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1. Introduction 

The thyroid gland is important in the human body because of its ability to produce the 

hormones triiodothyronine (T3) and tetraiodothyronine (T4), necessaries for appropriate 

energy levels and an active life. It has long been known that thyroid hormones are of vital 

importance in maintaining the initial level of phospholipids in cell membranes and fatty 

acids composition of the lipids (Prasad & Kumar, 2005). T3 plays a critical role in lipid 

metabolism by regulating genes involved in lipogenesis and lipolysis (Zhu & Chang, 2010). 

The underlying mechanisms, however, have only begun to be unraveled in recent years. 

Hypothyroidism, characterized by low serum thyroid hormone levels, is associated with 

reduced metabolism, reduced lipolysis, weight gain, reduced cholesterol clearance, and 

elevated serum cholesterol. It is known that thyroid hormone has genomic and nongenomic 

effects (Davis et al., 2008). Thyroid hormones exert their effects by stimulation of thyroid 

hormone receptors (TRs) that have different tissue distribution and metabolic targets. 

Thyroid hormone receptors possess two isoforms, TRǂ and TRǃ (Nr1a1 and Nr1a2) encoded 

by the TRǂ (NR1A1) and TRǃ (NR1A2) genes, and each isoform exists as two or three 

subtypes, respectively (ǂ1, ǂ 2, ǃ1, ǃ2, and ǃ3). TRǂ plays a key role in postnatal 

development, adipose tissue and cardiac metabolism, whereas TRǃ regulates multiple steps 

in hepatic metabolism as well as thyroid hormone levels (Oetting & Yen, 2007). Nuclear 

mechanisms of thyroid hormone action have been extensively described but an increasing 

number of nongenomic effects of the hormone at the cellular level have been recognized in 

the past 10 years (Cheng et al. 2010). Nongenomic actions of thyroid hormone are by 

definition independent on nuclear receptors for the hormone and have been described at the 

plasma membrane, various organelles, the cytoskeleton, and in cytoplasm. The actions 

include alterations in the transport of solutes like Ca++, Na+ and glucose, changes in 

activities of several kinases, including protein kinase C, cAMP-dependent protein kinase 

and mitogen-activated protein kinase. Iodothyronines also can regulate nongenomically 

through a protein kinase C activation of neutral lipids, phospholipids and 

phosphatidylinositol 4, 5-bisphosphate [PtdIns (4, 5) P2] (Axelband et al., 2011). 
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The objective of this review is to provide a current overview of the impact of 

hypothyroidism on lipid content, distribution and metabolism in serum, erytrocytes and 

different tissues of human and experimental animals. The molecular mechanisms involved 

in lipids regulation, with emphasis on the effect of hypothyroidism on liver, which is a 

fundamental organ responsible for controlling cholesterol metabolism, and on adipose 

tissue, where the role of thyroid hormone in regulating adipogenesis and lipolysis is 

complex and controversial, are discused. Finally, an overview of hipothyroidism and its 

correlation with lipid homeostasis in the liver and mammary gland during pregnancy and 

lactation is also given.  

2. Hypothyroidism and circulating lipids 

Thyroid dysfunctions are frequent (Benseñor  et al., 2001). Abnormal serum thyrotropin 

(TSH) values and thyroid dysfunction are more prevalent in women than men and increase 

with age (Valeix et al., 2004). Hypothyroidism has been defined as those conditions which 

result from suboptimal circulating levels of thyroid hormones (Castieiras Lacambra et al., 

1998). It affects 0.5-2.4% of the general population (Sawin et al., 1985). The term myxedema 

was formerly used as a synonym for hypothyroidism. It is now well kown that 

hypothyroidism is a graded phenomenon, including presentations with clinical 

manifestations (overt hypothyroidism) to asymptomatic states known as subclinical 

hypothyroidism (Evered & Hall, 1972). Subclinical thyroid dysfunction may be defined as 

an elevated TSH concentration in an asymptomatic patient with a normal serum free 

thyroxine concentration (Woeber, 1997). It is a common condition affecting 6-17% of the 

general population (Helfand, 2004). Moreover, subclinical hypothyroidism may progress to 

overt hypothyroidism. The rate of progression is higher with the concomitant presence of 

thyroperoxidase antibodies or higher levels of TSH (Vanderpump et al., 1995). 

In 1952, Robertson & Kirkpatrick showed very high level of cholesterol in serum of patients 

with overt hypothyroidism which decreased after adequate hypothyroidism treatment. In 

1972, Nikkilä & Kekki observed a moderate increase of serum triglycerides in hypothyroid 

patients, associated with a decrease in efficiency of triglyceride removal from plasma, which 

was attributed to a low lipoprotein lipase (LPL) activity. Fowler, in 1973, mentioned that 

serum cholesterol and triglycerides were increased in patients with “preclinical” 

hypothyroidism, condition equivalent to the actual subclinical hypothyroidism. 

Furthermore the author also suggested that the abnormal lipid pattern is the first change to 

occur as hypothyroidism develops and the last to disappear after treatment. It is now widely 

recognized that hypothyroidism is one of the most common causes of secondary 

dyslipidemia. The most common abnormalities of lipoprotein metabolism associated with 

hypothyroidism are elevated levels of total cholesterol and low-density-lipoprotein 

cholesterol (LDL-C), which are attributable to the effect of thyroid hormone on lipoprotein 

lipase activity (Lithell et al., 1981) and the expression of the LDL- receptor (Staels et al., 

1990). These changes probably play an important role in atherogenesis.  

2.1 Lipid profile in overt hypothyroidism 

It is known that overt hypothyroidism is associated with increased fasting plasma 
cholesterol and triglyceride levels (Tulloch, 1974). Hypothyroid patients also usually have 
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increased lipoprotein a, Lp(a), levels (Tzotzas et al., 2000),  a low-density lipoprotein (LDL)-
like particle synthesized by the liver that has been reported to promote thrombosis, 
inflammation, and foam cell formation (Erqou et al., 2009). Trials evaluating the effects of 
overt hypothyroidism on LDL subfractions have shown conflicting results. A study in 
newly-diagnosed hypothyroid patients (n=60) showed that hypothyroidism was associated 
with higher prevalence of atherogenic small and dense LDL (sdLDL) (Abbas et al., 2008). By 
contrast, Roscini et al. (1999) found no significant differences between overt hypothyroid 
patients and healthy controls regarding sdLDL levels. In addition, Pearce et al. (2008) has 
evaluated the effects of short-term overt hypothyroidism on LDL subfractions. Patients 
exhibited an increase in LDL-C that was found to be primarily due to increases in the large 
LDL particles, while sdLDL did not significantly change (Pearce et al., 2008). A possible 
explanation for these dissimilar results could be the different methodology used for the 
measurement of LDL subparticles. Hypothyroid patients may also exhibit elevated levels of 
high-density lipoprotein cholesterol (HDL-C), mainly due to increased concentration of 
cholesterol- and phospholipid-enriched HDL-2 particles (Pearce et al., 2008). A decreased 
HDL2 catabolism and cholesteryl ester transfer protein activity has been observed. This 
decrease leads to a reduced transfer of cholesteryl esters from HDL to very-low-density 
lipoprotein (VLDL), thus increasing HDL-C levels (Dullaart et al., 1990). 

Hypothyroidism correction results in a decrease of serum total cholesterol, LDL-C, 

apolipoprotein (apo) A1, apo B and apo E. Hypothyroidism treatment may also decrease 

serum triglycerides (Stockigt, 2002). The apoB/apoA-1 ratio is highly valuable for detecting 

atherogenic risk (Millán et al., 2009). In addition, elevated levels of LDL-C have been 

consistently associated with an increased risk for development of cardiovascular disease 

(Pekkanen et al., 1990). Recently, non-HDL-C, a measure of total cholesterol minus HDL-C, 

has emerged as a predictor of cardiovascular disease. After levo-thyroxine replacement, a 

decrease in non-HDL-C has been observed in patients with overt hypothyroidism (Ito et al., 

2007). The altered serum concentrations of non-HDL-C in hypothyroidism may be related to 

the disturbed metabolism of LDL, remnant lipoprotein, and Apo B (Ito et al., 2007).  

