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1. Introduction

Classifying seismic signals into their corresponding types of volcanic earthquakes is among
the most important tasks for monitoring volcano activity. Such a duty must be routinely
conducted —in a daily basis— and implies, therefore, a significant workload for the personnel.
The discipline of pattern recognition (PR) provides volcanic seismology practitioners with
theories and methods to design classification systems and, together with digital signal
processing (DSP) techniques, has given rise to promising and challenging opportunities for
the automated identification of volcanic earthquakes.

A wealth of recently published studies have demonstrated the applicability of PR tools
to volcano-seismic monitoring; however, in spite of that, several cutting-edge approaches
have not yet been applied to the problem; moreover, there is still a gap between research
achievements reported in the literature and the deployment of custom solutions at the volcano
observatories. This chapter introduces fundamental concepts regarding seismic volcanic
signals and PR systems, reviews research contributions and case studies, and highlights
open issues, future directions for research and challenges to bridge the gap in the transfer
of prototype academic results into deployed technology.

In this preliminary section, important definitions and concepts from volcano seismology and
PR are considered. First, fundamentals of measurement, data acquisition and telemetry are
presented. This is followed by an overview of the different types of volcanic earthquakes,
including concise explanations of their geophysical origin and importance for monitoring
and forecasting volcanic activity. Advantages of using PR tools in the identification of
seismic volcanic signals are discussed. Lastly, stages of a PR system —namely detection or
segmentation, representation and generalization — are introduced.

1.1 Measurement, data acquisition and data transmission

The foundation of volcano monitoring is the collection of experimental physical data and their
subsequent analysis and correlation with the associated underlying phenomena. Measuring
volcanic earthquakes is particularly important, since seismic events are a first sign of renewed
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2 Will-be-set-by-IN-TECH

Fig. 1. Seismic monitoring station installed by Observatorio Vulcanológico y Sismológico de
Manizales (OVSM) at Nevado del Ruiz Volcano, Colombia.

volcanic activity (Chouet, 1996) and reveal processes such as transport of magma and gases
or fracture of solid rock. Nowadays, seismic data collection is typically automated and
telemetered. Both properties are required in order to guarantee (1) continuous —24 hours
a day— records, (2) real time surveillance, and (3) data acquisition in remote areas where
frequent visits to collect data are not feasible.

The automated collection of seismic volcanic data can be divided into three stages:
measurement, data acquisition and data transmission. Measurement is performed by using
sensing devices that convert ground motion into measurable output signals: electrical
energies as voltages; data acquisition is composed, in turn, by several substages including
signal conditioning, analog to digital (A/D) conversion and further signal processing; data
transmission is performed by radio link systems, either analog or digital whether the A/D
conversion is carried out after or before transmission. A standard seismic monitoring station
—loosely thought of as being composed by a buried sensor, an electronics box, a solar panel
and a Yagi antenna— is shown in Fig. 1. Further descriptions regarding sensors and telemetry
are given below. For a general introduction to data measurement and analysis, the reader is
referred to (Brown & Musil, 2004) and the classic book by Bendat & Piersol (2010).

1.1.1 Seismic sensors

Comprehensive book chapters on seismic instruments have been written by Havskov &
Alguacil (2004, Chap. 2), Bormann (2009, Chap. 5) and Havskov & Ottemöller (2010, Chap. 3).
In spite of that and for the sake of a self-contained presentation, brief discussions on physical

378 Earthquake Research and Analysis – Seismology, Seismotectonic and Earthquake Geology

www.intechopen.com



The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges 3

principles, types and technical properties of seismic sensors —also known as seismometers—
are given below.

Seismometers are usually categorized into passive short period sensors and active broadband
sensors, see Figs. 2(a) and 2(b) respectively. The former consist in a magnetic mass which is
suspended in a spring and surrounded by a coil; as a result of the mass movement, an electric
current is induced in the coil; the associated voltage is proportional to the velocity of the mass.
In these sensors, the relationship between the induced signal and the actual velocity is linear
in a bandwidth typically ranging from 1.0 to 100 Hz (Havskov & Ottemöller, 2010).

Active broadband sensors are based on the so-called force balance accelerometer principle.
It roughly consists in extending the linear bandwidth response, down to about 0.01 Hz,
by including a feedback coil that limits the motion of the mass in a desired range. The
linear bandwidth of broadband sensors typically ranges from 0.01 to 50 Hz. Both types of
sensors require corrections to reflect the actual ground motion in length-related units, namely
corrections for the instrument response and phase shift. Such topics are note covered here but
are well explained in the above cited references.

(a) Short period sensor. (b) Broadband sensor.

Fig. 2. Examples of seismic sensors installed in the field.

1.1.2 Telemetry, A/D conversion and data storage

Seismic stations may be designed to be either portable or permanent. Portable ones are
equipped with on-site data storage devices such as internal memories and external hard drives
and are specially deployed for medium time periods. In order to avoid periodic visits to collect
data in remote areas and ensure continuity in the historical records, permanent stations are
installed by applying telemetry technologies, see Fig. 1. A typical analog radio telemetry
system comprises —in the transmitting side— a sensor (see Sec. 1.1.1), a modulator, a radio
and an antenna; similarly, in the receiving side, it is composed by an antenna, a radio, a
demodulator or discriminator and an A/D system coupled to a storage device. The modulator
usually corresponds to a voltage controlled oscillator with frequency modulation (Havskov &
Alguacil, 2004, Chap. 8) followed by a second modulation introduced by the radio and aimed
to transmit the signals in VHF or UHF bands1. When signals are digitized on-site, a digital
telemetry system is used with a variety of modulation schemes (Bormann, 2009, Chap. 7).
Moreover, recent deployments of seismic arrays have taken advantage of mobile telephone

1 VHF band: 30 to 300 MHz; UHF band: 300 MHz to 3 GHz.
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4 Will-be-set-by-IN-TECH

networks and internet technologies (Vargas-Jimenez & Rincón-Botero, 2003; Werner-Allen
et al., 2006). Readers that require a thorough introduction to data transmission are referred
to (Temes & Schultz, 1998) and (Eskelinen, 2004) for the analog case and to (Hsu, 2003) for
both analog and digital cases.

