
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



9 

Alternatives to Chemical Control of Insect Pests 

Eric J. Rebek1, Steven D. Frank2,  
Tom A. Royer1 and Carlos E. Bográn3 

1Oklahoma State University 
2North Carolina State University 

3Texas A&M University 
United States of America 

1. Introduction 

In 2011, practitioners and advocates of Integrated Pest Management (IPM) find themselves 
addressing agricultural, societal, and political pressures worldwide resulting from human 
population growth. This growth brings simultaneous burdens of sustaining a steady food 
supply; these include preventing losses from pests, dealing with increased human global 
travel, which in turn intensifies opportunities for the establishment of non-endemic pests 
into new ecosystems, and addressing global climate change that potentially will shift pest 
distributions into new areas. Concurrently, societal concerns about pesticide presence in our 
food and environment have resulted in political and economic pressures to reduce chemical 
pesticide use, or at a minimum, emphasize the development and use of products that are 
less toxic and more environmentally safe. These concerns drive the discovery and 
development of alternatives to chemical control of plant pathogens, weeds, and insect pests. 
The term Integrated Pest Management has, more often than not, been identified with 
entomologists. Stern et al. (1959) first used the term “integrated control” to describe the 
potential for integration of chemical and biological control tactics. Yet from a historical view, 
the concept of integrating chemical control with other tactics was proposed much earlier 
(Hoskins et al., 1939). Furthermore, integrating multiple non-chemical tactics to control a pest 
has been a cornerstone of the discipline of plant pathology throughout much of its early 
history (Jacobsen, 1997). In fact, because plant pathologists did not have an array of corrective 
pesticides available to them, the development and integration of control methods that 
emphasized non-pesticide controls (e.g., genetic host resistance, crop rotations, tillage, and 
plant sanitation) for plant diseases was a necessity, not simply an option for plant disease 
management. In contrast, entomologists and weed scientists were more insulated from that 
necessity due to the availability of relatively inexpensive pesticides to correct a problem. 
Several events stimulated the necessity for developing IPM programs in entomology, 
including those that emphasized development of non-chemical methods of insect control 
(e.g., cultural, biological, and physical control described herein). The chlorinated 
hydrocarbon, DDT, had been used for control of various insects since the 1950’s. Soon after 
its use began, some pests began to develop resistance to DDT, including house flies, 
mosquitos, bed bugs, and body lice (Metcalf, 1989). The publication of Rachel Carson’s book, 
“Silent Spring”, in 1962 also generated public concern. Carson highlighted the negative 
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impacts that widespread use of insecticides could have on the environment and ultimately, 
human health. What followed was a passionate global reaction that generated intense 
economic and political pressure to regulate pesticide use and monitor their relative impacts 
on biological systems. In the United States, the Environmental Protection Agency was 
created and charged with regulating the registration of all pesticides through the Federal 
Insecticide, Fungicide and Rodenticide Act (as amended in 1972). Concerns over pesticide 
use also stimulated the political thrust necessary for support of IPM programs. In the United 
States and worldwide, IPM flourished in the following three decades and was adopted as 
policy by various governments (Kogan, 1998).  
Today, IPM has attained many successes but fallen short on some issues. Due to the 
awareness and biological understanding of how insecticide resistance develops, and because 
insecticides are so expensive to develop, in 1984 the manufacturers of insecticides created 
the Insecticide Resistance Action Committee (IRAC) to encourage the responsible use of 
their products in a manner that minimizes the risk of insecticide in target pest populations 
(IRAC, 2010). New calls have been made for changing the direction of IPM in response to 
waning political support for funding IPM programs. Frisbie & Smith (1989) coined the term 
“biologically intensive” IPM, which involves reliance on ecological methods of control based 
on knowledge of a pest’s biology. Benbrook et al. (1996) promoted the idea of moving IPM 
along a continuum from simple to complex, or ‘biointensive”. The National Research 
Council officially introduced the term, “Ecologically Based Pest Management”, calling for a 
new paradigm for IPM in the 21st Century (National Research Council, 1996); eight years 
earlier, however, Horn (1988) outlined how principles of insect ecology could be 
incorporated into insect pest management strategies. More recently, Koul & Cuperus (2007) 
published “Ecologically Based Integrated Pest Management”, essentially capturing the 
breadth and depth of the evolution that IPM has undergone over the past 60 years. While 
the scope of the “New Solutions” aspect of the NRC’s charge has been challenged (Kogan, 
1998; Royer et al., 1999), the term “ecologically based” has become infused into the IPM 
lexicon. 

2. Cultural control methods to reduce insecticide applications 

Cultural controls are management tools and activities that make the crop habitat less 
favorable for pests to survive and cause damage (Horne & Page, 2008). Cultural 
management practices may make the crop or habitat inhospitable to pests directly, for 
example, by planting cultivars resistant to pest feeding or rotating crops to deny 
overwintering pests their preferred food source. Cultural management practices can also 
make the habitat less hospitable to pests in an indirect manner by encouraging natural 
enemies (predators and parasitoids) to enhance biological control (see Section 3).  
Cultural control is a key pest management tool available to growers because the crop 
variety, habitat, and selected inputs set the stage for future pest fitness and abundance. 
Thus, implementing preventive cultural control tactics that slow pest population growth can 
delay or negate the need for insecticide applications and significant plant damage. In this 
section we outline the major types of cultural control tactics available to growers and other 
pest management personnel. Our objective is to demonstrate the breadth of tactics that are 
used, although we do not have the space to consider them in depth. We draw examples 
from a diversity of well-studied plant systems from field crops to ornamental landscapes to 
provide examples of how they affect plant-herbivore-natural enemy interactions to reduce 
pest abundance and damage.  
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2.1 Cultural control via plant resistance 