2.2 Lipid profile in subclinical hypothyroidism 

Unlike the relationship established between overt hypothyroidism and lipid alterations, the 

relationship between subclinical hypothyroidism and dyslipidemia is still controversial. 

Despite the fact that the Colorado study of over 25.000 subjects (Caneris et al., 2000) showed 

a continuous graded increase in serum cholesterol over a range of serum TSH values from 

<0.3 to >60mU/l, there is no consensus whether mild thyroid failure has an adverse effect 

on plasma lipids, or whether its T4 treatment, sufficient to normalize TSH, has a beneficial 

effect (Stockigt, 2002).   

A recent study made in 1534 Chinese subjects shows that patients with subclinical 

hypothyroidism (TSH > 4,8mIU/L) have higher serum triglyceride levels and lower serum 

HDL-C levels than euthyroid subjects (Lai et al., 2011). Similar results were found by Iqbal 

et al. (2006), after performing a follow-up study in subclinical hypothyroidism male 

patients. Subclinical hypothyroidism was also associated to a high serum total cholesterol, 

LDL-C and apo B levels in the female patients, and to significantly lower apo A-1 levels 

when males and females were analysed together. After an appropriate treatment with 
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thyroxine, patients showed a significant reduction in the serum total cholesterol, LDL-C and 

apo B levels (Iqbal et al., 2006). 

On the other hand, from a study of patients with Hashimoto thyroiditis it has been shown 

that subjects with subclinical hypothyroidism have significantly higher LDL-C and LDL-C 

to HDL-C ratio compared with euthyroid subjects. After treatment with small doses of levo-

thyroxine there was a significant decrease of total cholesterol, non-HDL-C, LDL-C, and 

LDL-C to HDL-C values (Iqbal et al., 2006). Recent evidence also shows that T4 replacement 

therapy may improve lipid profile in the cases of subclinical hypothyroidism with 

Hashimoto thyroiditis. A marked total cholesterol reduction was inversely correlated with 

an increase in free T4 levels, but not correlated with changes in TSH levels (Tagami et al., 

2010). However, properly controlled prospective studies with a larger sample size are 

neccesary to demonstrate whether replacement therapy alters several cardiovascular 

markers in patients with subclinical hypothyroidism and Hashimoto thyroiditis. 

Ito et al. (2007) found that patients with subclinical hypothyroidism had serum 

concentrations of total cholesterol, non-HDL-C, remnant-like particle cholesterol, and apo 

B significantly decreased, without significant changes in the serum concentrations of  

LDL-C, HDL-C, triglycerides, apolipoprotein A-I, and Lp(a) after levo-thyroxine 

replacement. They also did not find changes in the serum levels of triglycerides, HDL-C, 

apo A-1, and Lp(a). On the other hand, in a randomized, double-blind, crossover study, it 

found that after levo-thyroxine therapy (100 µg/day), patients with subclinical 

hypothyroidism showed a decrease in total cholesterol, LDL-C, HDL-C, apo B, apo A-1, 

and apo B to apo A-1 ratio, but only total cholesterol and LDL-C decrease were 

significantly reduced (5,5% and 7,3% reduction  respectively). The total cholesterol 

reduction was inversely correlated with an increase in free T4 levels, but was not 

correlated with changes in TSH levels. This would indicate that a significant increase in 

free T4, although within the normal reference range, may be a better marker for risk 

factors for cardiovascular disease in monitoring response to treatment in subclinical 

hypothyroidism than TSH level alone (Razvi et al., 2007). This last result contradicts what 

was observed by Asvold et al. (2007), who found that there is a linear increase in total 

cholesterol, LDL-C and triglyceride, and a linear decrease in HDL-C levels with increasing 

TSH, but this correlation was obtained with TSH values within the normal range. In 

opposition, a population-based study of 1350 participants did not show changes in mean 

levels of total cholesterol, triglycerides and LDL-C in both female and male subjects with 

subclinical hypothyroidism and euthyroid. Women with subclinical hypothyroidism had 

significantly lower HDL-C than those who were euthyroid. The differences remained 

significant after adjustment for age, sex, and body mass index. The HDL-C was not 

different between patients with subclinical hypothyroidism and euthyroid men. However, 

in this study it was also observed that the mean TSH levels were higher in subjects with 

dyslipidemia, indicating a relationship between TSH-total cholesterol, and TSH-LDL-C 

levels mainly in overweight women (Lu et al., 2011).  

On the other hand, in a study conducted in patients with subclinical hypothyroidism, with 

normocholesterolemie and normotriglyceridemie, a decreased triglycerides and 

phospholipids transference to HDL, which was corrected with appropriate levo-thyroxine 

therapy, were observed. These results, evaluated using an artificial triglyceride-rich 
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emulsion labeled with radioactive triglycerides, also showed abnormalities in plasma lipid 

metabolism, even when these are not detected in routine laboratory tests, in patients with 

subclinical hypothyroidims (Sigal et al., 2011). Moreover, contradictory results may be due 

to patient diversity. Mild thyroid failure may be present in two types of patients: patients 

with untreated mild thyroid failure and patients with a history of overt hypothyroidism, 

whose T4 dose are not sufficient to normalize the serum TSH level. It has been observed that 

the change in serum total cholesterol concentration, after an appropriate T4 treatment, is 

much higher in the second group of patients (Danese et al., 2000). On the other hand, the 

TSH influence on lipids is different in the overweight and normal weight populations, as 

well as in men and women. The combination of serum TSH, sex, and body mass index has 

important effects on serum lipid parameters (Lu et al., 2011). 

Hormone thyroid influences on atherogenic serum lipoproteins are attractive metabolic 

actions that could hypothetically be exploited to treat obesity (Danese et al., 2000) and 

dyslipidemia (Aronne & Thornton-Jones, 2007). However, using supraphysiological doses of 

the endogenous thyroid hormones, T4 and T3, for these purposes is predictably associated 

with risk of thyrotoxic adverse effects in other organ systems, particularly the heart (Morkin 

et al., 2004) and skeleton (Biondi & Cooper, 2008). A large number of hormone thyroid 

analogs have been synthesized and tested in experimental animal models for their lipid-

lowering activity (Johansson et al., 2005). In all case of thyromimetics therapy use, potential 

side-effects occur in a dose-dependent fashion; therefore dosing regimens in humans will 

need to be tightly controlled (Tancevski et al., 2009). Further prospective studies should be 

carried out to stablish that patients with subclinical hypothyroidism should receive levo-

thyroxine replacement. 

3. Hypothyroidism and erythrocytes  

There are many results indicating that thyroid hormones stimulate erythropoiesis, and also 

increase erythrocyte 2, 3-diphosphoglycerate concentrations, which serve to enhance the 

delivery of oxygen to tissues and affect steady-state levels of circulating erythropoietin, 

playing a major role in abrupt adjustments of erythropoietin production. Thus, 

hypothyroidism has been generally associated with anemia (Fein & Rivlin, 1975; Antonijević 
et al., 1999; Shevtsova et al., 1994). The anemia- hypothyroidism relation has even been 

observed in infants with congenital hypothyroidism, in who anemia has been found to be 

depended on the degree of neonatal hypothyroidism (Franzese et al., 1996). This anemia 

may be normocytic, hypochromic-microcytic, or macrocytic, although normocytic and 

macrocytic anaemia are the most frequent (Fein & Rivlin, 1975; Omar et al., 2010). 

Macrocytosis (found in up to 55% of patients) and normocytic anemia may result from the 

insufficiency of the thyroid hormones themselves without nutritive deficit (Antonijević et 

al., 1999).  

A case report of haemolytic anemia induced by hypothyroidism has been described in the 

literature (Nomura et al., 1991). An increased osmotic fragility is generally associated with 

haemolytic anemia (Schröter & Eber, 1989). In erythrocytes from streptozocin diabetic rats, 

an increase in red cell volume and osmotic fragility was accompanied by a defect in the 

ouabain-sensitive Na+ K+-ATPase (Kowluru et al., 1989). In hyperthyroidism it has been 

found that there are alterations in the number and the activity of Na+ K+-ATPase pump in 
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circulating erythrocytes (Gasawara & Ishikawa, 1993). Also, under this condition, an 

alteration in osmotic fragility has been observed (Asl et al., 2009). In erythrocytes of 

hypothyroid rats, it was observed that there is an increase in osmotic fragility, demonstrated 

by a right shift of hemolysis curve (Dariyerli et al., 2004). However, in hypothyroid subjects 

these alterations have not been found (Asl et al., 2009).  