The digital acquisition of seismic signals involves stages for signal conditioning and A/D
conversion. The first one includes amplifiers and antialias filters, required to scale low-level
outputs of passive sensors and fulfill the Nyquist criterion2, respectively. The A/D conversion
is carried out by using analog-to-digital converters (ADCs), typically having sampling rates
of 50, 100 or 200 Hz and resolutions between 12 and 24 bit. Individual events are extracted
from the continuous records by applying segmentation methods, see Sec. 1.3.1. Further details
about A/D conversion and filtering can be found in publications by Scherbaum (1994; 2002;
2007).

Segmented seismic events can be stored in a variety of file formats. The choice of a particular
format depends on technical convenience for both space and compatibility. Plain text files
are simple enough that most programs can read them because they use the ASCII standard
to represent characters (Brown & Musil, 2004); however, text files are neither optimized in
size according to the number of bits of the corresponding ADC nor suitable to embed codes
indicating formatting and additional capabilities. These weaknesses are overcome by special
binary formats such as the Seismic Unified Data System (SUDS), the Seismic Analysis Code
(SAC), the SEISmic ANalysis system (SEISAN), the Guralp Compressed Format (GCF) and
the Standard for the Exchange of Earthquake Data (SEED).

1.2 Seismic waveforms and classes of volcanic earthquakes

Seismic signals reveal the propagation of elastic waves through the ground. An earthquake
generates two different types of such waves; namely body waves and surface waves (Kayal,
2008). The former propagate within a body of rock; the latter travel along the ground surface.
A further distinction is made in body waves between the primary wave (P-wave) and the
secondary or shear wave (S-wave). The P-wave is faster than the S-wave; therefore, it appears
before the S-wave in the seismograph record as shown in Fig. 3.

The vibrations following the arrival of a wave are called coda. Since the coda of the P-wave is
often hidden by the onset of the S-wave, the term coda usually refers to S-coda (i.e. the trailing
part of the seismogram) unless indicated otherwise. Refer again to Fig. 3.
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Fig. 3. Parts of a seismic signal.

2 The sampling rate must be greater than twice the highest frequency component of the signal.
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The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges 5

Volcanic earthquakes are typically categorized into four classes according to their mode of
generation and the time-frequency behavior of their associated seismic signals. The first
criterion —the mode of generation— corresponds to two distinct types of processes occurring
either in the solid rock or in the magmatic and hydrothermal fluids within the volcanic edifice.
A variety of names have been used to describe the four classes of volcanic earthquakes
(McNutt, 2005; Zobin, 2003); however, nowadays, the following denominations are widely
accepted: volcano tectonic (VT) events, long period (LP) events, tremors (TR), and hybrid (HB)
events; see Fig. 4. Concise explanations including their geophysical origin, time-frequency
characteristics and importance for monitoring and forecasting volcanic activity are given
below. Some special events are observed in particular volcanoes, e.g. multiphase (MP)
earthquakes at Mt. Merapi volcano (Hidayat et al., 2000); and flute tremors, spasmodic tremor
(Gil-Cruz, 1999) and ‘tornillo’-type signals at Galeras volcano (Narváez-M. et al., 1997).

Tectonic earthquakes such as teleseismic (TS), regional (RE) and local (TL) ones are also
observed at the seismic volcanic stations. Furthermore, rock falls (RF), explosions (EX),
landslides (LS), avalanches, icequakes (IC) and even lightnings are also recorded by the
instruments. Descriptions for those non-volcanic events are not given here due to space
constraints. Details of the TS, RE and TL classes are available in (Kayal, 2008).
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(a) VT event.
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(b) LP event.
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(c) HB event.
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(d) TR event.

Fig. 4. Examples of seismic volcanic signals observed at Nevado del Ruiz Volcano, together
with their associated spectrograms. Events were recorded at Olleta station in 2006.
Spectrograms were scaled to highlight the top 50 dB of the signals.
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6 Will-be-set-by-IN-TECH

1.2.1 Volcano Tectonic (VT) earthquakes

These earthquakes are indicative of fractures in the solid rock, which are caused by either
pressure from magmatic intrusion into the volcano or stress relaxation due to a withdrawal of
magma in the crust (Guillier & Chatelain, 2006). VT waveforms are characterized by clear
and impulsive arrivals of P and S waves and a short coda typically lasting 7 to 15 s. In
the spectral domain, VT events are characterized by a relatively high-frequency content with
energy peaking in the band from 6 to 8 or 10 Hz (Chouet, 1996; Guillier & Chatelain, 2006),
little energy in the frequencies below 3.5 Hz and significant components up to 15 or 20 Hz,
see Fig. 4(a). It is important to monitor VT events because an increase in such seismic activity
has been found to be often a first sign of volcanic unrest (Trombley, 2006); nonetheless, their
consideration as eruption precursors may not be reliable since the activity may last from days
to months or even years (Chouet, 1996). Therefore, VT events must be always correlated with
the locations of occurrence and the other classes of volcanic earthquakes (Londoño-Bonilla,
2010).

1.2.2 Long Period (LP) earthquakes

These events are caused by pressure changes in channels filled with magmatic and
hydrothermal fluids. Such changes, in turn, are produced by unsteady mass transport and/or
thermodynamics of the fluid (Chouet, 1996). The interaction between the surrounding solid
and the aforementioned pressure fluctuations constitutes a resonator system (Kumagai &
Chouet, 1999) that exhibits decaying harmonic oscillations. LP waveforms are characterized
by more or less emergent first arrivals, a lack of clear S waves (Lesage, 2009) and coda waves
lasting up to 1.5 minutes (Gil-Cruz & Chouet, 1997). In the spectral domain, energies are
concentrated in low frequencies ranging from 0.5 to 3 Hz according to Trombley (2006) or up
to 5 Hz according to Chouet (1996). Weak energies at higher frequencies, up to 13 Hz, are
only present at the onset. These time and frequency properties can be examined in the sample
signal shown in Fig. 4(b).

The forecasting potential of LP events has been pointed out by several studies. They
commonly precede and accompany volcanic eruptions (Chouet, 2003) and their analysis may
provide an understanding of the dynamic state and mechanical properties of the fluids at their
sources.

1.2.3 Tremors (TR)

Tremors are produced by the same phenomena that cause LP earthquakes but their oscillations
may last from minutes to days, and sometimes for months or longer (Chouet, 1996). Such an
extended manifestation reveals the presence of a sustained excitation. Trombley (2006) claims
that such a sustained excitation is caused by extra pushes that the waves of pressure, traveling
through the magma, get as a result of pressure changes coming from below.

