

dendrites were counted. Dendritic tree arborization pattern was analyzed with altered 

Sholl’s concentric circles method (Ristanović,et al. 2006) . Statistical analysis including 

Student’s t-test and ANOVA tests was done using SPSS software.  

3. Results 

3.1 Experimental hypothyroidism 

For induction of prenatal hypothyroidism, at first, a range of 0.050 and 0.075 % of PTU was 
tested, but the survival of the pups dropped sharply beyond the second postnatal week and 
and finally the 0.005% concentration of this drug was used which induced a mild 
hypothyroidism and allowed us to have hypothyroid pups with a moderate rate of mortality 
until the time of weaning. In accordance with previous observations (Blake & Henning, 1985; 
Sawin, Brodish, Carter, Stanton, & Lau, 1998), PTU treated pups displayed the skeletal and 
morphological deformities characteristic of hypothyroidism including blunt snouts, unfolded 
ears and rounded bodies compared to normal pups, eye opening was delayed for 2 days. In 
this study, PTU-treated pups were weighed at different times from birth to 23 days after birth 
(Fig 1). At the time of weaning hypothyroid pups weighed 50% under normal weight. 
 

 

Fig. 1. Body weight profile (mean ± S.E.M.) of hypothyroid offspring was significantly 

reduced compared to the controls by postnatal day 15 up to 23 (P < 0.001). 
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3.2 Masseter HRP labeled motoneurons  

In accordance to Mizuno et al., the masseteric labeled motoneurons were located in the 
dorsolateral part of the trigeminal motor nucleus (Mizuno et al. 1975). No contralateral 
neuronal labeling was observed. Unlabeled motoneurons were excluded from the study. 
The labeled motoneurons of normal and hypothyroid pups at days1, 7, 15 and 23 are shown 
in Fig 2. The number of labeled motoneurons in control pups was not significantly different 
from those found in their hypothyroid homologues (table 1). In addition, the total number of 
strongly labeled motoneurons (S) was higher than weakly labeled (W) ones in both normal 
and hypothyroid pups during postnatal development. Indeed, the most obvious 
morphological changes in hypothyroid masseter motoneurons could be detected from day 
15 to 23, in that the hypothyroid masseteric motoneurons showed less primary dendrites 
with shorter processes and slightly more weakly HRP labeled soma compared to normal 
pups (fig. 3).  

 

Pups day 1 day 7 day 15 day 23 

Normal 190±18.8 170±13.9 195±19.1 174±17.0 

Hypothyroid 182±24.0 182±22.7 199±13.5 176± 7.8 

Table 1. 

The correlative results between soma size and HRP labeling intensity of 500 measured 

motoneurons in each group were as follows: 

Day 1 

At day 1 after birth, a similar number of HRP-positive neurons was found in hypothyroid 

and in normal pups. The soma area of the labeled motoneurons ranged between 80-400µm². 

Among them, the number of smaller motoneurons (soma area < 200µm²) was about 2/3 of 

all the labeled cells (Fig 4A). In addition, about 60% of them were strongly labeled (table 2). 

Day 7 

One week after birth the masseter motoneurons grew rapidly and about 4/5 of total labeled 

cells reached a soma area of 200 up to 500µm² and the ratio of S /W neurons was about 2/1 

in both normal and hypothyroid pups (tables 2,3). 

Day 15 

The medium size motoneurons appeared at the 15th postnatal day with a significantly lower 
value in hypothyroid pups (P<0.001, table 2). In contrast their small sized weakly labeled 
motoneurons (<500µm2) were higher than normal (P<0.01, table 2,3). Regardless of the 
labeling intensity a higher frequency of smaller motoneurons (<300µm2) and a lower 
frequency of larger motoneurons were observed in hypothyroid pups when compared to 
normal pups (fig. 5A). Both the intense and weakly hypothyroid labeled neurons displayed 
quite shorter processes in comparison to normal animals (Figs 2, 3).  