On the other hand, hypothyroidism causes alterations in the lipid composition of red blood 
cells (Ishii & Nakao, 1968). In hypothyroid rats a 22% cholesterol and 30% phospholipid 
level reduction has been found, without change in fatty acid composition, in erythrocyte 
membranes. The simultaneous decrease in cholesterol and phospholipid levels did not alter 
the cholesterol/phospholipid molar ratio, thus avoiding the erythrocyte membrane 
abnormal function (Ruggiero et al., 1987). In a study realized in 38 patients with 
hypothyroidism, it was found that the level of arachidonate in erythrocyte membrane was 
significantly decreased both before the treatment and within the course of replacing 
hormonal therapy. The content of omega-3 fatty acids decreased in the course of 
conventional therapy (Serebriakova et al., 2008). Erythrocytes lipid changes are also found in 
patients with haemolytic anemia and hypothyroidism. In the red cell membrane, 
phosphatidylcholine and free cholesterol were increased, and the free cholesterol to 
phospholipid ratio was elevated. After levo-thyroxine therapy, the derangement of lipid 
levels was normalized with improvement of the hemolytic anemia (Nomura et al., 1991). In 
a hypothyroid patients group who were athyreotic as a consequence of ablation treatment 
for well-differentiated thyroid cancer, it was observed that the relative amounts of 18:2 
omega 6 rose and those of 20:3 omega 6 fell, while the levels of all monounsaturated fatty 
acids increased in erythrocytes. The nature of these alterations suggests a disturbance in the 
delta-6 desaturase activity. The cholesterol/phospholipids ratio, polyunsaturated fatty acids 
content, increased intracellular Ca++, protein phosphorylation, membrane protein cross-
linking and membrane lipid peroxidation, among other factors, may alter the red blood cell 
membrane deformability (Pescarmona et al., 1983). However, in an experimental model of 
hypothyroidism induced in rats by methimazole addition (75 mg/100 g) to the fodder, there 
was no change in the erythrocyte rigidity index between control and experimental groups 
(Toplan et al., 2005). 

Alteration in oxidative status has been observed in thyroid pathologies. Moderate 
hypothyroid state induced in female rabbits resulted in a significant decrease in the serum 
concentration of the lipid peroxidation end-product malondialdehyde. The erythrocytes of 
hypothyroid animals exhibited higher resistance to oxidative stress and lesser oxidative 
lipids damage characterized by measurement of compounds reacting with thiobarbituric 
acid (Brzezińska-Slebodzińska, 2003; Kowalczyk et al., 2001). Hypothyroidism induced by 
lithium-treatment, provoked a significant decrease in the glutathione content without 
change in superoxide dismutase activities, in red blood cells. This imbalance might render 
the erythrocytes vulnerability to oxidative stress and ultimately haemolysis (Engin et al., 
2005). Alterations in the activities of catalase and glucose-6-phosphate dehydrogenase 
activities have been found in erythrocytes of hypothyroid patients (Sal'nikova et al., 1983; 
Hübner et al., 1979).   

Acanthocytes are erythrocytes with several (usually 3 to 7) irregularly spaced blunted 
projections from the margin of the cells. These cells have increased cholesterol but normal 
content of phospholipids. Acanthocytes are the principal morphological abnormality in 
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abetalipoproteinemia and in the "spur cell anemia" associated with severe alcoholic liver 
disease (Horton et al., 1976; Lynch, 1990). Acanthocytosis findings in cytologic blood smear 
suggest hypothyroidism in about 90% of cases. Other diseases related to acanthocytes are 
very rare, hence hypothyroidism must be excluded in all cases where acanthocytes are 
observed on the blood film (Antonijević et al., 1999; Betticher & Pugin, 1991).  There appears 
to be no correlation between any of the clinical features of the hypothyroid state and the 
shape red cell change but patients lacking the misshapen red cells may have a less severe 
disturbance of serum lipids. The abnormal red cells slowly disappear by treating the 
hypothyroidism (Wardrop & Hutchison, 1970). 

4. Hypotyroidism and liver lipids 

4.1 Cholesterol 

Cholesterol is an essential constituent of most biological membranes and is also a precursor 
of bile acids, steroid hormones, and certain vitamins. Animals rely on two mechanisms to 
maintain a pool of cholesterol sufficient to meet these requirements; de novo cholesterol 
synthesis from acetyl coenzyme A and absorption of cholesterol from dietary sources 
(Angelin, 1995). The liver is central in cholesterol metabolism, balancing hepatic cholesterol 
synthesis and hepatic uptake of plasma lipoproteins from the circulation against the 
excretion of hepatic cholesterol and bile acids in the bile. Thyroid hormone is an important 
regulator of cholesterol metabolism. T3 can influence the metabolism of cholesterol at 
several critical steps in the liver: 1- the low-density lipoprotein  receptor (LDL-R), which 
mediates cholesterol uptake from the circulation, 2,3-hydroxy-3-methylglutaryl coenzyme A 
reductase, controlling cholesterol biosynthesis, and 3-cholesterol 7ǂ-hydroxylase (CYP7A1), 
the rate-limiting enzyme in the synthesis of bile acids where cholesterol is used as substrate 
(Gullberg, 2002). To monitor the level of membrane sterols, cells employ two sterol-sensing 
domain (SSD)-containing proteins, sterol regulatory element-binding protein (SREBP), 
cleavage-activating protein (SCAP) and 2-3-hydroxy-3-methylglutaryl coenzyme A 
reductase that are localized within the endoplasmic reticulum. Under low sterol conditions, 
SCAP binds to SREBPs to escort them from the endoplasmic reticulum to the Golgi 
apparatus where they are processed into functional transcription factors that activate the 
expression of genes involved in the synthesis of cholesterol. When sterols accumulate, the 2-
3-hydroxy-3-methylglutaryl coenzyme A reductase is rapidly degraded, resulting in the 
termination of sterol synthesis (Eberlé, 2004; Dong & Tang, 2010). 

It is known that TRǃ is a major mediator of T3 effects on serum cholesterol and that it is 
involved in the transcriptional regulation of the CYP7A1 gene. The dependence on TRǃ for 
T3 regulation of serum cholesterol levels was supported by the fact that TRǃ-selective 
agonist GC-1 was is as efficient as T3 in decreasing serum cholesterol in hypothyroid mice 
(Trost, 2000). The molecular mechanisms controlling CYP7A1 regulation by bile acids and 
cholesterol metabolites have been widely studied. Liver X receptor-ǃ (LXRǃ) and farnesoid 
X receptor are two ligand dependent transcription factors that are receptors for derivatives 
of cholesterol and bile acids in the control of CYP7A1 expression (Henkel, 2011). LXRǃ, an 
oxysterol binding transcription factor, directly activates CYP7A1 transcription in response to 
challenge with dietary cholesterol to mice; thus LXRǃ -/- mice fed cholesterol-rich diets fail 
to induce enzyme activity and therefore accumulate toxic levels of cholesterol in the liver 
(Alberti, 2001). In addition to T3, it has been recognized that growth hormone is required for 
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normal CYP7A1 regulation in rats and mice. Experiments showed that in the absence of TRs 
(TRǃ1-/- mice), neither cholesterol nor T3 stimulated CYP7A1 expression and activity. 
CYP7A1 mRNA expression and enzymatic activity remained on a high level in these mice 
regardless of the T3 status and irrespective of whether cholesterol was added to the diet or 
not. The blunted CYP7A1 stimulation in response to T3 confirms the importance of TRǃ 
(Pramfalk et al., 2011). The absence of up-regulation in response to dietary cholesterol was at 
first unexpected, but is likely due to the critical dependence of normal CYP7A1 regulation 
on  growth hormone  and to the fact that TRǃ1-/- mice have severely reduced growth 
hormone levels. TRǃ also appears to be of major importance for the regulation of 2,3-
hydroxy-3-methylglutaryl coenzyme A reductase transcription by T3 (Gullberg, 2000). 