There is no significant difference between the signal characteristics of LP and TR events, except
for the longer duration of the latter. The study of TR earthquakes is considered crucial for the
investigation of gas/liquid within a magma conduit (Martinelli, 1997) and also for improving
eruption forecasting since, as LP earthquakes, TR events have been frequently observed prior
to volcanic eruptions (Lesage et al., 2002).
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The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges 7

1.2.4 Hybrid (HB) earthquakes

The occurrence of a VT earthquake may trigger a LP event or vice versa (Trombley, 2006). As
a result, a combined event — so-called HB earthquake— appears, containing a mixture of the
two former ones. HB earthquakes may be episodic or be related to a steady process as, for
instance, the interaction between magmatic heat and underground water systems (Guillier &
Chatelain, 2006).

The longest HB events last a few tens of seconds (Neuberg, 2000). Chouet (1996) highlights
two particular properties of HB seismic signals: a high-frequency onset and a LP-like coda.
The first property is caused by a VT event preceding the LP event. The ambiguous physical
origin of HB earthquakes limits their use for forecasting purposes (Harrington & Brodsky,
2007).

1.3 Pattern recognition systems

Duin et al. (2002) define PR as an engineering field that studies theories and methods for
designing machines that are able to recognize patterns in noisy data. Many of the techniques
and methods in the PR field are borrowed from other fundamental and applied disciplines
such as DSP, statistics and machine learning. DSP techniques are mainly applied in the first
two stages of the PR system pipeline, see Fig. 5. Statistical and machine learning methods are
used in the classification task. The remaining stage —representation— is the focus of interest
for PR practitioners and researchers working towards the solution of the following questions:
(1) how to represent real-world objects or phenomena in such a way that measurements
coming from the sensor stage can be appropriately arranged, e.g. in a vector space, to be
provided to the classification methods? and (2) is the representation technically suitable in
terms of discriminant power and computational complexity? In addition, the PR community
is also devoted to modify classification methods in order to adapt them to the particular
technical requirements of the application.

Real-world
(Earth)

Sensors Data processing Representation Clasification
Assigned
class label

Analog
signal x(t)

Digital signal
x(n)

Features
x

d

Dissimilarities

ωk

︸ ︷︷ ︸

Sensor subsystem

Fig. 5. Building blocks of a PR system.

1.3.1 Sensor subsystem

Consider the particular case of the automated identification of volcanic earthquakes and refer
again to Fig. 5. Sensors, as described in Sec. 1.1.1, are seismometers. The subsequent stage
—data processing— includes data storage and/or telemetered transmission, A/D conversion
(Sec. 1.1.2), and segmentation. This last task in the data processing stage is carried out with
a two-fold purpose: (1) to detect the events of interest in the whole continuous raw data; (2)
to save space for data storage. In real time implementations, the conventional method for
segmenting seismic events is the so-called short-term average - long-term average (STA/LTA)
trigger (Havskov & Ottemöller, 2010). Since a detailed discussion of the STA/LTA trigger
method is out of the scope of this chapter, the reader is referred to (Havskov & Alguacil,
2004).
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1.3.2 Representation approaches

The issue of representation has been traditionally addressed by extracting a set of discriminant
features from the segmented sensor measurements. Those features span a vector space which
is consequently known as the feature space. Good features should allow the building of
accurate classifiers to partition the space into decision regions that are associated to the classes
to be distinguished —types of volcanic earthquakes in this case. Let x(t) be a segment of
the continuous record containing a seismic event and let x(n) be its associated discrete-time
sequence. N features extracted from x(n) are arranged in a feature vector x ∈ R

N . Typical
features extracted from the morphology of a seismic signal in the time-domain are amplitudes
and durations of the waves shown in Fig. 3.

The dissimilarity representation has been proposed as a feasible alternative to represent
signals for PR (Pekalska & Duin, 2005). For a given signal x(n), this representation approach
consists in computing a dissimilarity measure between either x(n) or some associated
transform and a set of M reference signals belonging to a so-called representation set. The
reference signals are called prototypes whenever the set is composed by archetypal examples
of each class. Similarly to the feature-based approach, dissimilarities are arranged as a
dissimilarity vector d ∈ R

M in the so-called dissimilarity space. Dissimilarity measures typically
correspond to metric distances; however, relaxed versions of the metrics are also common in
practical applications, e.g. the weighted edit distance and the modified Hausdorff distance
which are asymmetric.

Pekalska & Duin (2005) advocate the use of dissimilarity representations instead of classical
feature-based ones by presenting several conceptual and practical motivations. Here it is
worthwhile to mention the following practical ones: dissimilarities can be derived from raw
data such as images, spectra or time samples; dissimilarity-based classifiers outperform the
nearest-neighbor rule.

1.3.3 Classification approaches

The last block in Fig. 5 consists in applying classification algorithms to infer a class label
ω̂(x) ∈ Ω, where Ω = {ω1, . . . , ωK} is the set of labels for the K different types of volcanic
earthquakes to be identified. According to the nature of the classification algorithms, three
different approaches can be distinguished (Jain et al., 2000): similarity-based classification,
density-based classifiers and geometric classifiers. These approaches are succinctly described
below, including the relatively recent strategy of combining multiple classifiers. A thorough
presentation of the classification algorithms can be found in several good textbooks on the
subject of PR, such as the ones by Duda et al. (2001), Webb (2002), van der Heijden et al.
(2004), Theodoridis & Koutroumbas (2006) and Bishop (2006).

Similarity-based classifiers

This classification approach is based on the elementary rationale of resemblance, i.e. similar
events —volcanic earthquakes in our problem— should be identified as belonging to the same
class. Among the classifiers in this category, the following two are widely used: the nearest
mean classifier (NMC), and the k-nearest neighbor (k-NN) rule. Decision in the first one is
taken by examaning the class label of the closest vector among the mean vectors per class; in
the second one, the closest event in the vector space defines the assigned class label ω̂(x) for
a new incoming event to be identified.