Plant resistance to herbivores is a cultural control strategy having the most direct influence 
on herbivore behavior, fitness, and damage. Plant resistance is achieved through three 
general mechanisms:  antibiosis, antixenosis, and tolerance. Antibiosis is the adverse effect 
of plant physical or chemical traits on arthropod biology (Painter, 1951). This may include 
reduced size, survival, fecundity, or longevity and increased development time or mortality. 
Antixenosis is the effect of plant traits on herbivore behavior that reduces herbivore 
interactions with the plant (Painter, 1951). These effects can include reduced feeding, 
preference, residence time, or oviposition on plants having particular traits such as 
trichomes or defensive compounds. Tolerance is a plant trait that reduces the impact of 
herbivory on plant growth, allowing tolerant plants to sustain herbivore damage but 
maintain yields similar to undamaged plants (Painter, 1951). 
Physical plant traits such as leaf pubescence, trichomes, and epicuticular wax, and chemical 
traits such as alkaloids and terpenoids have antibiotic and antixenotic effects on herbivores 
(Kennedy & Barbour, 1992; Painter, 1951). In the well-studied tomato production system, 
effects of leaf trichomes as a plant resistance trait are well documented (Kennedy, 2003; 
Simmons & Gurr, 2005). Trichomes and associated chemicals confer resistance to some 
tomato varieties against mites, aphids, whiteflies, beetles, and caterpillars (Gentile & Stoner, 
1968; Heinz & Zalom, 1995; Kennedy, 2003; Kennedy & Sorenson, 1985; Simmons & Gurr, 
2005). Trichomes are stiff hairs that sometimes contain chemical glands. Glandular 
trichomes have chemical exudates that confer resistance through antibiosis and kill or 
reduce longevity of pests feeding on them and entrap pests that forage on the leaves 
(Simmons & Gurr, 2005). Trichomes also have antixenotic effects on herbivore pests. 
Increasing trichome density can reduce oviposition by many species of beetles, caterpillars, 
true bugs, and mites. Of particular relevance is the effect of trichome density on whitefly 
and mites pests (Simmons & Gurr, 2005). The antibiotic and antixenotic effects of leaf 
pubescence on whitefly behavior and fitness have been studied in depth in a number of 
systems such as tomato, tobacco, cucurbits, and ornamental plants (Hoddle et al., 1998; 
Inbar & Gerling, 2008). 
The soybean aphid offers a current example of how identifying pest resistance in crop plants 
can benefit IPM. Soybean aphid arrived in the U.S. from Asia in 2000 (Ragsdale et al., 2011). 
Since that time plant resistance conferred through antibiosis and antixenosis mechanisms 
has played an important role in mediating the economic impact of this pest on soybean yield 
(Ragsdale et al., 2011). Aphid fitness is negatively affected in resistant lines because it takes 
twice as long for aphids to probe into the phloem and initiate feeding (Diaz-Montano et al., 
2007). Further, feeding bouts are reduced by more than 90% from less than 7 minutes per 
bout in resistant lines compared to greater than 60 minutes in susceptible lines (Diaz-
Montano et al., 2007). Likewise, production of nymphs was reduced by 50-90% in resistant 
versus susceptible varieties, confirming antibiosis in resistant lines (Diaz-Montano et al., 
2006; Hill et al., 2004). Antixenosis was also demonstrated in resistant varieties wherein 
adult aphids preferred to colonize susceptible over some resistant lines (Diaz-Montano et 
al., 2006; Hill et al., 2004). 
In contrast to conventional breeding programs, plants can now be genetically modified to 
include lethal traits from other organisms, such as the bacterium, Bacillus thuringiensis (Bt). 
Bt genes are now used in many crop species to confer antibiosis in otherwise susceptible 
crops. Although we do not focus on this mode of plant resistance here, transgenic traits have 
had a tremendous effect on modern crop production and yield. However, like any 
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management tactic, Bt crops do not function in a vacuum and effects on natural enemies and 
other non-targets, secondary pest outbreaks, and evolution of pest resistance have been 
intensely studied (Gould, 1998; O'Callaghan et al., 2005; Shelton et al., 2002). 

2.1.1 Interaction of plant resistance traits and biological control   

Effects of plant resistance and biological control can be contradictory, complementary, or 
synergistic (Cai et al., 2009; Farid et al., 1998; Johnson & Gould, 1992). Plant resistance can 
work in conjunction with natural enemies to maintain low pest abundance and damage. In 
general, natural enemies have slower population growth rates than pests. Thus, by reducing 
pest population growth rates, plant resistance may help natural enemies better regulate pest 
populations. For example, research in wheat systems has shown that aphid-resistant wheat 
varieties do not have negative effects on parasitoid life history parameters such as size and 
development time (Farid et al., 1998). Parasitism rates may be equal or greater on resistant 
varieties, which when combined with reduced aphid population growth due to host plant 
resistance, can improve pest management dramatically (Cai et al., 2009).  
Just as trichome exudates reduce herbivore survival they can also have negative effects on 

natural enemies. Survival and development of natural enemies may be reduced by 

poisoning or entrapping them, and natural enemy foraging efficiency, predation, or 

parasitism rate may be inhibited (Kaufman & Kennedy, 1989a, b; Obrycki & Tauber, 1984; 

Simmons & Gurr, 2005). For example, increasing trichome density and related changes in 

chemical composition of tomato leaves reduced the walking speed, parasitism rate, and 

survival of the egg parasitoid, Trichogramma pretiosum (Kashyap et al., 1991a, b). Tiny 

whitefly parasitoids in the genera, Eretmocerus and Encarsia, are highly affected by plant 

pubescence and trichome density (Hoddle et al., 1998; van Lenteren et al., 1995). Biological 

control may be disrupted because these parasitoids avoid highly pubescent plants. Once on 

the plants, pubescence reduces walking speed, foraging efficiency, oviposition, and 

parasitism rate (De Barro et al., 2000; Headrick et al., 1996; Hoddle et al., 1998; Inbar & 

Gerling, 2008).  