Reduced binding activity of hepatic LDL receptors is generally considered as a major 
mechanism of hyperlipidemia in hypothyroidism. There were clearly effects of T3 on LDL 
receptor mRNA, but they could not be distinctly ascribed to TRǂ1 or TRǃ. Although T3 
rapidly regulates the transcription of the LDL receptor gene no specific TRE (thyroid 
response element) has so far been described in the LDL receptor gene promoter. The 
suppression of CYP7A activity would lead to down-regulation of LDL receptor mRNA, 
however, it cannot be concluded that T3 directly regulates the LDL receptor transcription 
(Lopez et al., 2007). 

4.2 LXR transcription factor  

The liver X receptors, LXRǂ (NR1H3) and LXRǃ (NR1H2), are ligand-activated transcription 

factors that belong to the nuclear hormone receptor superfamily. LXRs play a critical role in 

cholesterol homeostasis, bile acid metabolism and carbohydrate metabolism. The oral 

administration of LXR agonists to mice results in elevated hepatic fatty acid synthesis and 

steatosis and increased secretion of triglyceride-rich very low density lipoprotein resulting 

in hypertriglyceridemia. This increased hepatic lipogenesis has been largely attributed to the 

LXR-dependent upregulation of sterol regulatory element-binding protein 1c (SREBP-1c) 

expression. However, it has been reported that treating Srebp-1c null mice with the synthetic 

LXR agonist T0901317 still results in enhanced expression of many lipogenic genes, 

suggesting additional mechanisms by which LXR can enhance hepatic lipogenesis (Cha & 

Repa, 2007; Talukdar & Hillgartner, 2006). 

LXR exists in two isoforms, LXRǂ and -ǃ (also referred to as Nr1h3 and Nr1h2, respectively. 

LXRǂ is highly expressed in the liver, and expressed at lower levels in the adrenal glands, 

intestine, adipose tissue, macrophages, lung, and kidney, whereas LXRǃ is ubiquitously 

expressed. The LXRs form heterodimers with the retinoid X receptor (RXR). The RXR/LXR 

heterodimers bind to LXR responsive elements (LXREs) consisting of direct repeats (DRs) of 

the core sequence AGGTCA separated by four nucleotides (DR-4). Although, the LXRs and 

TRs belong to two distinct receptor subgroups with respect to ligand-binding affinity, the 

two receptor systems show similarity with respect to molecular mechanisms, target genes, 

and physiological roles. Both TR and LXRs form heterodimers with RXR, and bind to DR-4 

with identical geometry and polarity. Recently it has been shown that TRǃ and LXRǂ 

interact on the mouse CYP7A1 gene promoter, suggesting the possibility of cross talk 

between the two receptors at the transcription level in the liver. There are structural 

similarity between LXRs and TRs. The mouse LXRǂ mRNA expression is positively 
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regulated by TR at the transcriptional level, and a cross-talk pathway between LXRǂ and 

TRǃ exists in the autoregulation of the LXRǂ gene.  The human LXRǂ mRNA expression 

and promoter activity are also positively regulated by thyroid hormone.A cross talk 

between TRǃ and LXRǂ could be a therapeutic target against dyslipidemia and 

atherosclerosis (Hashimoto et al., 2007). LXRǂ plays a pivotal role in hepatic cholesterol 

metabolism, whereas LXRǃ has not a comparable role. LXRǂ is inducible by thyroid 

hormone, whereas LXRǃ is not. 

There are several possible models for explaining the molecular mechanism behind the 
dependence or independence on TRǃ for T3 regulation of target genes. One possibility is 
that the promoter context determines the TR isoform that regulates expression of the target 
gene. This implies that TRǂ1 and TRǃ bind certain T3 response elements with different 
affinities. TRǂ1 and TRǃ, respectively, govern which TR regulates a target gene in a specific 
cell; this assumes that the spatial expression patterns are distinct for different TRs in the 
liver. This would be analogous to the metabolic zonation in the liver where different 
metabolic processes are spatially separated along the porto-central axis of the liver units .In 
fact, several of the aforementioned genes are known to be zonally expressed in the liver. The 
CYP7A gene is expressed in a narrow zone around the central vein. It has been reported that 
TRǃ is expressed preferentially around the central vein in the rat (Zandieh-Doulabi et al., 
2004). This has supported the idea that hepatic target gene specificity by TRs may be 
preferentially governed by distinct zonal expression of TRs and their respective target 
genes, and less by promoter selection (Gullberg et al., 2000). 

4.3 Sterol regulatory element-binding proteins 

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that belong to 

the basic helix-loop-helix leucine zipper family. The mammalian genome encodes three 

SREBP isoforms, designated SREBP-1a, SREBP-1c, and SREBP-2. SREBP-2 is encoded by a 

gene on human chromosome 22q13. Both SREBP-1a and -1c are derived from a single gene 

on human chromosome 17p11.2 through the use of alternative transcription starts sites that 

produce alternate forms of exon 1, designated 1a and 1c (Tarling et al., 2004). SREBP-1a is a 

potent activator of all SREBP-responsive genes, including those that mediate the synthesis of 

cholesterol, fatty acids, and triglycerides. High-level transcriptional activation is dependent 

on exon 1a, which encodes a longer acidic transactivation segment than does the first exon 

of SREBP-1c. SREBP-1c preferentially enhances the transcription of genes required for fatty 

acid synthesis but not cholesterol synthesis. LXRs bind to an LXR-binding site in the SREBP-

1c promoter and activate SREBP-1c transcription in the presence of LXR agonists such as 

oxysterol (Quack et al., 2002).  

There is evidence that T3 represses mouse SREBP-1c expression at the transcriptional level. 

The mouse SREBP-1c promoter is negatively regulated by thyroid hormone in the Hepa1–6 

cells. DNA binding of TR (RXR-TR heterodimer) is required for negative regulation of the 

mouse SREBP-1c gene promoter. In addition, SREBP-1c mRNA levels were increased in the 

hypothyroid status by about 1.5-fold compared with the control, and thyrotoxic treatment 

reduced the mRNA levels by about 50% compared with the control level. Thus mouse 

SREBP-1c gene expression in the liver is negatively regulated by thyroid hormone 

(Berkenstam et al., 2004). 
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4.4 Lipid β-oxidation in TRβPV/PV
 mice  

The PV mutation has been identified in a patient with resistance to thyroid hormone. PV 

exhibits potent dominant-negative activity. It is due to a C-insertion at codon 448 of the 

TRǃ1 that leads to a mutant that has complete loss of T3 binding and transcription activity 

(Parrilla et al., 1991). To understand the role of TRs in lipid homeostasis in vivo, it has been 

adopted the loss-of-function approach by creating knock-in mutant mice with targeted 

mutation in the TRǂ gene (TRǂ1PV mouse) or TRǃ gene (TRǃPVmouse). 

The decreased ǃ-oxidation could also contribute to lipid accumulation in the liver of wild-

type and TRǃPV/PV mice. The ǃ-oxidation activity in the primary hepatocytes of TRǃPV/PV 

mice was found significantly lower (24-37%) than that of wild-type mice. Simultaneously 

it was observed that the expression of carnitine palmitoyl-transferase Iǂ (Cpt1a), a rate-

controlling enzyme regulating the import of fatty acids into mitochondria, was lower 

(37%) in the liver of TRǃPV/PV mice than in wild-type mice and the expression of 

cytochrome P450 family 4 subfamily A polypeptide 10 (Cyp4a10) involved in microsomal 

ω-oxidation was significantly increased in TRǃPV/PV mice, 40-fold higher than wild-type. 

These data suggest that the reduction of ǃ-oxidation activity and the fatty liver phenotype 

is mainly mediated by the decreased expression of rate-determining step regulator, Cpt1a, 

in TRǃPV/PV mice. Evidence indicates that the liver of the TRǂ1PV/+ mice, is smaller than 

the wild-type mice with paucity in hepatic fat accumulation. Further molecular analyses 

have indicated that the expression and activity of PPARǄ are increased in the liver of 

TRǃPV/PV mice, whereas the expression of PPAR is repressed in the liver of TRǂ1PV/+ mice 

(Araki et al., 2009). 