384 Earthquake Research and Analysis – Seismology, Seismotectonic and Earthquake Geology
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The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges 9

Density-based classifiers

These classifiers are based on the well-known Bayesian decision theory, i.e. on the application
of the Bayes decision rule, which consists in the maximization of the posterior probability
P(ω̂k|x) across Ω. P(ω̂k|x) corresponds, in turn, to the conditional probability density
p(x|ωk) weighted by the prior probability P(ωk). Costs of missclassifications are often
included in the rule as an additional weighting parameter.

The key issue in this approach is the estimation of the conditional probability densities,
i.e. p̂(x|ωk). A distinction between parametric and nonparametric estimates can be made
(Jain et al., 2000), where the parametric case corresponds to the assumption of a model for the
probability density (e.g. a Gaussian distribution) and the nonparametric one consists in either
estimating the probability densities by the standard histogramming technique or by defining
window functions in the vector space. Such windows are used to define the contribution of
the samples contained in them to the estimation of the probability density. A further division
in the window-based nonparametric case is the one between the Parzen window approach
and the k-nearest-neighbor method, whether the estimation process is space-invariant or not,
respectively.

Consider again the parametric case and the assumption of Gaussian distributions. Parameters
to be estimated are the mean vectors and the covariance matrices. According to
the assumptions made about the latter, two well-known decision rules result: (1) the
Bayes-normal-linear classifier (LDC), when covariance matrices are assumed to be equal; (2)
the Bayes-normal-quadratic classifier (QDC), when the covariance matrices are assumed to be
different.

Seismic volcanic signals are composed by sequential data, analogously to the case of speech
records and time series. A widely used tool for modeling and classifying such sequences is
the hidden Markov model (HMM) method. A HMM is composed by a set of states, a matrix of
probabilities of transitions between the states, a vector of initial probabilities and an emission
model. The HMM-based classification typically consists in training one HMM for each class
and, afterwards, using a density-based classifier. Additional details of this method are not
given here but can be found in (Rabiner, 1989) as well as in the reviewed studies referenced in
Sec. 2.3.

Geometric classifiers

In these classifiers, decision boundaries are built by optimizing a performance criterion
instead of considering proximities or densities as in the two previous approaches. Examples of
geometric classifiers are the Fisher’s linear discriminant, decision trees, single- and multi-layer
perceptrons (and, in general, artificial neural networks) and the support vector classifier. Here
we only describe the last two classifiers in more detail since they are the most used in volcano
seismology applications, as it will be discussed in Sec. 2.

Artificial neural networks (ANNs) are able to implement linear as well as nonlinear classifiers,
depending on their architecture (number of layers and number of neurons) and training
method. In spite of their tricky tuning procedures, they are still extensively used due to their
flexibility and potential good performance. Nonetheless, the emergence of the support vector
method has progressively displaced ANNs from their consideration as general solutions for
classification and regression; indeed, over the last 15 years, the support vector method have
gained a solid theoretical development and an overwhelming number of applications. In
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few words, the basic principle of the support vector classifier (SVM) is to maximize the
margin between two classes, which is defined by the so-called support vectors: the closest
training examples to the decision boundary. The SVM is extended to nonlinear and multiclass
problems by using strategies called the kernel trick and the one-against-rest approach. Further
details can be found in some of the PR textbooks cited above as well as in the original work
by Vapnik (1998).

Combination of multiple classifiers

The strategy of combining multiple classifiers aims to exploit (1) the availability of multiple
sources of data from different sensors or representations, and (2) the possibilities of training
several classifiers for the same training set and performing different tuning sessions for the
same classifier. Data mentioned in item 1 may belong to either the same events or to different
ones. Most seismic volcanic data sets are multiple in nature since they are acquired at multiple
recording stations and across several months or years; thereby, multiple sources —stations—
for the same events are often available and different sets of examples can be arranged by date
of acquisition.

Several strategies for combining classifiers have been proposed. They are typically
categorized according to their architecture into parallel, serial and hierarchical; or according
to the combination rule into static and trainable (Kuncheva, 2004). PR systems that include
these strategies are called multiple classifier systems. There has been a sustained interest in this
field during the last decade as evidenced by the series of workshops started by Kittler & Roli
(2000) and recently organized by Gayar et al. (2010).

2. A Review of research on automated identification of volcanic earthquakes

This section is meant to be a compact but comprehensive survey of research efforts,
achievements and case studies on automatic classification of seismic volcanic signals.
Reviewed studies are grouped into categories according to the various approaches and
methods discussed in Secs. 1.3.2 and 1.3.3.

2.1 Research teams and study sites

A literature search was performed in the main technical databases. Most of the applications
on the automated identification of volcanic earthquakes have been undertaken through
the inter-institutional and international research collaboration of four teams composed by:
(1) Departamento de Teoría de la Señal Telemática y Comunicaciones, Universidad de
Granada, Spain; and Instituto Andaluz de Geofísica, Universidad de Granada, Spain; (2)
Dipartimento di Fisica, Università di Salerno, Italy; and Osservatorio Vesuviano, Istituto
Nazionale di Geofisica e Vulcanologia, Italy; (3) Departamentos de Ingeniería Eléctrica y
Física, Universidad de La Frontera, Temuco, Chile; and Observatorio Volcanológico de los
Andes del Sur, Servicio Nacional de Geología y Minería, Chile; and (4) Departamento de
Informática y Computación, Universidad Nacional de Colombia Sede Manizales, Colombia;
Observatorio Vulcanológico y Sismológico de Manizales, INGEOMINAS, Colombia; and
Pattern Recognition Lab, Delft University of Technology, The Netherlands. In these
collaborative studies, it seems that spatial proximity between volcano observatories and at
least one expert in DSP and/or PR encourages collaboration, probably due to the possibility
of establishing informal communication as pointed out by Katz & Martin (1997). Other
active teams are composed by personnel from Istituto Nazionale di Geofisica e Vulcanologia,
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The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges 11

Catania, Italy; and Institut für Erd- und Umweltwissenschaften, Universität Potsdam,
Germany.