Day 23 

The most pronounced changes in soma area and labeling intensity were observed at the time 
of weaning. Small motoneurons in normal pups comprised less than 20% of all labeled  
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Fig. 2. Photomicrographs showing superficial masseter HRP labeled motoneurons from day 
1 to day 23 in normal and hypothyroid trigeminal motor nucleus. At day 23 initial parts of 
dendrites of normal labeled motoneurons exhibit a Golgi-like labeling appearance with 
visibly longer extension than those of their hypothyroid homologues. 
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motoneurons, whereas hypothyroid Mo5 contained 2 fold more of small motoneurons 
(P<0.001).The medium size motoneurons had almost an equal quantitative pattern (~ 45% 
and 50%) in both normal and hypothyroid pups respectively. While the number of large 
motoneurons reached to 40% of total number of labeled motoneurons in normal pups, the 
hypothyroid masseteric motor pool contained 15% of large cells (P<0.001), (See fig. 5B in 
details). The pattern of labeling intensity showed larger and strongly HRP labeled 
motoneurons in normal pups versus smaller and strong intensity of HRP labeled 
motoneurons in hypothyroid pups. In normal animals, the Golgi-like labeled motoneuron 
pool had numerous dedritic processes that extended in both ventral and transverse 
directions. However in hypothyroid motoneurons the primary dendritic processes were 
shortened remarkably in all any directions (Fig. 3, B, b). 

Peak frequency distributions of labeled motoneurons with different soma size revealed a 
trimodal pattern of masseter muscle innervation at the time of weaning in both groups: 
Small size motoneurons with soma area <500µm2, medium size motoneurons 500-700µm2 
and large motoneurons >700µm2 are presented in table 2. 

 

Fig. 3. Masseteric motoneurons labeled with HRP at 15 and 23 postnatal days in normal  
(A, B) and hypothyroid (a, b) pups. Insets illustrate high magnification of strong and weakly 
labeled motoneurons (asterisks). Examples of outlined motoneurons are shown in B (inset). 
Note that hypothyroid motoneurons possess remarkably shorter dendritic processes 
compared to those of normal pups. 
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 Strongly labeled cells Weakly labeled cells 

 small medium large small medium large 

 N H N H N H N H N H N H 

Day 1 
96± 
3.9 

96±
4.8 

0 0 0 0 71±
8.4 

70±
6.1 

0 0 0 0 

Day 7 
117± 
8.0 

106±
5.7 

0 0 0 0 51±
2.7 

61±
7.0 

0 0 0 0 

Day 15 
97± 
3.1 

92±
2.1 

15±
0.3 

6± 
0.9***

0 0 43±
1.5 

62±
3.6** 

13±
0.6 

4± 
0.7***

0 0 

Day 23 
17± 
0.9 

40±
3.0** 

44±
3.8 

50±
4.2 

52±
3.2 

13±
1.5***

15±
1.1 

31±
2.1** 

24±
1.9 

26±
3.3 

15± 
2.3 

6± 
0.6*** 

N; normal, H; hypothyroid. * P<0.05, ** P<0.01, *** P<0.001 

Table 2.  

 

Fig. 4. Frequency distributions in soma area of labeled motoneurons innervating superficial 
masseter muscle in both normal and hypothyroid pups at 1 day of age (A) and 7 days of age 
(B).There was no significant difference between normal and hypothyroid pups in both age 
groups, although at 7 days of age in hypothyroid pups the number of smaller cells (up to 
300 μm2) was more and that of larger cells (300–500 μm2) was less than the normal pups. 
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Fig. 5. Frequency distributions in soma area in both normal and hypothyroid pups at 15 
days of age (A) and 23 days of age (B). At day 23, neurons in both control and hypothyroid 
pups were composed of three populations with lower quantity of small, large size and 
higher quantity of medium-sized motoneurons in peaks. Note that in normal pups there are 
significantly more larger and less smaller motoneurons than in hypothyroid pups. 