Differential regulation of lipogenic genes by apo-TRǃ and apo-TRǂ1, in accord with the lipid 

phenotype, has also been observed in the liver of these two mutant mice.TRǃ is known to be 

the major TR isoform in the liver, and many TR-mediated T3 effects are believed to act via 

TRǃ in this target tissue. Therefore, it is reasonable to expect that the mutation of the TRǃ 

isoform would lead to observable phenotypic abnormalities. However, it has been shown 

that mutation of TRǂ1, which is a less abundant TR isoform in the liver, led to the repression 

of PPARǄ and manifestation of abnormality in lipid metabolism in TRǂ1PV/+ mice. The 

dominant-negative activity of TRǃ is stronger in tissues where TRǃ is the predominantly 

expressed isoform. Possibly, abnormal gene regulatory activity of the less abundantly 

expressed TRǂ1PV would be compensated by the predominantly expressed w-TRǃ in the 

liver (Cheng, 2005). Thyroid hormone stimulates lipogenesis in the liver. Hepatic production 

of malonyl-CoA is the rate-limiting step in the synthesis of fatty acids and it is catalyzed by 

both acetyl-CoA carboxylase (ACC) 1 and 2. ACC1 is enriched in the liver and other 

lipogenic tissues and is regulated by TR, LXR and SREBP-1 at the transcriptional level 

through the ACC1 promoter II. SREBP-1 enhances ACC1 mRNA expression by forming a 

tetrameric complex with TR/RXR, which stabilizes SREBP-1 on its binding site. A PPARǂ 

agonist stimulates ACC1 gene expression by enhancing the expression of SREBP-1c 

processing enzymes, which increases nuclear SREBP-1c activity .LXR directly stimulates 

ACC1 gene expression (Grefhorst et al., 2005). In hypothyroidism all these processes are 

decreased. These findings indicate that apo-TRǃ and apo-TRǂ1 have different effects on 

lipid metabolism and that both TR isoforms contribute to the pathogenesis of lipid 

metabolism changes in hypothyroidism.  
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4.5 Mitochondrial lipids 

The hepatic mitochondrial lipid composition is altered significantly in hypothyroid rats. The 

total cholesterol increases, the phospholipids decrease and the cholesterol/phospholipid 

molar ratio increases (around 40%). Among the phospholipids, cardiolipin shows the 

greatest alteration (30% decreases in the hypothyroid rats). The phosphatidylethanolamine/ 

phosphatidylcholine ratio also decreases. Alterations were also found in the pattern of fatty 

acids. These changes in lipid composition may be responsible, at least in part, for the 

depression of the phosphate carrier activity in the liver mitochondria from hypothyroid rats 

(Hoch et al., 1981). In addition, hypothyroidism and thyroxin substitution affect the n-3 fatty 

acid composition of rat liver mitochondria. The n-6 and n-3 polyunsaturated fatty acids are 

affected differently by the hypothyroid state. The levels of linoleic (18:2n-6), gamma-

linolenic (18:3n-6) and dihomo-gamma-linolenic acids (20:3n-6) have been found to be 

higher in hypothyroid rats than in controls, while the level of arachidonic acid (20:4n-6) was 

lower, which suggests an impairment of the elongase and desaturase activities. The n-3 

polyunsaturated fatty acids, eicosapentaenoic (20:5n-3) and docosapentaenoic (22:5n-3) 

acids, were higher in hypothyroid rats, whereas the linolenic acid (18:3n-3) content 

remained constant. The level of docosahexaenoic acid 22:6n-3 was dramatically decreased in 

hypothyroid rats, while the levels of C22 n-6 fatty acids were unchanged. The differences 

were probably due to the competition between n-3 and n-6 polyunsaturated fatty acids for 

desaturases, elongases and acyltransferases. When hypothyroid rats were treated with 

thyroxin, the changes induced by hypothyroidism in the proportions of n-6 fatty acids were 

rapidly reversed, while the changes in the n-3 fatty acids were only partially reversed. After 

21 days of thyroxin treatments, the 22:6n-3 content in liver mitochondria was only half as 

high in hypothyroid rats than in euthyroid rats. These results suggest that the conversion of 

18:2n-6 to 20:4n-6 is suppressed in the hypothyroid state which favors the transformation of 

18:3n-3 to 20:5n-3 (Raederstorff, 1991). The content of individual fatty acid component in 

mitochondria of livers from thyroidectomized and streptozotocin -induced diabetic rats has 

been measured to investigate how different hormones are interrelated to control the amount 

of a particular fatty acid in mitochondria. The results showed diabetes, in general, affected 

fatty acid contents more severely than hypothyroidism, regardless of the direction of the 

changes. Hypothyroidism and diabetes affected antagonistically the contents of C16 species 

and C18:1, which belong to a de novo synthesis (oleate series). However, the two 

pathological conditions affected synergistically those of higher unsaturated species, eg. 

C18:2, C20:3 and C20:4, which belong to a dietary-dependent synthesis (linoleate series). 

These findings strongly indicated that each desaturation site and elongation site is affected 

in a preferential order by either thyroid hormone or insulin, and that hypothyroidism and 

diabetes have their effects differently on the process of de novo synthesis and the pathways 

initiated from an essential fatty acid in mitochondria (Nishida et al., 1991). 

The phospholipid composition and the in vitro incorporation of radioactive cytidine 
diphosphate-choline into phosphatidylcholine were studied in mitochondria and 
microsomal fraction obtained from liver and brain of 20 day old hyperthyroid or 
hypothyroid rats. The chemical composition of the subcellular membranes isolated from 
brain differed markedly in both conditions. In hyperthyroidism the microsomal fraction was 
slightly affected while the mitochondria were also affected, but not as severely as in 
hypothyroidism, in which the microsomal fraction showed no alterations. The incorporation 
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of the radioactive precursor into brain mitochondria isolated from hyperthyroid rats was 
markedly decreased, while no changes were observed in microsomes. However, 
incorporation into brain microsomal fraction obtained from hypothyroid rats was increased, 
while no changes were observed in mitochondria. Similar results were obtained in the 
studies performed with liver subcellular membranes from hyperthyroid animals while no 
changes were found in those from hypothyroid rats. Thus, it seems possible that both 
experimental conditions affect in a different way the structure and function of brain 
mitochondria and microsomal fractions. These findings also give further support to authors’ 
hypothesis that mitochondria have a certain degree of autonomy for the synthesis of 
phosphatidylcholine (Faryna de Raveglia et al., 1982). 

5. Hypothyroidism and adipose tissue 

Recent evidence shows that during the adipogenesis of 3T3-L1 cells, TRǂ1 mRNA is 
constitutively expressed in preadipocytes. Its expression continues to increase during 
adipogenesis, concurrent with the appearance of lipid droplets. In contrast, very little, if any, 
TRǃ1 mRNA is detectable in either preadipocytes or adipocytes. These findings suggest a 
critical role of TRǂ1 during adipogenesis of 3T3-L1 cells (Zhu et al., 2011). It is known that 
that thyroid hormone could also act via nongenomic action through a plasma membrane 
receptor. The plasma membrane receptor is located on integrin ǂvǃ3 at the arginine-glycine-
aspartic acid (RGD) recognition site important to binding by the integrin of extracellular 
matrix proteins. Interestingly, snake venom-derived RGD-containing disintegrin was found 
to inhibit adipogenesis of primary cultured fibroblastic preadipocytes (Lin et al., 2005). 
These cell-based studies further expanded the complexity of understanding the regulation 
of adipogenesis by thyroid hormone.  

5.1 Peroxisome Proliferator-Activated Receptors (PPARs) 

Thyroid hormone receptors regulate adipogenesis via crosstalk signaling with PPARs. Both 
PPARs and TRs are ligand dependent transcription receptors of the subfamily 1 (NR1) in the 
nuclear receptor superfamily. The NR1 group also includes retinoic acid receptors (RARs), 
Rev-erb, RAR-related orphan receptors (RORs), LXRs, vitamin D3 receptors (VDRs), and the 
nuclear xenobiotic receptor (constitutive androstane receptor (CAR). PPARs and TRs share a 
conserved DNA-binding domain (DBD) and exert their activity partly by 
heterodimerization with a common partner, the RXR, to regulate the transcription of target 
genes (Liu & Brent, 2010; Hunter et al., 1996). 