Trichomes and other plant resistance traits also affect predator behavior and efficacy. 

Predatory mites used in biological control of spider mite, Tetranychus urticae, are readily 

trapped by trichomes and forage less efficiently due to reduced mobility (Nihoul, 1993a; van 

Haren et al., 1987). The consequence of mortality and reduced foraging efficiency is reduced 

biological control on cultivars with high trichome density, although the effect is also 

dependent on environmental factors such as temperature (Nihoul 1993a, b). Likewise, 

foraging efficiency of the spotted lady beetle, Coleomegilla maculata, and the bigeyed bug, 

Geocoris punctipes, was reduced by high trichome density, resulting in less predation of 

Heliothis zea eggs (Barbour et al., 1993, 1997). Increasing pubescence on poinsettia leaves by 

just 15% reduced oviposition and whitefly predation by Delphastus catalinae and other 

predators (Heinz & Parrella, 1994). 

2.1.2 Herbivore resistance to plant resistance traits  

Herbivores are in a constant evolutionary arms race with plants to overcome resistance 
traits (Ehrlich & Raven, 1964). It is not surprising then that pests have developed 
physiological resistance to genetically modified and conventional plant resistance traits 
(Gould, 1998). For example, certain soybean aphid biotypes are resistant to Rag1 or Rag2 
genes that confer resistance to soybean plants (Hill et al., 2009, 2010). Evidence from 
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theoretical and empirical research suggests that multiple resistance traits or genes and a 
combination of different modes of action such as antibiosis and antixenosis should confer 
more stable resistance to crops. In addition, mixing resistant and susceptible varieties in the 
same field can reduce evolution of resistance by insect pest populations (Gould, 1986, 1998).  

2.2 Cultural control via fertility management   

Plant fertility and water stress play a major role in plant susceptibility to herbivore feeding, 
tolerance to herbivore damage, and herbivore population growth. Nitrogen can be a limiting 
nutrient for herbivorous insects due to the nitrogen-poor quality of their host plants 
(Mattson, 1980). Therefore, increasing nitrogen concentration within plants by applying 
fertilizer has a tendency to increase plant quality for herbivores (Mattson, 1980). Increasing 
foliar nitrogen can reduce pest development time and increase survival and fecundity, 
leading to more rapid population growth (Mattson, 1980). Research in potato crops has 
found that increasing nitrogen fertilization increases leaf consumption, reduces 
development time, and increases abundance of Colorado potato beetles (Boiteau et al., 2008). 
Likewise, in greenhouse ornamental production, increasing fertilization increases the 
fecundity, body size, and development rate of citrus mealybug (Hogendorp et al., 2006), and 
through similar mechanisms increases population growth rates of whiteflies, thrips, aphids, 
and spider mites (Bentz et al., 1995; Chau et al., 2005; Chau & Heinz, 2006; Chow et al., 
2009).  
In ornamental landscapes, fertilizer is often applied to improve the growth of trees and 

other plants and increase their resistance to abiotic and biotic stress, including herbivore 

feeding. However, nitrogen fertilization of trees has been shown to reduce plant resistance 

to many arthropod pests (Herms, 2002; Kytö et al., 1996). This reduced resistance occurs 

through a combination of fertilizer effects on plant nutrition for herbivores and defense 

against herbivores (Herms & Mattson, 1992). Herms & Mattson (1992) hypothesized that as 

nitrogen fertilization stimulates rapid plant growth, carbon available for production of 

defensive compounds is limited. Thus, over-fertilization of trees, shrubs, and other plants 

provides a dual benefit to many herbivores via increased nitrogen availability and decreased 

defensive compounds (Raupp et al., 2010).  