3.3 CGRP Histochemistry 

To analyze the effect of prenatal thyroid hypofunction on the CGRP immunoreactive 
intensity, distribution of CGRP containing motoneurons was quantified through Mo5, Mo5-
AC and Mo7 nuclei (Fig. 6). CGRP immunoreactivity is extensively and differentially 
expressed in oro-facial motoneurons somata and primary processes.  
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Fig. 6. Low-power photomicrographs of frontal sections through brainstem showing the 
distribution of CGRP immunoreactive motoneurons through the trigeminal (Mo5), 
trigeminal accessory (Mo5-AC, outlined area) and facial (Mo7) motor nuclei in the normal 
(A–C) and in the hypothyroid (a–c) weaned pups. 
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Fig. 7. High-power photomicrographs showing different CGRP immunoreactive intensity in 
hypothyroid Mo5 nucleus with numerous weakly stained motoneurons (arrowheads, a), 
and with mostly strong CGRP immunolabeling in Mo5-AC (arrows, b) as well as in Mo7 
(white arrows, c). The presence of large immunopositive motoneurons (asterisks) is more 
detectable in normal motor nuclei compared to their hypothyroid homologues 
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3.3.1 Trigeminal motor nucleus (Mo5) 

Although, the number of positive CGRP neurons is gradually increased from strong to 

moderate and weak in both normal and hypothyroid Mo5 nucleus, the small 

immunopositive motoneurons had a large proportion (~70%) in hypothyroid pups 

compared to normal ones (less than 50%). This increase is especially significant for weakly 

labeled motoneurons (P < 0.05). In contrast, the number of the strong, moderate and weakly 

stained large motoneurons decreased considerably (P < 0.01, <0.001 and <0.01, respectively) 

in comparison with normal motoneurons (see Table 3 a,b and Fig. 7 A,a). 

(a) Small motoneurons with  diameter < 25µm and percentage of increase in hypothyroid pups  

Ø < 25 µm Mo5   Mo5-AC    Mo7  

CGRP-ir Normal Hypothyroid (%) Normal Hypothyroid (%)  Normal Hypothyroid (%) 

Strong 
Moderate 

304 ± 7.8 
848 ± 22.0 

354 ± 4.7 
878 ± 12.2 

14 
4 

12 ± 0.6 
61 ± 3.5 

65 ± 4.4 
111 ± 3.8 

82**
45*

 
1

488 ± 8.5 
019 ± 21.4

812 ± 25.5 
1161 ± 5.9 

40* 
13 

Weak 1015 ± 25.8 1467 ± 19.3 31* 68 ± 2.7 119 ± 3.2 43* 1 011 ± 20.6 1255 ± 5.9 20 

(b) Large motoneurons with diameter > 25µm and percentage of decrease in hypothyroid pups 

Ø > 25 µm Mo5   Mo5-AC    Mo7   

CGRP-ir Normal Hypothyroid (%) Normal Hypothyroid (%)  Normal Hypothyroid (%) 

Strong 333 ± 8.5 170 ± 2.3 49** 9 ± 0.6 9 ± .06 0  132 ± 17.5 118 ± 2.9 11 

Moderate 921 ± 16.1 422 ± 5.9 54** * 52 ± 1.5 15 ± 1.0 71**  294 ± 25.1 171 ± 3.8 42** 

Weak 1107 ± 28.2 661 ± 9.2 40** 59 ± 3.3 16 ± 1.2 73**  294 ± 27.5 184 ± 4.4 37** 

(c) Percentage of decrease in number of small and large motoneurons devoid of CGRP in hypothyroid 
pups 

Negative Mo5  Mo5-AC  Mo7  

 Normal Hypo-
thyroid

(%) Normal Hypo-
thyroid 

(%) Normal Hypo-
thyroid 

(%) 

Ø < 25 m 181 ± 3.90 131 ±1.33 28* 0 0 0 124 ± 2.9 72 ± 1.5 42** 

Ø > 25 m 195 ± 3.2 64 ± 2.6 67*** 0 0 0 33 ± 0.6 13 ± 0.3 64*** 

* P<0.05  ** P<0.01  *** P<0.001 

Table 3. Total number (±S.E.) of CGRP immunolabeled motoneurons with different intensity 

in each nucleus 

3.3.2 Trigeminal accessory nucleus (Mo5-AC) 

Normal trigeminal accessory motor nucleus showed almost the same pattern of 

immunolabeling intensity as Mo5 with a proportion of 55% for small motoneurons and 45% 

for large motoneurons. In the hypothyroid rats, this pattern contained 90% of small 

immunopositive motoneurons (strong P < 0.01, and moderate and weak P < 0.05) versus 