TRs play important roles, as do PPARs, in lipid mobilization, lipid degradation, FA 
oxidation, and glucose metabolism. By direct or indirect effect, thyroid status influences the 
expression of a number of genes involved in lipid and glucose metabolism. For example, TR 
isoform-specific regulation of hepatic genes involved in lipogenesis and fatty acid-oxidation 
has been implicated by the cDNA array analysis of TRǃ knockout mice treated with or 
without thyroid hormone (Flores-Morales et al., 2002). Among more than 200 hepatic genes 
responding to T3 treatment, ~60% of them are regulated by TRǃ and the remaining 40% are 
regulated through TRǂ. PPARǂ is one of the T3-regulated genes (Flores-Morales et al., 2002). 

PPARs have been shown to affect the thyroid hormone functions in thermogenesis in vivo. 
Administration of the PPARǄ agonist rosiglitazone to male rats shifts the energy usage to an 
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anabolic state and markedly reduces plasma thyroid hormones. Rosiglitazone also decreases 
mRNA levels of the TRǂ1and TRǃ in brown adipose tissue, and the TRǂ1 and TRǂ2 in 
retroperitoneal white adipose tissue (WAT). These findings explain the functions of PPARǄ 
in up-regulating thermogenesis-related genes in WAT and brown adipose tissue, while 
balancing the whole body thermogenesis by down-regulating the transcription activity of 
TRs in these processes (Festuccia et al., 2008). PPARǅ exerts an inhibitory effect on T3-
induced transcription activation by TRǃ on the TRE-CAT reporter gene even in the presence 
of overexpressed RXRǂ protein in cells. PPARǅ could inhibit the transcriptional activity of 
TR action by competing for the heterodimerized partner RXR in the nucleus (Meier-Heusler 
et al., 1995). 

5.2 Leptin 

Leptin, a recently discovered protein produced in adipocytes, regulates body weight by 

suppressing food intake and/or increasing energy expenditure. Thyroid hormones, which 

increase the basal metabolic rate and thermogenesis, have been reported to be one of leptin's 

regulating factors because alternations in thyroid status might lead to compensatory 

changes in circulating leptin. Plasma leptin is significantly elevated in hypothyroid subjects, 

to levels similar to those seen in obese euthyroid subjects. Treatment of hypothyroidism 

results in a reduction in the raised plasma leptin levels. The data are consistent with the 

hypothesis that leptin and the pituitary-thyroid axis interact in the euthyroid state, and that 

hypothyroidism reversibly increases leptin concentrations. Thyroid status modifies leptin 

secretion independently of adiposity and noradrenaline. The data suggest leptin-thyroid 

interactions at hypothalamic and adipocyte level (Pinkney et al., 2000). 

Hypothyroidism is clearly related to body weight gain and greater adiposity, but the range 

of hormonal change in serum TSH concentration associated with weight gain remains a 

focus of debate.  It has been shown that in hypothyroidism: 1) glucose uptake in muscle and 

adipose tissue is resistant to insulin; 2) the suppression of lipolysis by insulin is not 

impaired; 3) plasma levels of triglycerides are elevated due to decreased clearance by the 

adipose tissue; 4) a major finding to explain most of the metabolic defects is the decrease in 

adipose tissue blood flow rates. These findings, taken together with published data on 

hyperthyroidism suggest that thyroid hormone excess and deprivation do not make a 

consistent story: in hypothyroidism the decrease of blood flow in adipose tissue and muscle 

may be considered as part of the pathogenetic mechanism of insulin resistance explaining 

most of the metabolic defects in these tissues; in contrast, in hyperthyroidism the increase of 

blood flow seems to correct the intrinsic metabolic defects in muscle and adipose tissue 

(Dimitriadis et al., 2006). Moreover, in hypothyroidism the targets of insulin action are not 

uniformly impaired: glucose uptake and proteolysis are resistant to insulin, but lipolysis is 

not; the latter may be necessary to relieve tissues from the burden of unsatured fatty acids 

surplus after meals. Low normal free T4 levels were significantly associated with increased 

insulin resistance. These findings are consistent with an increased cardiovascular risk in 

subjects with low normal thyroid function (Ross et al., 2007). In female patients with 

primary hypothyroidism, plasma levels of leptin were found to be increased (Hsieh et al., 

2002; Teixeira et al., 2009). Thyroid hormone plays a relevant role in regulating leptin 

metabolism independent of body mass index and body fat (Hsieh et al., 2002). These results 
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may explain, at least in part, low blood flow rates and insulin resistance in the forearm and 

adipose tissue in overt hipothyroidism. 

5.3 Lipoprotein lipase 

LPL is a central enzyme in lipid metabolism, and adipose LPL activity is increased in rats 

that are deficient in thyroid hormone. LPL is synthesized and secreted by adipocytes, and is 

important for the transfer of triacylglycerol fatty acids from the circulating blood into 

adipocytes. The cellular regulation of LPL is complex. Previous studies have described the 

effects of numerous hormones and physiologic conditions on the level of LPL catalytic 

activity, and more recent studies have identified a number of different mechanisms of LPL 

cellular regulation (Wang & Eckel, 2009). Among the hormonal regulators of LPL is thyroid 

hormone. Adipose tissue levels of LPL have consistently been increased in hypothyroid rats, 

although plasma triglycerides have been either decreased or unchanged during 

hypothyroidism. Triglyceride-derived fatty acid uptake was found to be increased in WAT 

in association with increased LPL activity but unaffected in oxidative tissues and decreased 

in liver (Klieverik et al., 2009).      

Studies by Saffari et al. (1992) have shown that WAT LPL is increased in hypothyroidism via 

a postranslational mechanism. This finding was amply confirmed by Klieverik et al. (2009) 

that in three WAT depots, fatty acid uptake from VLDL particles was increased in 

proportion to the LPL activity. The WAT fatty acid uptake in hypothyroidism is quite 

significant, amounting to approximately 3 nmol/mg tissue in 2 h, comparable to the 

combined (VLDL plus albumin) uptake by thyrotoxic muscle. The biological meaning of 

these observations is also intriguing. WAT only stores triglycerides so the fat is there to stay. 

Then, some questions have been raised ¿is the stimulation of lipoprotein lipase in WAT of 

hypothyroid animals a way to protect the liver from massive steatosis? Or do these depots 

contribute to the thermal insulation of these thermogenic deficient mice? After all, fat is an 

excellent thermal insulator. However, the hypothyroid rat does not obese, even after months 

of hypothyroidism. It is possible that as hypothyroidism extends, lipogenesis is 

progressively reduced and a new steady state with only moderate obesity is reached (Silva, 

2010). In adipose tissue, hypothyroidism results in a decreased responsiveness of lipolysis to 

catecholamines even though there is no change in beta adrenergic receptor levels. This 

impairment in lipolytic responsiveness is reflected in decreased cellular cAMP levels due to 

an increase in cAMP phosphodiesterase, which degrades cAMP. In addition, some studies 

have suggested some impairment in adenylate cyclase activity in hypothyroid adipose 

tissue. Thus, the decreased responsiveness of LPL to epinephrine in cells from hypothyroid 

rats is consistent with previous data on adipocyte lipolysis, and suggests that a second 

messenger common to both hormones, such as cAMP, is important for LPL translation 

(Carvalho et al., 1996; Germack et al., 2000). 

5.4 Adipose tissue of TR knockout mice  

Studies using TR subtype knockout mice have shown that TRǂ1 is essential for maintaining 

proper thermogenesis and that TRǃ is important in regulating cholesterol metabolism. These 

findings suggest tissue-dependent T3-mediated TR isoform action in the maintenance of 

metabolic homeostasis. In hypothyroidism, however, TRs function as aporeceptors. Studies 
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of mice deficient in all TRs (TRǂ1−/− and TRǃ−/− mice) have shown that they exhibit a milder 

overall phenotype than the debilitating symptoms of severe hypothyroidism, highlighting 

the important role of apo-TRs in the pathogenesis of hypothyroidism. Indeed, knock-in 

mutant mice harboring different mutations in the TRǂ gene exhibit abnormalities in lipid 

metabolism. The TRǂ1PV mouse that harbors a frameshift mutation in the C-terminal 16 

amino acids displays a lean phenotype, partly due to the reduction in white fat mass. The 

TRǂ1R384C knock-in mutant mouse also exhibits a lean phenotype with reduction in fat 

mass. The TRǂ1P398H knock-in mutant mouse, interestingly, has increased body fat 

accumulation and elevated serum levels of leptin, glucose, and insulin. These results 

indicate that apo-TRǂ1 severely perturbs lipid metabolism and energy balance but in a 

mutation-site-dependent manner (Liu et al., 2003). 