2.3 Cultural control via pesticide selection and management 

Pesticide applications are often an essential aspect of plant culture. Managing the type and 
frequency of applications is a cultural control tactic with well-documented implications. 
Insecticides can disrupt natural enemy communities and biological control via several 
mechanisms. Direct toxicity of pyrethroids and organophosphates to natural enemies has 
been documented frequently (Desneux et al., 2004b; see Galvan et al., 2005). Direct toxicity 
of insecticides to natural enemies results in smaller natural enemy populations on crop and 
landscape plants (Frank & Sadof, in press; Raupp et al., 2001). Insecticides also cause 
sublethal effects in parasitoids and predators. For example, the pyrethroid, lambda-
cyhalothrin, disrupts the host location and oviposition behavior of Aphidius ervi, resulting in 
lower parasitism rates of aphids (Desneux et al., 2004a). 
Non-target impacts on natural enemy communities are not limited to contact insecticides. 
Systemic neonicotinoids such as imidacloprid and thiamethoxam have lethal and sublethal 
effects on natural enemy development, fitness, and efficacy (Cloyd & Bethke, 2009; Desneux 
et al., 2007). These compounds can reduce survival of developing parasitoids and intoxicate 
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predators such as lady beetles and lacewing larvae exposed to the chemicals topically or by 
feeding on exposed prey (Moser & Obrycki, 2009; Papachristos & Milonas, 2008; Smith & 
Krischik, 1999; Szczepaniec et al., 2011). Parasitoids are also affected negatively via feeding 
on plant nectar or hosts exposed to the chemicals (Krischik et al., 2007; Rebek & Sadof, 2003). 
The consequence of disrupting natural enemy populations can be outbreaks of primary or 
secondary pests due to the loss of underlying biological control services (Raupp et al., 2010). 
Considerable work has documented this effect in field crops, orchards, vineyards, and 
landscape ornamentals (Penman & Chapman, 1988; Raupp et al., 2010). The effect is 
particularly prevalent among spider mites and scale insects that are not killed as easily as 
their natural enemies by insecticide applications. Pyrethroids and other broad-spectrum 
insecticides have direct and indirect effects on spider mites that can promote mite outbreaks. 
First, pyrethroids promote spider mite dispersal from treated to untreated areas of reduced 
competition (Iftner & Hall, 1983; Penman & Chapman, 1983). Spider mites have many 
predators including lady beetles, predatory bugs, lacewing larvae, and predatory mites. 
Pyrethroids can promote outbreaks of spider mites indirectly by killing the natural enemies 
that otherwise help suppress spider mite populations (Penman & Chapman, 1988). 
Predatory mites in the family Phytoseiidae feed on spider mite eggs, juveniles, and adults 
and are effective at reducing spider mite abundance and damage on plants (McMurtry & 
Croft, 1997). In addition, phytoseiid mites often respond with a numerical increase to 
burgeoning spider mite populations via aggregation and increased reproduction. However, 
the abundance and efficacy of phytoseiid mites depends in large part on plant culture 
practices and plant characteristics. Phytoseiid mites are extremely susceptible to insecticides 
such as pyrethroids, organophosphates, and carbamates (Hardman et al., 1988). In many 
cases, phytoseiids have been found to be more vulnerable to these insecticides than spider 
mites (e.g., Sanford, 1967; Wong and Chapman, 1979). Therefore, by killing a 
disproportionate number of predatory mites compared to target pests, broad-spectrum 
insecticides frequently lead to spider mite outbreaks (Hardman et al., 1988). Similar 
dynamics have been demonstrated for scale insects, which are generally not killed by cover 
sprays of contact insecticides due to their protective cover. Moreover, by drastically 
reducing natural enemy abundance and efficacy, these insecticide applications create 
enemy-free space for scales, which can result in outbreak populations (McClure, 1977; 
Raupp et al., 2001). 
Insecticide applications can directly benefit pest reproduction and survival through a 
process known as hormoligosis. Increased spider mite fecundity has been demonstrated 
after exposure to sublethal doses of pyrethroids (Iftner & Hall, 1984; Jones & Parrella, 1984). 
However, this is most evident in spider mites that frequently outbreak after applications of 
the neonicotinoid, imidacloprid (Gupta & Krischik, 2007; Raupp et al., 2004; Sclar et al., 1998; 
Szczepaniec et al., 2011). Outbreaks are triggered in part by negative effects on predators, 
but also by greater fecundity of spider mites that feed on imidacloprid-treated foliage 
(Szczepaniec et al., 2011). Although not commonly observed, this phenomenon points out 
another reason for proper insecticide management as a cultural control strategy. 

2.4 Cultural control via crop rotation and planting practices 

Exploiting the biological limitations of the pest to minimize insecticide applications is the 
essence of cultural control tactics such as crop rotation. This strategy has been used 
successfully to control corn rootworm for over 100 years (Forbes, 1883). Crop rotation has 
been highly effective as a tool to reduce Western corn rootworm, Diabrotica virgifera virgifera, 
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and Northern corn rootworm Diabrotica barberi, damage in corn (Levine & Oloumi-Sadeghi, 
1991; Spencer et al., 2009). Corn rootworm eggs overwinter in corn fields and larvae are 
present to feed on corn roots the following year (Spencer et al., 2009). Therefore, rotating to a 
different crop such as soybeans denies food to hatching rootworm larvae (Spencer et al., 
2009). Likewise, corn planted after soybeans or other crops has less rootworm damage 
because the field is free of overwintering eggs and larvae. However, Western and Northern 
corn rootworm populations eventually developed resistance to this strategy (Gray et al., 
2009; Levine et al., 2002; Spencer & Levine, 2008). Northern corn rootworms circumvent 
crop rotation by prolonging egg diapause for two winters instead of one (Chiang, 1965; 
Levine et al., 1992). Therefore, larvae hatch when fields are replanted in corn two years after 
the eggs were laid. Western corn rootworm has become resistant to crop rotation by a 
behavioral rather than physiological mechanism. Western corn rootworm adults move from 
corn fields to soybean and other crop fields, feeding on soybean leaves and ovipositing in 
soybean fields (Levine et al., 2002). Selection pressure imposed by rotation of two primary 
crops, corn and soybeans, strongly rewarded female beetles that strayed from corn for 
oviposition. 
Other planting practices such as delayed planting dates can also benefit pest control. 
Hessian fly is an introduced pest of winter wheat that has been in the U.S. since the 1700’s. 
Prior to the development of resistant wheat varieties, growers exploited the fly’s life cycle to 
reduce damage to winter wheat crops. Hessian fly adults become active in the fall when 
they oviposit in wheat and other grasses. By planting after a “fly free date” when fly activity 
subsides, winter wheat is protected from oviposition from the fall hessian fly generation 
(Buntin et al., 1991). This is a perfect example of how simple changes in plant culture can 
reduce the need for insecticide applications, increase yield, and provide economic benefit to 
growers (Buntin et al., 1992). 