The found studies have been applied to data sets of the following volcanoes: Ambrym
volcano, Vanuatu (AMV); Deception Island Volcano, Antarctica (DIV); Etna Volcano, Italy
(ETV); Las Cañadas Volcano, Tenerife, Spain (LCV); Llaima Volcano, Chile (LLV); Mt. Merapi
Volcano, Indonesia (MMV); Mt. Vesuvius Volcano, Italy (MVV); Nevado del Ruiz Volcano,
Colombia (NRV); Phlegraean Fields, Italy (PFV); San Cristóbal Volcano, Nicaragua (SCV);
Soufrière Hills Volcano, Montserrat (SHV); Stromboli Volcano, Italy (STV); and Villarica
Volcano, Chile (VRV). Other studies are not applied to signals of volcanic origin but to tectonic
seismic events. In spite of that and considering the affinity between these two problems,
such studies have also been reviewed here. Data considered in those studies come from
the European Broadband Network (EBN), the Mediterranean Seismic Network (MSN), the
Hyblean Plateau network (HPN), the Marmara Region Network (MRN) and the Bavarian
Earthquake Service Network (BEN). See Table 1 for associations between study sites and
publications.

Publication Data set Classes Representation Classification
(Avossa et al., 2003) STV Two types of EX Time samples + PCA ANN
(Benítez et al., 2007) DIV VT, LP, TR and HB MFCCs HMM
(Beyreuther et al.,
2008)

LCV VT, RE, day noise
and night noise

Morphological
attributes of
waveforms and
spectrograms

HMM

(Beyreuther &
Wassermann, 2008)

BEN VT, RE, TL, day
noise and night
noise

Wavefield
parameters

HMM

(Chu-Salgado et al.,
2010)

NRV VT and LP 1-D spectra + feature
selection

NMC, k-NN and
LDC together with
fixed combining
rules

(Curilem et al., 2009) VRV LP, TR and energetic
TR

Morphological
attributes of
waveforms and
spectra

ANN

(Del Pezzo et al.,
2003)

PFV VT and fishermen’s
EX

LPC coefficients ANN

(Duin et al., 2010) NRV VT, LP and IC 1-D spectra and
spectrograms + PCA

QDC and a trained
combining rule:
decision templates.

(Esposito et al., 2006) STV LS, EX and micro-TR LPC coefficients and
morphological
waveform
atttributes

ANN

(Ezin et al., 2002) MVV Earthquakes
and false events
(thunders, quarry
blasts and
man-made undersea
explosions)

LPC coefficients,
and morphological
waveform
atttributes

ANN

Continued on next page
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Continuation of Table 1
Publication Data set Classes Representation Classification
(Falsaperla et al.,
1996)

STV Four classes of EX Auto-correlation
function, envelope
function and spectra

ANN

(Gutiérrez et al.,
2009)

SCV LP, EX, TR and
background noise

MFCCs HMM

(Gutiérrez et al.,
2006)

STV and ETV EX and tremor
bursts

MFCCs HMM

(Hoogenboezem,
2010)

NRV LP, RE,TL and VT Spectrograms + PCA
and Fisher mapping

Parzen classifier,
NMC, HMM, 1-NN,
SVM, ANN and
combining rules

(Ibáñez et al., 2009) STV and ETV Strombolian EX
and background
noise (STV). TR and
tremor bursts (ETV)

MFCCs HMM

(Langer &
Falsaperla, 2003)

STV Four classes of EX Auto-correlation
function, envelope
function and spectra

ANN

(Langer et al., 2006) SHV VT, RE, LP, HB, RF
and LP+ RF

Autocorrelation
function;
morphological and
statistical attributes
of the waveforms

ANN

(Ohrnberger, 2001) MMV VT, MP and RF Wavefield
parameters

HMM

(Orozco-Alzate et al.,
2006)

NRV VT, LP and IC 1-D spectra +
Dissimilarities

1-NN in feature
space. LDC and
QDC in dissimilarity
space

(Orozco-Alzate et al.,
2008)

NRV VT, LP 1-D spectra + Band
selection

Regularized LDC

(Porro-Muñoz et al.,
2010a)

NRV VT and LP 1-D spectra and
spectrograms +
Dissimilarities
(multiway
approach)

Fisher linear
classifier

(Porro-Muñoz et al.,
2010b)

NRV VT and LP Spectrograms
and scalograms
+ Dissimilarities
(multiway
approach)

Fisher linear
classifier

(Porro-Muñoz et al.,
2011)

NRV VT and LP Spectrograms +
Dissimilarities
(multiway
approach)

Regularized LDC

(Riggelsen et al.,
2007)

EBN Tectonic earthquakes
and noise

Continuous wavelet
transform

Dynamic Bayesian
networks

(Romeo, 1994) MSN RE, TL, TS,
sausage-like and
spike-like

Morphological
spectral attributes

ANN

(Romeo et al., 1995) MSN TL, RE, TS,
spike-like and
noise

Morphological
spectral attributes

ANN

Continued on next page
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Continuation of Table 1
Publication Data set Classes Representation Classification
(Rouland et al., 2009) AMV TR and tectonic

earthquakes
Morphological
waveform attributes

Decision based on
the presence or
absence of S-waves

(Scarpetta et al.,
2005)

MVV Two problems: VT
and quarry blast;
underwater EX and
thunder

LPC coefficients and
morphological
waveform
atttributes

ANN

(San-Martín et al.,
2010)

LLV LP, TR and VT Hilbert and wavelet
transforms

LDC

(Ursino et al., 2001) HPN Tectonic earthquakes
and quarry blasts

Autocorrelation
functions and
spectra

ANN

(Yıldırım et al., 2011) MRN Tectonic earthquakes
and quarry blasts

Morphological
waveform attributes

ANN

Table 1. Summary of reviewed studies and their associated experimental setups.

2.2 Applications and representation approaches

Raw seismic signals are the simplest and straightforward representation to be provided to a
classifier. That option exempts designers from the need to find good features and may be
convenient if sufficient training examples are available. However, building a vector space
by using the original time samples yields to the following drawbacks: (1) it is mandatory to
have equal-length and aligned signals, which is often not possible due to the intrinsic variable
duration of seismic events; and (2) high dimensional vector spaces are spanned by the samples
and, thereby, large training sets are required in order to avoid the “curse of dimensionality”
phenomenon. The second drawback can be overcome by applying dimensionality reduction
techniques such as principal component analysis (PCA) and feature selection methods.
Avossa et al. (2003) adopted this approach, reducing the dimension from 240 to 15. Langer
& Falsaperla (2003); Ursino et al. (2001); and Langer et al. (2006) used the autocorrelation
function instead of the original waveforms in order to avoid the phase alignment problem.