10% of large ones with a significant decrease in moderate and weak intensity (P < 0.01) 

(Table 3 a,b and Fig. 7 B,b).  
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3.3.3 Facial motor nucleus (Mo7) 

In comparison with the trigeminal motor nucleus, nor mal facial motor nucleus showed 
many more small CGRPcontaining motoneurons (>70%) mostly with moderate and weak 
immunoreactivity. This proportion reached 85% in hypothyroid rats with a significant 
increase (P < 0.05) in the number of small and strongly immunolabeled cells. The proportion 
of large motoneurons (~20%) in normal weaned pups dropped to ~12% in hypothyroid 
pups with significant reduction in moderate and weakly labeled motoneurons (P < 0.01) 
(Table 3 a,b and. Fig 7 C,c). 

Normal Hypothyroid 

 

Fig. 8. Golgi staining sections from normal and hypothyroid 23 day old rat pups. Low 

magnification photomigrographs from Mo5 in normal (A) and hypothyroid (B) pups. 

Primary (P) and secondary (S) dendrites are shown. 
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3.3.4 Unlabeled motoneurons 

In normal pups, about 7% of Mo5 motoneurons and about 5% of Mo7 motoneurons were 

devoid of CGRP immunos taining, while in the hypothyroid pups, this proportion shifted to 

5 and 2%, respectively. In the hypothyroid Mo5, the number of small and large unlabeled 

neurons was reduced significantly (P < 0.05 and <0.001); however, Mo7 nucleus had a lower 

proportion of large motoneurons (P < 0.001) than the small ones (P < 0.01). It should be 

noted that both normal and hypothyroid Mo5-AC nucleus were devoid of unlabeled 

motoneurons (Table 3c). Nevertheless, no significant difference was observed in the total 

number of motoneurons in all experimental groups. 

3.4 Golgi stained motoneurons 

The results of cell measuring and counting the primary and secondary dendrites revealed 
that in hypothyroid pups beside the significant decrease in soma size in trigeminal large 
motoneurons (a 50% reduction in the number of 900-1200µm2 motoneurons in PTU-treated 
group compared to controls, P<0.05), the number of secondary (3.8± 0.4 in PTU- treated 
compared to 4.3±0.5 in control group) - but not primary dendrites- showed a significant 
decrease comparing to normal group (4.1±0.3 vs 6.5±0.4 respectively, P<0.001).  

4. Conclusion 

In the present studies birth weights of hypothyroid animals were slightly lower than 

normal; this moderate retardation persisted until day 15, then hypothyroid animals 

stopped growing and clinically became cretinous. The premature profile of masseter 

muscle begins to appear around the pre-weaning time (day 15) in rats. To meet these 

muscle functional properties, 2 weeks after birth, the medium-sized labeled motoneurons 

appeared at the expense of a reduction in the number of small motoneurons. However, 

during the same period, the number of medium- sized motoneurons was more than 2-fold 

under the normal values and the quantity of small motoneurons was about 4- fold in 

hypothyroid pups.  

During development hypothyroidism alters the patterns of masseter motoneurons 
morphology such as soma size, dendritic orientation and arborization pattern and also 
induces a severe delay in the size transition, which may affect the development and 
plasticity of oral feeding behavior. On the other hand, immunohistochemical studies in 
normal animals have shown that motoneurons supplying fast-twitch muscles show a higher 
level CGRP staining than motoneurons innervating muscles of slow twitch fiber type 
(Homonko & Theriault, 2000). A severe delay in the appearance of large fast-twitch jaw 
closing and jaw opening motoneurons due to congenital hypothyroidism suggests an intact 
thyroid and CGRP state are obligatory for the attainment of normal preadult oro-fascial 
masticatory profile. 
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