3. Biological control of insect pests 

Many definitions of biological control have been published in the literature since the term 
was first used by H.S. Smith more than 90 years ago (Caltagirone & Huffaker, 1980; Cook, 
1987; Coppel & Mertins, 1977; DeBach & Rosen, 1991; Garcia et al., 1988; see Huffaker & 
Messenger, 1976; Perkins & Garcia, 1999; Rabb, 1972; Smith, 1919). In its strictest sense, 
biological control is the use of beneficial organisms to reduce the relative abundance of, and 
damage caused by, noxious ones. This definition attributes economic rather than biological 
characters to organisms that fall into two categories, beneficial and noxious, based on their 
positive or negative impact on human-valued resources. It is also important to distinguish 
biological from natural control, which does not require human intervention, and from similar 
methods of pest control that do not involve whole (living) organisms (Huffaker et al., 1984). 
In fact, biological control involves interspecific, population-level processes by way of 
predation, parasitism, competition, or a combination of these mechanisms (van Driesche & 
Bellows, 1996). In practice, the effectiveness and appropriateness of biological control 
methods rely on real-time evolutionary forces that shape the beneficial organism’s genotype, 
phenotype, and performance. This is not the case for similar, biologically based methods 
such as the application of insecticides formulated with pathogens, antagonists, or their 
byproducts. Furthermore, in its strictest definition, biological control does not include the 
deployment of pest-tolerant organisms, regardless of the source or origin of the resistance-
conferring characters (e.g., Bt crops) (see Perkins & Garcia, 1999). 
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The history and origins of biological control have been extensively covered in previous 
volumes (Caltagirone & Doutt, 1989; DeBach & Rosen, 1991; van Driesche & Bellows, 1996) 
and is not the subject of this review. However, it is significant to note that early theory and 
application of biological control principles pre-date the modern insecticide era (Smith, 1919). 
Therefore, it is modern insecticides that became an alternative to biological control and not 
the other way around. In this context, biological control should not be viewed as a novel 
tactic but as the foundation of a successful pest management strategy involving, at 
minimum, the conservation of ecosystem resources to facilitate the process of pest-natural 
enemy colonization, host/prey finding, and ultimately, damage reduction. Although what 
constitutes biological control (or not) continues to be a subject of discussion and will likely 
evolve with new technologies, the recognition of three principal biological control methods 
remains unchanged. These three approaches are importation (a.k.a., classical biological 
control), augmentation, and conservation biological control (Smith, 1919).  

3.1 Importation biological control 

Importation biological control is the oldest of the three approaches (hence its alternative 
name, ‘classical’). The first successful case of importation biological control occurred over a 
century ago in the control of cottony cushion scale in California citrus following importation 
of the vedalia beetle (Horn, 1988). The classical approach involves re-establishing the 
interspecific interactions (and their impact on population regulation) between pests and 
their natural enemies (i.e., predators, parasitoids, or insect-killing pathogens) as they occur 
in the pest’s endemic range (Howarth, 1983). The need to re-establish these interactions 
arises because pests are commonly introduced into areas outside their native range where 
they lack natural enemies, or those that are present do not significantly impact the pest’s 
abundance and local distribution. Since its inception, importation biological control has been 
used with varying degrees of success against noxious pests like cassava mealybug in Africa, 
Rhodesgrass mealybug in Texas, walnut aphid in California, and southern green stink bug 
in Australia, New Zealand, and Hawaii (Hokkanen, 1997).  
The technical expertise, time commitment, and considerable expense necessary to carry out 

importation biological control require the involvement of specially trained university and 

government scientists. Importation is highly regulated in many countries, largely due to 

growing concern over the introduction of exotic, invasive species into new environments. In 

the U.S., the Animal and Plant Health Inspection Service (APHIS) oversees and coordinates 

importation biological control programs. The agency’s charge is to preserve the safety and 

effectiveness of biological control primarily through post-release monitoring of biological 

control agents (USDA APHIS, 2011). Although there are a few documented cases of 

introduced biological control agents causing economic or ecological harm, societal 

perceptions that importation biological control is too risky are often influenced by 

subjectivity and misinformation (Delfosse, 2005). To minimize risk, researchers must 

provide evidence that introduced natural enemies are unlikely to harm crops, humans, and 

ecosystems. This requires substantial analysis of host feeding preference and other 

biological traits of prospective biological control agents (see Briese, 2005). 

3.2 Augmentation biological control   

The aim of augmentation biological control is to improve the numerical ratio between pest 
and natural enemy to increase pest mortality. It involves the release of natural enemies, 
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typically mass reared in an insectary, either to inoculate or inundate the target area of 
impact (Obrycki et al., 1997; Parrella et al., 1992; Ridgway, 1998). Inoculative releases 
involve relatively low numbers of natural enemies, typically when pest populations are low 
or at the beginning of a growth cycle or season. Inundation involves relatively high numbers 
of natural enemies released repeatedly throughout the growth cycle or season. Thus, 
inundative release of natural enemies is similar to insecticide use in that releases are made 
when pests achieve high enough density to cause economic harm to the crop. In both types 
of release, the objective is to inflict high mortality by synchronizing the life cycles of the pest 
and natural enemy. Hence, an effective monitoring program of pest populations is essential 
to the success of augmentation biological control.  
Augmentation biological control has been used successfully against key pests of field and 

greenhouse crops. A well-known example of augmentation biological control is the use of 

the parasitoid, Encarsia formosa, for control of greenhouse whitefly (Hoddle et al., 1998). 

Indeed, augmentation plays an important role in greenhouse production, especially in 

Europe, and many natural enemies are commercially available for control of perennial 

greenhouse pests such as spider mites, aphids, scales, and whiteflies (Grant, 1997; Pottorff & 

Panter, 2009). The success of augmentative releases in greenhouses, and elsewhere, depends 

on the compatibility of cultural practices such as insecticide use with natural enemies (see 

Section 2.3). Greenhouses are often ideal sites for augmentation biological control because of 

the relative stability of the enclosed environment. In contrast, a critical review of 

augmentation biological control in field crops revealed that augmentation was typically less 

effective and more expensive than conventional control with pesticides (Collier & van 

Steenwyk, 2004). The authors found that the low success rate of augmentation biological 

control in field crops is influenced by ecological limitations such as unfavorable 

environmental conditions, natural enemy dispersal, and refuge for herbivores from released 

natural enemies.   