Morphological features can be extracted directly from the examination of the waveforms.
Curilem et al. (2009) measured the following values from the absolute value of the signals:
standard deviation, mean, median and maximum value, as well as kurtosis and skewness
from a histogram of the signal amplitudes. Scarpetta et al. (2005) and Esposito et al. (2006)
extracted time-domain information by computing differences, properly normalized, between
the maximum and minimum signal amplitudes. Similarly, Ezin et al. (2002) measured
maximum and minimum signal amplitudes, Yıldırım et al. (2011) obtained peak S-to-P
amplitude ratios and complexity values and Rouland et al. (2009) detected the presence or
absence of S-waves. Signal envelopes, that are smoothed versions of the original waveforms,
were also tested for data representation by Falsaperla et al. (1996), Langer & Falsaperla
(2003) and Beyreuther et al. (2008). A collection of morphological and statistical attributes
of the waveforms were considered in the study by Langer et al. (2006). The most specialized
representation is that reported in (Ohrnberger, 2001, Chap. 7) and (Beyreuther & Wassermann,
2008), which includes several wavefield parameters.

An alternative consists in computing intermediate representations, usually spectra and
spectrograms because differences in spectral content allow a visual discriminating of different
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types of volcanic earthquakes (Zobin, 2003, Chap. 9). This approach was followed by
Orozco-Alzate et al. (2008); Chu-Salgado et al. (2010); Duin et al. (2010); Hoogenboezem
(2010); Orozco-Alzate et al. (2006); and Porro-Muñoz et al. (2010a;b; 2011). In the first four
studies, the computation of spectra was followed by dimensionality reduction techniques
such as sequential feature selection, PCA and Fisher mapping. In the remaining ones,
dissimilarity representations were computed after transforms to the frequency or the
time-frequency domain. Porro-Muñoz et al. (2010a;b; 2011) included multiway data analysis
techniques, see Sec. 3.5.

Additional features can be extracted from spectral representations by measuring
morphological attributes such as the mean frequencies of the five highest peaks, energies
in given frequency bands (Curilem et al., 2009; Romeo, 1994; Romeo et al., 1995) and the
instantaneous frequency (Beyreuther et al., 2008), or by computing variables such as the
Mel-frequency cepstral coefficients (MFCCs), their associated log-energies and the so-called
delta and delta-delta coefficients (Benítez et al., 2007; Gutiérrez et al., 2009; 2006). Spectra and
spectrograms are typically computed by using the Fourier or the cosine transforms. Other
ones, such as the Hilbert and wavelet transforms have been applied for representation; e.g. by
Riggelsen et al. (2007), San-Martín et al. (2010), and Porro-Muñoz et al. (2010b).

The linear predictive coding (LPC) coefficients have been widely used in speech recognition
and, by extension, also chosen for representation in several projects of seismic signal
classification (Del Pezzo et al., 2003; Esposito et al., 2007; 2006; 2005; Ezin et al., 2002; Scarpetta
et al., 2005). They are aimed to predict samples as linear combinations of several previous
ones, based on the correlation between successive samples in a seismic signal.

2.3 Applications and classification approaches

In the majority of the reviewed applications, ANNs have been used for classification;
particularly multilayer perceptrons (MLPs). Summarized descriptions of publication
references, input-hidden-output architecture (number of neurons per layer) and training
method are shown in Table 2. Architecture and training method, in almost all the studies, were
selected either by trial and error or by agreement with a previous publication. An exception
is the study by Curilem et al. (2009), who optimized the size of the hidden layer and selected
the training process by means of a genetic algorithm, finding that 14 hidden neurons and the
Levenberg-Marquardt training algorithm were the optimal choice.

Publication Architecture Training method
(Avossa et al., 2003) 15-3-1 Quasi-Newton
(Curilem et al., 2009) 8-14-1 Levenberg-Marquardt
(Del Pezzo et al., 2003) 105-6-1 Quasi-Newton
(Esposito et al., 2006) 71-5-3 Quasi-Newton
(Ezin et al., 2002) 174-6-1 Quasi-Newton and scaled gradient descent
(Falsaperla et al., 1996) 600-8-4 Gradient descent
(Langer & Falsaperla, 2003) 600-8-4 Backpropagation algorithm
(Langer et al., 2006) 103-20-6 —
(Romeo, 1994) 40-12-40 —
(Romeo et al., 1995) 10-9-9-5 —
(Scarpetta et al., 2005) [70,79]-[4,5]-1 Scaled conjugate gradient and Quasi-Newton
(Ursino et al., 2001) 100-5-2 Back propagation
Continued on next page
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Continuation of Table 2
Publication Architecture Training method
(Yıldırım et al., 2011) 2-5-1 Levenberg-Marquardt

Table 2. MLP architecture and training methods used in several ANN-based applications.

HMMs have been widely used in the speech recognition framework. Given the analogous
nature of speech and seismic signals, authors have also successfully applied them to the
automated classification of volcanic earthquakes. Similarly to the case of ANNs, the
performance of HMMs is controlled by several free parameters, namely: the topology of the
models, the number of states for the models, the number of multivariate Gaussian probability
density functions and the number of iterations of the Baum-Welch algorithm for training.
Topology usually corresponds to a left-to-right configuration. Values used for the second
parameter —the number of states— in the reviewed applications are listed in Table 3.

Publication Number of states
(Benítez et al., 2007) 11
(Beyreuther et al., 2008) —
(Beyreuther & Wassermann, 2008) 3,4,5
(Alasonati et al., 2006) 2
(Gutiérrez et al., 2006) 13,20
(Gutiérrez et al., 2009) 13
(Hoogenboezem, 2010) 20
(Ibáñez et al., 2009) 17,22
(Ohrnberger, 2001) 6,12

Table 3. Configurations of HMMs applied in the reviewed publications.

A conceptual discussion on the use of wavelet-based HMMs to the classification of seismic
volcanic signals is presented in (Alasonati et al., 2006). Several reasons have motivated
researchers to prefer a left-to-right HMM topology instead of an ergodic one; Ohrnberger
(2001, Chap. 7) points out the following reasons: (1) seismic signals are causal in time; (2)
seismic signals are analogous to speech signals, for which left-to-right models are widely
used; and (3) the degree of freedom of a model —with equal number of states— is lower for
a left-to-right topology than that for an ergodic one. Readers are referred again to (Rabiner,
1989) for details on the difference between these two topologies. A generalization of HMMs
are the so-called dynamic Bayesian networks. Riggelsen et al. (2007) applied them to the
real-time identification of seismic signals.