The creation of knock-in mutant mice with an identical mutation in the TRǃ (TRǃPV mouse) or 

TRǂ gene (TRǂ1PV mouse) at the same corresponding C terminus of receptors allowed to 

clarify whether apo-TRǃ with the same mutation as the TRǂ1 mutant could lead to a similar or 

a distinct impairment in lipid metabolism. The TRǃPV mouse faithfully reproduces human 

RTH with dysregulation of the pituitary-thyroid axis, whereas the TRǂ1PV mouse has normal 

thyroid-pituitary functions (Kaneshige et al., 2000). Although both the homozygous (TRǃPV/PV) 

and heterozygous (TRǃPV/+) mice are viable with no severe fertility defects, homozygous 

TRǂ1PV/PV mice die shortly after birth, and heterozygous TRǂ1PV/+ mice are dwarfs with 

reduced fertility (Kaneshige et al., 2001). Recently, it has been found that the reduction in the 

WAT contributes to the dwarfism of TRǂ1PV/+ mice and that apo-TRǂ1 (TRǂ1PV) acts to 

repress adipogenesis of WAT by inhibition of the expression and by repression of the 

transcriptional activity of PPARǄ. It has been found that in contrast to TRǂ1PV/+ mice, no 

abnormality in the WAT of TRǃPV mice was detected. The transcription activity of PPAR Ǆ 

was repressed by TRǂ1PV. The dual repression effects of TRǂ1PV reduce the expression of 

several PPARǄ downstream target genes involved in adipogenesis, resulting in reduced fat 

mass. In addition to these in vivo findings, it has been shown that the overexpression of 

TRǂ1PV blocked the T3-dependent adipogenesis of 3T3-L1 cells (Ying et al., 2007). 

Obesity and disorders of lipid metabolism are major health issues. The findings that the 

apo-TR isoforms act differentially in a target-tissue-dependent manner, could help direct the 

design and development of T3 analogs to treat these disorders. One could envision that if 

fatty liver were detected in patients with hypothyroidism, it would be more beneficial to 

treat them with a TRǃ-specific analog such as GC-1 without a major undesirable effect in 

other organs such as the heart. As additional advances are made in better understanding the 

actions of TR isoforms in lipid metabolism, novel T3 analogs for improved treatment 

strategies would certainly be forthcoming. The finding that TRǂ1PV was more effective than 

TRǃ1PV in blocking adipogenesis suggests that TRǂ1 could be considered as a potential 

therapeutic target for decreasing adipose tissue and reducing serum fatty acids. Moreover, 

3T3-L1 cells stably expressing TR┙1PV or TR┚1PV could be used as model cell lines to 

further elucidate the role of T3 via TR in adipogenesis (Baxter & Webb, 2009).  

5.5 Fatty acid-beta oxidation 

The role of thyroid hormone in regulating lipolysis is also complex and controversial. It has 

been shown that in the fed state adipocytes from hypothyroid rats had markedly reduced 
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sensitivity to catecholamine-induced lipolysis, whereas there was no change in 

catecholamine-induced lipolysis in adipocytes from hyperthyroid rats (Ben Cheikh et al., 

1994). Thyroid hormones play a major role in regulating oxygen metabolism. Thyroid 

hormones increase both coupled and uncoupled respiration, and thyroid dysfunction 

impacts resting energy expenditure (REE). The underlying mechanisms are not clear, but 

uncoupling proteins (UCP) that produce heat instead of ATP may be involved. A positive 

correlation between thyroid hormones and UCP2 mRNA expression has been shown by 

Barbe et al. (2009). In addition, increased UCP2 mRNA expression has been demonstrated in 

fat biopsies from hyperthyroid patients (Hoffstedt et al., 2000). UCP2 levels in adipose tissue 

have been found to be significantly lower in patients in the hypothyroid state compared 

with the euthyroid state. The levels increased during treatment and became similar to those 

of healthy controls. The precise function of UCP2 in adipose tissue is not settled, but several 

theories exist. UCP2 may be involved in fatty acid metabolism, and UCP2 expression has 

been shown to be regulated by free fatty acids. UCP2 has also been suggested to be involved 

in the production of reactive oxygen species. Finally, UCP2 has been suggested to function 

as a genuine uncoupling protein, involved in lipid metabolism, since a positive association 

between basal free fatty acids and UCP2 expression has been demonstrated (Davis et al., 

2008). The gene expression of other mitochondrial proteins participating in lipid oxidation, 

namely ACC and carnitine palmitoiltransferase-1, has not shown any significant changes in 

patients before and after treatment nor in healthy controls (Gjedde et al., 2010). These 

findings support the notion of UCP2 as a specific target for T3- mediated gene regulation in 

human adipose tissue.  

6. Hypothyroidism and lipid during pregnancy and lactation 

Pregnancy is a state of significant dynamic changes in metabolism, with accumulation of 
lipids and nutrients during about the first half; whereas during late pregnancy and lactation, 
these accumulated reserves are used for fetal growth and subsequently for milk synthesis 
(Hapon et al., 2003). The regulation and coordination of lipid metabolism on pregnancy and 
lactation are very important because of the sudden and profound physiological changes 
occuring during these physiological states (Hapon et al., 2003, 2005). It is known that 
undiagnosed hypothyroidism during pregnancy will lead to irreparable central nervous 
system defects in the newborn because the development of the child in utero is critically 
affected by the mother’s thyroid status (Gartner, 2009). The prevalence of subclinical 
hypothyroidism in women of childbearing ages is 4-5% (Glinoer, 1997). Furthermore, at least 
in two population-based surveys carried out in areas with different iodine intake, suggest a 
2.5% overall prevalence of compensated or uncompensated hypothyroidism during 
pregnancy (Parrot et al., 1960), making it a significant risk for gestational outcome.  

6.1 Liver and mammary lipids in pregnancy 

During the last decade there has been an increasing appreciation for the incidence of thyroid 

dysfunction during pregnancy as well as the resultant adverse maternal and fetal effects 

(Okosieme & Lazarus, 2010; Lazarous, 2011). Pregnancy is accompanied by profound 

alterations in thyroidal economy, resulting from a complex combination of factors that are 

specific to the pregnant state: the rise in T4-binding globulin concentrations as a result 
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of estrogenic stimulation, the effects of chorionic gonadotropin on the maternal thyroid, 

alterations in the requirement for iodine, modifications in autoimmune regulation, and the 

role of the placenta in deiodination of iodothyronines (Glinoer, 1997, 2004). In rats, 

hypothyroidism has been associated with delayed paturition, subnormal number of fetuses, 

increased pup mortality, decreased pup growth, altered circulating hormones (Parrot et al., 

1960, Hapon et al., 2003) and also, altered functioning of the mammary gland during 

lactation (Hapon et al., 2003). A clinical state of hypothyroidism during late pregnancy may 

limit the capacity of the maternal organism to sustain itself and the fetus adequately and to 

prepare the mammary tissue for the subsequent lactation, thus compromising delivery and 

nutrition of the newborn (Hapon et al., 2003). A linear correlation between maternal and 

fetal plasma triglycerides has been described to have an important implication in newborn 

weight (Herrera, 2002). It contributes to provide circulating triglycerides in the form of 

lipoprotein to the mammary gland for milk lipid synthesis (Ramos & Herrera, 1996).  

Fatty acid synthesis is an important metabolic pathway that is controlled by nutrients and 

hormones. Thyroid hormones are involved in the regulation of hepatic lipogenesis by 

altering levels of fatty acid synthase and acetyl-CoA carboxylase mRNAs, and their 

activities (Radenne et al., 2008; Kim et al., 2005). It is known that pregnancy stimulates fatty 

acid synthase and glycerol-3-phosphate acyltransferase expressions in the rat liver, while a 

state of clinical hypothyroidism during pregnancy shows decreased hepatic triglyceride 

synthesis in terms of  14C[glucose]  incorporation and subsequently, decreases in 

triglycerides and enhanced cholesterol in the circulation (Bonet & Herrera, 1991; Lopez Luna 

& Morales, 1985). A decrease in the liver lipid synthesis has been also evidenced by the 

diminished incorporation of 3H[H2O] into triglycerides and by the expression and activity of 

fatty acid synthase and acetyl-CoA carboxylase in pregnant hypothyroid rats, which may be 

responsible for the decrease in circulating triglycerides (Hapon et al., 2005). Congenitally 

hypothyroid mice show alterations in apoB RNA editing that switch hepatic production 

from apoB-100 to apoB-48 isoform (Mukhopadhyay et al., 2003), and whose conformational 

competence directs the assembly of hepatic VLDL more effectively.  