3.3 Conservation biological control 

Conservation biological control involves any practice that increases colonization, 

establishment, reproduction, and survival of native or previously established natural 

enemies (Landis et al., 2000). Conservation biological control can be achieved in two ways: 

modifying pesticide use and manipulating the growing environment in favor of natural 

enemies. Conservation practices have proven effective in a wide variety of growing 

situations ranging from small garden plots to large fields, agricultural to urban 

environments, and commercial to private settings (Frank & Shrewsbury, 2004; Landis et al., 

2000; Rebek et al., 2005, 2006; Sadof et al., 2004; Tooker & Hanks, 2000). 

3.3.1 Conserving natural enemies via modified pesticide use    

Modifications to pesticide regimens include reducing or eliminating insecticide use, using 
pest-specific insecticides when needed, making applications when beneficial arthropods are 
not active, and making treatment decisions based on monitoring and the presence of 
vulnerable life stages. While total independence from chemical control is not feasible for 
most situations, reductions in insecticide use are possible through IPM programs based on 
rigorous pest monitoring, established treatment thresholds, and/or insect population 
models (see Horn, 1988; Pimental, 1997). Thus, insecticides are used only when needed to 
prevent crop damage that results in economic loss. When insecticide use is warranted, 
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adverse effects on natural enemies can be minimized by using selective, pest-specific 
products that are only effective against the target pest and its close relatives. Selective 
chemistries include microbial insecticides, insect growth regulators, botanicals, and novel 
insecticides with specific modes of action against target insects. Alternatively, insecticide 
applications can be timed so they not coincide with natural enemy activity; dormant or 
inactive predators and parasitoids are not exposed to broad-spectrum insecticides applied 
when they are dormant or inactive (van Driesche & Bellows, 1996). This strategy requires a 
thorough understanding of the crop, agroecosystem, and the biology and life cycle of 
important natural enemies in the system. 

3.3.2 Conserving natural enemies via habitat manipulation 

Natural enemies are attracted to habitats rich in food, shelter, and nesting sites (Landis et al., 
2000; Rabb et al., 1976). Many perennial plants can provide these resources when 
incorporated into the system. Ellis et al. (2005) and Rebek et al. (2005) independently 
observed significantly enhanced parasitism of two key ornamental pests, bagworm and 
euonymus scale, in experimental plots containing nectar and pollen sources (i.e., resource 
plants). Resource plants also served as refuge for vertebrate predators of bagworms as 
evidenced by increased predation rates (Ellis et al., 2005). Resource plants can harbor 
alternative prey/host species, which sustain adult and immature natural enemies when 
primary prey/hosts are scarce. For example, many studies have focused on the influence of 
banker plants, which contain alternative prey species, on natural enemy effectiveness (see 
Frank, 2010).         
Resource plants provide more than food to enhance natural enemy abundance in 

impoverished landscapes. Suitable changes in microclimate are afforded by many plants, 

tempering environmental extremes by providing improved conditions for natural enemy 

survival (Rabb et al., 1976). Candidate plants include small trees, shrubs, bushy perennials, 

and tall ornamental grasses with dense canopies or complex architecture. Similarly, organic 

mulches and ground cover plants can support large numbers of ground-dwelling predators 

like spiders and ground beetles (Bell et al., 2002; Mathews et al., 2004; Rieux et al., 1999; 

Snodgrass & Stadelbacher, 1989), which may enhance biological control of key pests (Brust, 

1994). Finally, resource plants can enhance reproduction of natural enemies and provide 

refuge from their own enemies (Landis et al., 2000; Rabb et al., 1976). 

The effectiveness of habitat manipulation to improve biological control requires careful 

planning and selection of plant attributes that are appropriate for the natural enemy 

complex present in the system (Landis et al., 2000). For example, flower morphology can 

significantly impact nectar accessibility by foraging parasitoids (Patt et al., 1997; Wäckers, 

2004). Also important is coincidence of floral bloom with natural enemy activity. Selected 

resource plants should overlap in blooming periods to ensure a continuous supply of nectar 

and pollen to natural enemies (Bowie et al., 1995; Rebek et al., 2005). Other considerations 

that exceed the scope of this chapter include the influence of landscape-level attributes on 

biological control at different spatial scales (Kruess & Tscharntke, 1994; Marino & Landis, 

1996; Roland & Taylor, 1997).  

3.4 Factors affecting success of biological control 

While there have been some tremendous successes, the worldwide rate of effective 
biological control is estimated to be between 16-25% (Hall et al., 1980; Horn, 1988; van 
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Lenteren, 1980). In practice, the successful application of biological control usually requires 
a combination of at least two of the three approaches, importation, augmentation, and 
conservation of natural enemies (DeBach & Rosen, 1991; van Driesche & Bellows, 1996). 
What drives the success or failure of biological control programs in plant crops has been the 
subject of many analyses, either using historical records or theoretical approaches (Andow 
et al., 1997; Murdoch et al., 1985; Murdoch & Briggs, 1996; van Lenteren, 1980). In general 
terms, biological control programs are more likely to succeed under certain production 
systems and environmental conditions (Clausen, 1978; van Driesche & Heinz, 2004). 
Biological control has been more successful in crops that: 1) are perennial versus annual; 2) 
grow in areas with few pests versus many pests; 3) the harvested portion is not damaged by 
the target pest; 4) the target pest is not a disease vector; and 5) the aesthetic damage is 
acceptable (e.g., some food and fiber crops versus ornamentals). 
Failures in biological control programs, especially those recorded in the literature, also 
involve cases where the biology and ecology of the natural enemy or the pests are not well 
understood or altogether unknown. Historically, failures in importation biological control 
have occurred after errors in identification of a pest or natural enemy at the level of species, 
biotype, or even local strain; a mismatch in micro-environmental requirements for natural 
enemy growth and development; incorrectly timing natural enemy release when the 
production system is not conducive to establishment; or when socioeconomic or regulatory 
barrier have prevented adoption or implementation (Clausen, 1978; Greathead, 1976; Hall & 
Ehler, 1979; Knutson, 1981). Similarly, failures in augmentation and conservation biological 
control, although not commonly recorded in the literature, may be due to a lack of 
understanding of the basic biology and ecology of the species involved, the basic 
requirements of the production system, and any socioeconomic barriers including real or 
perceived costs and benefits (Murdoch et al., 1985; Perkins & Garcia, 1999; Collier & van 
Steenwyk, 2004). The success of biological control programs involves integrated efforts at 
many levels ranging from biology to economics, from research to implementation and 
experience, and from the farm to the community and region. 