Less complex classifiers were applied by San-Martín et al. (2010); Chu-Salgado et al. (2010);
Orozco-Alzate et al. (2006); Porro-Muñoz et al. (2010a;b); and Duin et al. (2010). Authors of
the first study built classifiers on top of a classical feature representation while the others
employed simple ones, either in the dissimilarity space or to be combined in a second step of
the classification process as explained at the end of Sec. 1.3.3. The reader is referred again to
Table 1 to associate studies and classifiers.

Hoogenboezem (2010) presented a compendious survey of classifiers and representations
applied to signals from NRV. However, more rigorous experimentations and statistical
comparisons are a must when a comprehensive study is planned to be conducted.
Recommendations such as those made by Demšar (2006); Duin (1996); Salzberg (1997) and
in Sec. 2.4 should be taken into account. An additional concern is the methodological rigor
in the evaluation of performances for multiclass problems; even though most of the studies
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report confusion matrices, others draw conclusions from overall accuracies that are likely to
be unreliable for multiclass and/or unbalanced data sets.

This subsection is concluded with a mention to the following studies dealing with the
unsupervised classification problem: (Ansari et al., 2009; Esposito et al., 2007; 2008; 2005;
Orozco-Alzate & Castellanos-Domínguez, 2007). They are aimed at finding clusters in seismic
volcanic data and understanding their structure. A separate chapter would be required to
properly discuss them.

2.4 The need of a benchmarking data set

Classification accuracies and other performance measures reported in the literature are not
comparable across the reviewed studies because, unfortunately, there are no standard and
publicly-available data sets of seismic volcanic signals. Furthermore, authors have used
different sets even when they performed studies for the same volcano. Thus, the need for
a benchmarking data set is evident. Researchers in this field are encouraged to define such a
reference set to be made available for rigorous comparative studies. Ultimately, it is the only
reliable way of measuring relative system performance.

3. Open issues and research opportunities

The area of PR has developed itself into a mature engineering field (Duin & Pekalska, 2005).
As a result, in practical applications and particularly in volcano seismology, a number of
recent approaches and techniques have not yet been explored. This section is concerned
with future directions for research, considering not just the state-of-the-art in PR but also
possibilities offered by the development of sensors and computer resources. Prospective
projects are briefly outlined, considering novel approaches such as multiple instance learning,
one-class classification, adaptive single and multiple classifiers, classifier optimization and
multi-way representations.

3.1 Multiple instance learning

A multiple instance problem occurs when training objects are naturally organized into bags
of feature vectors, also known as multisets, instead of being composed by individually labeled
ones (Ray & Craven, 2005). It happens, for instance, when objects are too rich and contain
too many details and information that can not be easily represented by a single feature vector
(Tax & Duin, 2008), e.g. images that depict several objects —in addition to the one of interest,
also known as concept— in the same picture. Feature vectors (called in this framework as
instances) in the bag are assumed to be independent and are not individually labeled since the
class labels are only assigned to the complete bags. In a two-class case, with a positive class
and a negative class to be distinguished, a negative bag only contains vectors that are not
members of the concept; whereas a positive bag contains at least one vector that is member of
the concept and, consequently, may contain other vectors that are not.

A prospective application of multiple instance learning to the automated identification of
volcanic earthquakes would consider waveforms and spectrograms as bags of feature vectors.
In such a way, labels might be more accurately assigned to those segments in the signals
or patches in the spectrograms clearly belonging to the concept class. Moreover, ill-defined
classes might be more properly treated, e.g. the HB events.
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3.2 One-class classification

Seismic signal classification problems are unbalanced. Events of some classes are very
common and, therefore, a lot of examples are available. In contrast, other classes are rare and
just a few examples of them can be collected. Based on the given examples, only a boundary
descriptor of the most frequent classes can be accurately built. Considering a rare type of
seismic events as the outliers and the rest of the events as the target class clearly follows the
definition of a one-class classification problem (Juszczak, 2006; Tax, 2001).

One-class classifiers are sound alternatives to multi-class ones for cases when rare or abnormal
states are very infrequent, costly to be forced (e.g. faults in machinery) or impossible to obtain
upon request: a person can not be asked to get sick with particular symptoms and a volcano
can not be artificially induced to exhibit particular rare seismic events. This approach, to the
best knowledge of the authors, has not yet been applied to the automated identification of
earthquakes.

3.3 Adaptive single and multiple classifiers

Seismic signals of the same events may look completely different across seismic stations,
waveforms of the same classes of events differ among volcanoes and; moreover, volcano
geophysical conditions change over time. These dynamic nature motivates the application
of classifier adaptation strategies, either for single or multiple classifiers (Aksela, 2007), that
allow the possibility of learning from the test set to adapt or modify the decision regions.

Individually adaptive classifiers have been employed in optical character recognition (OCR) in
order to prevent accuracy deterioration due to the statistical dissimilarity between the training
and test data (Veeramachaneni & Nagy, 2003). Such a dissimilarity is introduced in OCR by
the proliferation of fonts and typefaces. Similarly, in speech recognition, adaptation has been
extensively applied to deal with unseen conditions or time-variant speakers (Herbig et al.,
2011). In summary, undertaking an exploratory study on the application of adaptive single
and multiple classifiers may provide a convenient solution for seismic signal classification
under the varying conditions mentioned above. It might be indeed an alternative to
re-training or entirely re-designing deployed PR systems.

3.4 Classifier optimization

The relative importance of different classification outcomes must be taken into account
when optimizing and evaluating the design of a PR system. Such differences are reflected
in a trade-off between the values of true positive rate and false positive rate and can be
represented in receiver operator characteristic (ROC) curves, whose examination gives the
designer insights to tune the classifiers. Classical ROC curves are restricted to two-class
problems, in which one class is designated as positive (target) and the other one is assumed
as negative.