The liver also plays a central role in the maintenance of whole body cholesterol homeostasis 

by integrating the regulation of a group of hepatic enzymes, receptors, and other proteins 

that are important for cholesterol, lipoprotein, and biliary metabolism (Smith et al., 1998). 

Changes in thyroid state indirectly modify the biosynthesis of cholesterol by 

its effects on metabolism and on the coefficient of intestinal absorption of cholesterol (Mathe 

& Chevallier, 1976). The mRNA levels of 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase, which is the rate-limiting enzyme for de novo cholesterol biosynthesis, is 

increased in the liver during late gestation, but the change of 3-hydroxy-3-methylglutaryl-

coenzyme A reductase is not modified by hypothyroidism (Hapon et al., 2005). The mRNA 

levels of 7ǂ-hydroxylase are not modified by pregnancy or by hypothyroidism. In addition, 

the LDL receptor mRNA, a factor involved in cholesterol uptake that is increased during 

late gestation, is decreased in the pregnant hypothyroid rats, contributing to the increased 

circulating (LDL+VLDL)-C (Hapon et al., 2005). It is well known that hypothyroidism 

increases cholesterol through an enhancement of LDL. 

Degradation of lipids is affected by altered thyroid state. Regulation of fatty acid oxidation 

is mainly through key rate limiting enzymes such as carnitine palmitoyltransferase 1ǂ and 
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acyl-CoA oxidase. Carnitine palmitoyltransferase 1ǂ catalyzes the transport of long chain 

fatty acids from cytosol into mitochondria for ǃ-oxidation and acyl-CoA oxidase catalyzes 

the first rate limiting reaction in peroxisome oxidation. Thyroid hormones modulate 

carnitine palmitoyltransferase 1ǂ and acyl-CoA oxidase gene transcription (Liu & Brent, 

2010). It has been observed that hypothyroid rats on the 21th day of pregnancy decreased 

liver acyl-CoA oxidase mRNA levels but did not modify mitochondrial (carnitine 

palmitoyltransferase 1ǂ) fatty acid ǃ-oxidation. Because carnitine palmitoyltransferase 1 is 

regulated by the availability of malonyl-CoA, the diminished ACC activity may result in a 

decrease in malonyl CoA that may compensate for the effects of the hypothyroid state, 

resulting in no overall change in expression (Hapon et al., 2005). This is in accord with what 

is has was observed in vitro by Muller et al. (1981). 

Experimental evidence indicates that pregnancy does not alter mammary lipogenesis, but 

that PTU treatment has a negative effect in the pregnant mammary gland. Glycerol-3-

phosphate acyltransferase mRNA abundance, and that of LPL, is not modified by either 

gestation or PTU treatment (Hapon et al., 2005). Late pregnancy increases mammary acyl-

CoA oxidase mRNA levels, suggesting a stimulation of fatty acid oxidation, while 

hypothyroidism produces a diminution of acyl-CoA oxidase. In addition, it has been found 

in pregnant rats that hypothyroidism increases triglycerides and total lipid content and 

decreases phospholipids, without modifying cholesterol in mammary gland. These findings 

have been associated to a lower proportion of mammary lobuloalveolar epithelial tissue in 

the hypothyroid pregnant rats (Hapon et al., 2005). Those effects may be a consequence of 

the hypothyroid state per se and not direct consequences of the increase of circulating 

prolactin (Hapon et al., 2003), since in mammary tissue, the increased prolactin should have 

stimulated lipid synthesis. 

6.2 Lipids during lactation 

Lactation is characterized by low levels of plasma thyroid hormone, triglyceride and VLDL, 

and elevated levels of plasma cholesterol (Denis et al., 2003; Smith et al., 1998). Triglyceride-

rich particles are rapidly cleared from the circulation during the lactating phase, likely by 

conversion to IDL/LDL-size particles through the action of LPL in the mammary gland to 

supply lipids for milk production (Smith et al., 1998). Experiments in rats indicate that 

hypothyroidism in mothers produces a diminution in hepatic lipid synthesis due to a decrease 

in 3H[H2O]  incorporation to triglycerides, and a decrease of ACC expression and activity 

(Hapon et al., 2007). In addition, PTU-induced hypothyroid during lactation reduces 

mammary ACC activity (on days 15 and 20 of lactation) and ACC and LPL mRNA on day 20. 

It is well known that ACC and milk synthesis are induced during lactogenesis (Martyn & 

Falconer, 1983). These findings suggest less secretion of triglycerides-rich particles into 

circulation during mid to late lactation, compromising the fulfillment of lactational triglyceride 

requirements (Hapon et al., 2007). Also, a drastic diminution in milk quality has been found in 

PTU-induced hypothyroid during lactation. A decrease in triglycerides in mid and late 

lactation along with a decrease of milk lactose on mid lactation, may contribute significantly to 

the severe growth deficit previously observed in the litters born from hypothyroid mothers 

(Hapon et al., 2003).  Thyroid hormones also modulate the expression of various mammary 

proteins involved in cellular proliferation (de Launoit & Kiss, 1989; González-Sancho et al., 

www.intechopen.com



 
Hypothyroidism on Lipid Metabolism 

 

21 

1999). Administration of a moderate oral dose of T3 to lactating rats and mice dams induces a 

higher growth rate in the pups; this positive effect seems to be mainly due to augmented 

secretion of milk that, in addition, contains an elevated proportion of triglycerides (Quevedo-

Corona et al., 2000; Capuco et al., 1999). The impaired growth of the litters of hypothyroid 

mothers can be largely attributed to the low milk quality along with the impaired milk 

ejection. In accordance with a reduced capacity to eject milk, the PTU-treated mothers show 

significantly lower circulating oxytocin concentrations after suckling compared with control 

mothers (Hapon et al., 2003). Because mammary gland physiology is similar across species, 

biological concepts developed for lactating rat model may be instructive for human lactation 

(Hapon et al., 2007).  It can be concluded that a state of clinical or subclinical hypothyroidism 

may well be aggravated by the pregnant state, and that the adequate function of the mammary 

glands may be compromised. In particular, the availability of triglycerides to the fetus and to 

the mammary gland that is preparing for lactation is affected (Hapon et al., 2003). This, along 

with the decrease in the proportion of epithelial mammary tissue and in lipid synthesis, at the 

time when the initiation of milk synthesis is about to proceed, may contribute to the future 

lactation deficit of hypothyroid mothers.  

7. Conclusion  

The experimental and epidemiological evidences presented in this review indicate that 

hypothyroidism severely disturbs the lipid homeostasis in liver and adipose tissue 

contributing to the alteration of circulating lipids. Lipid metabolism of liver and mammary 

gland are also markedly altered during pregnancy and lactation by hypothyroidism. 

Therefore monitoring thyroid status and adjusting the T4 dose during pregnancy is very 

important due to changes in T4 metabolism throughout pregnancy. Thus both maternal and 

neonatal alterations can easily be prevented. Further understanding of the molecular 

mechanisms behind the dependence or independence on thyroid receptors for T3 regulation 

of target genes involved in the lipid homeostasis will entail therapeutic potentials not only 

for the prevention and treatment of thyroid disorders but also for prevalent diseases in the 

world, such as obesity and cardiovascular disease. 
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associated with slow metabolism. Estimates of subclinical hypothyroidism range between 3 to 8 %, increasing

with age, whereas it more likely affects women than men. About 10% of women may have some degree of

thyroid hormone deficiency. Hypothyroidism may affect lipid metabolism, neurological diseases or other clinical

conditions. The book includes studies on advancements in diagnosis, regulation and replacement therapy,

thyroid ultrasonography and radioiodine therapy for hypothyroidism. "Hypothyroidism - Influences and

Treatments" contains many important specifications, results of scientific studies and innovations for endocrine

practice.
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