4. Physical control strategies to reduce pest incidence   

Plant health can benefit greatly from preventing or limiting injury from arthropod pests 
from the start. Indeed, the cornerstone of an effective IPM program is prevention, which can 
be achieved, in part, through physical control. Physical control strategies include methods 
for excluding pests or limiting their access to crops, disrupting pest behavior, or causing 
direct mortality (Vincent et al., 2009). Physical control methods can be categorized as active 
and passive (Vincent et al., 2009). Active methods involve the removal of individual pests by 
hand, pruning out infested plant tissues, and rogueing out heavily infested plants. Passive 
methods usually include the use of a device or tool for excluding or removing pests from a 
crop. Typically, these devices serve as barriers between plants and insect pests, thus 
protecting plants from injury and damage. Other passive tools include repellents and traps. 
While traps are often used for monitoring pest abundance and distribution, many are 
designed as “attract and kill” technologies, which attract insect pests through color, light, 
shape, texture, and scent, or a combination of these factors. 
The greatest disadvantage to physical control is that these methods can be laborious and 
time consuming, especially for crops grown in large areas. Also, a moderate degree of 
specialization or training is often required due to the highly technical nature of some 
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physical control methods. Physical control methods may also be difficult or practically 
impossible in some crops like large trees grown in extensive monocultures (e.g., timber 
production). For many crops, however, physical control of certain pests can be incorporated 
into established routines for managing crops. Despite the drawbacks and considering the 
costs, regulations, and limitations of insecticide use, physical control methods are likely 
candidates for inclusion in many pest management programs, especially for high-value 
crops (see Vincent et al. 2003). Here, we discuss briefly some examples of physical control 
classified by their primary function: exclusion, behavior modification, and destruction of 
pests. 

4.1 Physical control via exclusion 

Pest exclusion is a key factor in preventing pests from accessing crops, thereby reducing the 
economic impact of insects. Both passive and active exclusion methods have been 
implemented in various agricultural systems including fields, greenhouses, and postharvest 
facilities. Physical control via exclusion devices is perhaps most important in protected 
environments such as greenhouses and grain bins, where optimal temperatures and 
humidity, a readily available food source, and a general lack of natural enemies contribute 
to the proliferation of pest populations. Screens are common passive exclusion devices used 
in greenhouse production. Screens can prevent pest migration into greenhouses through 
vents and other openings, especially when insect populations build up in weeds and crops 
in the surrounding environment (Gill et al., 2006; Pottorff & Panter, 2009). However, screen 
mesh size is an important concern as fine materials with small openings inhibit entry of tiny 
arthropods such as thrips and mites but also restrict air flow for cooling (Pottorff & Panter, 
2009). Other active methods of physical control are necessary components of greenhouse 
IPM. Specifically, crops should be inspected for pests prior to moving new plant materials 
into production areas; discovered pests are removed by hand, pruned out, or discarded and 
destroyed with heavily infested plants.  
In the field, floating row covers can exclude important vegetable pests such as cabbage 
maggot, flea beetles, and cabbageworm (Rekika et al., 2008; Theriault et al., 2009). Adhesives 
and burlap have been used to trap caterpillar pests such as gypsy moth and cankerworms as 
they migrate vertically along tree trunks (Potter, 1986). Other barriers include fences, ditches, 
moats, or trenches. For example, V-shaped trenches have been used around potato fields to 
prevent movement of Colorado potato beetle into the crop from adjacent, overwintering 
habitat (Boiteau & Vernon, 2001; Misener et al., 1993; see Vincent et al., 2003). Efficacy of this 
technique relies on trench design and knowledge of the pest, specifically, the population size 
and the ratio of crawling to flying individuals (Weber et al., 1994; Vincent et al., 2003).  

4.2 Physical control via behavior modification 

IPM programs often consist of physical control methods that alter the behavior of insect 
pests. Behaviors such as reproduction, aggregation, oviposition, feeding, alarm, and defense 
can be modified in two ways: “push-pull” strategies and mating disruption (Cook et al., 
2007; Zalom, 1997). The former are designed to repel (push) or attract (pull) insect pests 
away from a crop by exploiting their reproductive, feeding, or aggregation behavior. 
Although many repellents and attractants are chemically based, here we treat their use in 
IPM as a form of non-chemical (non-insecticidal) control. 
Pheromones, or chemical lures, are used in IPM programs to monitor pest populations and 

modify their behavior. Specifically, pheromone traps are used to detect pest activity in a 
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crop and estimate their relative abundance in order to properly time an insecticide 

application or natural enemy release. Pheromones and other olfactory stimuli are receiving 

increased attention as repellents and attractants in push-pull strategies for modifying pest 

behavior (see Cook et al., 2007). Repellents include synthetic chemicals (e.g., DEET), non-

host volatiles that mask host plant odors (e.g., essential oils), anti-aggregation and alarm 

pheromones, anti-feedants (e.g., neem oil), and oviposition deterrents (e.g., oviposition-

deterring pheromones) (Cook et al., 2007). Herbivore-induced plant volatiles are host plant 

semiochemicals that induce plant defense from herbivores and attract natural enemies 

(James, 2003). Non-chemical repellents include reflective mulches, which have been shown 

to reduce damage and population density of tarnished plant bug in strawberry fields 

(Rhainds et al., 2001). Attractants include sex and aggregation pheromones, host plant 

volatiles, and feeding stimulants (e.g., baits), and oviposition stimulants (Cook et al., 2007). 