The automated classification of seismic volcanic signals is a multiclass PR problem. Therefore,
the application of classical ROC analysis is only possible under a one-against-rest approach.
Nonetheless, recent research efforts have extended ROC analysis to multiclass cases while
overcoming restrictive computational complexity issues that limit straightforward multiclass
generalizations; see for instance (Landgrebe, 2007; Landgrebe & Paclík, 2010; Paclík et al.,
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2010). Optimal classification systems for the automated identification of volcanic earthquakes
might be designed by using those novel ROC approaches.

3.5 Multiway representations

Multiway data analysis has been extensively used in chemometrics and psychometrics.
It extends classical multivariate statistical techniques such as component analysis, factor
analysis, cluster analysis, correspondence analysis, and multidimensional scaling to multiway
data (Kroonenberg, 2008). Multiway means that data are arranged in high-order arrays
instead of the usual two-dimensional matrices, in which each row represents an object and
each column is associated to a feature or measurement. Data collected at different times,
conditions or locations are suitable to be considered as multiway data sets (Porro-Muñoz et al.,
2009).

Porro-Muñoz et al. (2010a;b; 2011) derived intuitive multiway representations for classifying
seismic volcanic signals. Spectrograms and scalograms are computed for each segmented
seismic signal and, afterwards, the whole set is arranged by stacking those initial
two-dimensional representations. As a result, a so-called profile-data configuration is
obtained, where the three dimensions are associated to signals, time and frequency;
respectively. Further studies on the design of custom classifiers for multiway data sets
are needed. Moreover, other multiway arrangements might be created by considering,
for instance, the recording stations or the sensor components (vertical, North-South, and
East-West) as additional ways, i.e. dimensions.

4. Challenges and constraints in deploying automated systems

This section is devoted to a discussion on the difficulties and challenges for the design and
deployment of custom solutions at the volcano observatories. Technical challenges and
non-technical constraints are summarized. Lastly, a few remarks concerning industrial and
commercial implementation alternatives are made.

4.1 Technical challenges and non-technical constraints

Technical challenges in the deployment of PR systems for the automated recognition of
seismic volcanic signals are mainly related to the following issues: (1) computational aspects
and (2) local conditions. The first issue depends on the actual computational requirements
of classification algorithms and their associated demands for data storage. The latter is
becoming less relevant since disk storage capacity has grown exponentially and hardware
prices have declined. In spite of that, processing the stored data may still be cumbersome,
especially when dealing with continuous recording as commented by Langer & Falsaperla
(2003). Classification speed is of crucial importance for real-time applications. Computational
complexities of all stages in the PR pipeline (see Fig. 5) must be carefully estimated in terms of
orders or FLOPS3 in order to guarantee fast execution. Such a condition implies a reasonable
trade-off between complexity and classification performance.

The second issue —local conditions— includes the consideration of several volcano-specific
factors as those mentioned at the beginning of Sec. 3.3. In addition, the so-called source, path
and local site effects require special attention. They cause that waveforms of the same seismic

3 Floating point operations per second.
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event but recorded at different stations exhibit distinct characteristics; for instance, time delays
introduced by the physical distance between stations and amplifications or attenuations of
signal components at certain frequencies due to geophysical properties that act as filters. See
(Havskov & Alguacil, 2004, Chap. 9) and (McNutt, 2005) for further details about these effects,
their characterizations and corrections.

Non-technical constraints are mainly related to budget limitations to undertake R&D projects
at volcano observatories. Even though the research stage can be achieved in association with
universities and institutes, as reflected in the discussion in Sec. 2.1, the development and
implementation of in-house solutions is subject to organizational practices and policies at the
observatories. Therefore, formalizing high-level collaboration is needed, in such a way that
isolated partnership between individuals become supported by inter-institutional cooperation
agreements.

4.2 Industrial and commercial alternatives

Almost all the above-reported applications were developed in mathematical scripting
languages, such as MATLAB and its free clones; see e.g. (Lesage, 2009). They certainly
offer unparalleled advantages in the design of academic prototypes but are often not
well-suited to deliver tools for real-world applications. Main constraints include the inherent
slowness of interpreted languages, external dependencies with other third-party toolboxes
and prohibitive licensing or pricing terms.

Two alternatives can be identified when economic constraints are critical: (1) developing
the entire application from scratch in compiled languages such as Fortran and C, probably
incorporating freely available numerical and graphical libraries, see for instance (Ottemöller
et al., 2011); and (2) developing programs in high-level and free numerical languages such as
OCTAVE and SCILAB, from where stand-alone compiled routines can be invoked, see (Laverde
& Manzo, 2009) for an example.

A reasonable trade-off between affordability and performance is offered by a number of
commercial software packages that also maintain the advantage of a faster development time
in a scripting environment. PERCLASS —formerly PRSD STUDIO— allows the design and
easy deployment of PR systems and has proved to be a successful solution in a variety of
industrial applications4. It is based on the MATLAB platform and follows the style of PRTOOLS

(Duin et al., 2007), an academic toolbox for PR, but is not dependent on it. Another possibility
is using the SIGNAL PROCESSING TOOLBOX together with the STATISTICS TOOLBOX, both by
MATHWORKS, and translating the codes to platform-independent files such as DLLs.

5. Conclusion

Multiple research studies have shown that PR tools can be successfully used in the
volcano-seismic monitoring task. Several data representations have been explored, including
raw and processed signals in the time- and/or frequency-domain as well as other
measurements related to geophysical wave properties. ANNs and HMMs have been
preferred to be used in the classification stage, thanks to their flexibility and in spite of
being heavily parameterized. Other classifiers, on the contrary, do not demand much

4 http://perclass.com/index.php/html/applications/
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parameter adjustments and have being used in combination with novel representations such
as dissimilarities and multiway configurations.

The state-of-the-art in PR offers a number of new techniques and methods that might be
suitably applied to the automated recognition of volcanic earthquakes. Such technological
trends and research directions could effectively incorporate inherent properties of the
problem, e.g. multiple channels (stations and components), variations over time and
multiclass unbalanced nature. Results obtained by different research teams are unfortunately
not comparable because different data sets were used across the studies. A rigorous and
comprehensive comparison has not yet been made. If undertaken, defining a benchmark set
of problems would be mandatory.

Transferring research achievements to the seismological practice demands careful feasibility
evaluations of implementation alternatives and would greatly benefit from working
cooperations agreements between volcano observatories and universities. One of the ways
to achieve an effective technology transfer is the provision of grants and scholarships.
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