Other attractants are based on visual cues. For example, apple maggots are effectively 

controlled in apple orchards with 8-cm, red, spherical traps covered in adhesive. The 

attractiveness of these traps is enhanced by adding butyl hexanoate and ammonium acetate, 

synthetic olfactory stimulants (Prokopy et al., 1994).    

Another common tactic is to use sex pheromones for mating disruption. Many insect pests 

rely on a species-specific, sex pheromone produced by females for mate location and 

recognition. Mating disruption is achieved by flooding the crop environment with the 

chemical signal, thus confusing males and reducing mate-finding success. This approach has 

been used with varying degrees of success for management of orchard and vineyard pests 

including codling moth, oriental fruit moth, grape berry moth, and peachtree borer (see 

Zalom, 1997). 

4.3 Physical control via pest destruction  

Insects can be killed directly through mechanical, thermal, or other means. Vincent et al. 
(2009) list several strategies that inflict mortality on pests including freezing, heating, 
flaming, crushing, and irradiating. One of the most common mechanical methods requires 
no specialized equipment – many gardeners derive great satisfaction from hand picking 
pests from a plant and crushing them. Hand removal can be used effectively for a myriad of 
relatively sessile landscape pests including bagworms, tent caterpillars, and sawfly larvae. 
Galls, egg masses, and web-making insects can also be pruned out of infested landscape 
plants (Potter, 1986). However, this tactic may be impractical for large trees or shrubs and 
dense populations of the pest. Other mechanical control options require specialized 
machinery. Pneumatic control involves removing pests from crops by use of a vacuum or 
blower and subsequently destroying them. Field crop pests such as Colorado potato beetle 
and lygus bug have been controlled in this manner, although care must be taken to avoid 
negatively impacting natural enemies (Vincent et al., 2003, 2009). Another example of 
mechanized destruction is the entoleter, an impact machine that is used in mills to remove 
and kill all life stages of insect pests (Vincent et al., 2003).  
Modifying the microclimate can be effective in killing many insect pests, which cannot 

survive outside of optimal temperature and humidity ranges. Heat has been shown to be a 

very effective control method for bed bugs, which are difficult to control and are becoming 

more prevalent in domestic dwellings worldwide (Pereira et al., 2009). A wide variety of 

stored product pests can be controlled by pumping hot or cold air into the food storage 

facility, or modifying the storage environment with elevated temperatures and carbon 
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dioxide (Vincent et al., 2003, 2009). Hot-water immersion, flaming, steaming, and solar 

heating are other thermal control options (Vincent et al., 2003).    

Electromagnetic energy has been studied for its effectiveness at killing insects (Vincent et al., 

2009). Ionizing radiation has been used in quarantine facilities to treat fruit and other 

commodities suspected of carrying serious agricultural pests (Vincent et al., 2003). Targets of 

other electromagnetic methods, especially microwave treatments, include stored product 

pests. However, electromagnetic treatments may be limited by government regulations, 

cost, and the need for specialized equipment and training (Vincent et al., 2009). 

5. Conclusions 

Crop culture sets the stage for interactions between plants, pests, and natural enemies, and 

has a strong influence on the outcome of these interactions. In many cases, implementing 

effective cultural controls can be the most economical pest management tactic available to 

growers because labor and expense are incurred regardless of whether an effective cultural 

tactic is used. Understanding and implementing cultural practices can reduce other 

production expenses such as insecticides and fertilizer. Cultural control can be compatible 

with biological control if the myriad interactions among plants, pests, and natural enemies 

are well defined. Improving the predictability of biological control will rely on elevating the 

discipline to its proper place in applied evolutionary ecology and further refinement of the 

art and practice of biological control (van Lenteren, 1980; Heinz et al., 1993; Heinz, 2005). 

Fortunately, the organic and sustainable agriculture movements that are gaining both 

societal and political momentum seem to embrace the art and science of biological pest 

control (Edwards, 1990; Raynolds, 2000). While various physical control techniques have 

been used successfully in production systems, this strategy is limited by the significant 

labor, time, cost, and specialization required for successful control (Vincent et al., 2009). 

Further refinements and developments in physical control technologies hold promise for 

enhanced efficacy, compatibility with cultural and biological control, and profits.  

As we move into the future of pest management, new challenges await. Crops are now 

genetically modified to produce their own “insecticides” for protection. Newly registered 

insecticides tend to be more target specific and often, more expensive. Older chemistries are 

being removed both voluntarily and involuntarily from the market. There is increasing 

demand for organically grown food, or food perceived as “safe” for consumption. Yet we 

must still feed a growing human population. More than ever, IPM researchers need to 

develop programs that use effective alternatives to insecticides whenever possible. We also 

must intensify efforts to truly integrate insecticides selectively into our IPM programs, so 

that they are not the predominant tool in our IPM toolbox. As such, we need to further 

develop principles and methods of cultural, biological, and physical control as relevant pest 

management tools for sustainable agricultural production.  
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