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1. Introduction

The analysis of complex signals associated to geoelectric activity is important not only for

earthquake prognosis but also for understanding non linear processes related to earthquake

preparation. Previous studies have reported alterations, such as the emergence of correlated

dynamics in geoelectric potentials prior to an important earthquake (EQ). One important

feature of geoelectric signals is the absence of regularity patterns with fluctuations apparently

influenced by noise. In past decades, earthquake prediction methods have attracted the

attention of researchers from different areas of science. The search for effective seismic

precursors has not been successful. However, despite some pessimism, in many seismically

actives zones around the world there exist research programs for the study of possible

precursory phenomena of earthquakes(Cicerone et al., 2009; Hayakawa, 1999; Hayakawa

& Molchanov, 2002; Lomnitz, 1990; Telesca & M., 2005; Uyeda et al., 2000; Varotsos et al.,

2003a;b;c; 2004; 2005). In particular, one of the techniques used in the search of earthquake

precursors since more than three decades ago consists in monitoring the so-called electric

self-potential field. The main motivation to explore this kind of signals is that it is

expected that before the occurrence of an earthquake (Varotsos, 2005), the stress (pressure)

gradually varies in the focal area, which affects various physical properties, for example

the static dielectric constant (Varotsos, 1980; 1978). In addition, this stress variation may

change the relaxation time for the orientation of the electric dipoles formed due to lattice

defects (Lazaridou et al., 1985). It may happen that, when the stress (pressure) reaches a

critical value (Varotsos & Alexopoulos, 1984b), these electric dipoles exhibit a cooperative

orientation (collective organization), thus leading to emission of transient electric signals

termed Seismic Electric Signals, SES (Uyeda et al., 2000; Varotsos & Alexopoulos, 1984a).

This generation mechanism of signal emission is named pressure stimulated polarization

currents (PSPC) (Varotsos & Alexopoulos, 1986). It is expected that precursory electric signals

associated with large earthquakes should exhibit anomalous changes and, in some cases,

fractal complex organization (Varotsos, 2005; Varotsos et al., 2003c; 2004). Additionally, several

other physical mechanisms have been proposed as possible causes of electromagnetic (EM)

precursory signals before EQ’s, such as electrokinetic effects (EK) (Haartsen & Pride, 1997;

Ishido & Mizutani, 1981; Mizutani et al., 1976), piezoelectric effects (PE) (Gershenzon et al.,
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1993) and electromagnetic induction effects (Gershenzon et al., 1993; Honkura et al., 2000;

Iyemori et al., 1996; Matsushima et al., 2002). A very recent review about PSPC, EK, PE

and other possible generation mechanisms of signal emissions can be seen in Uyeda et al.

(Uyeda et al., 2008). We have measured the ground electrical potential (the self-potential)

in several sites along the Mexican coast, near the Middle American trench, which is the

border between the Cocos and the American tectonic plates. In some previous articles

we have reported more detailed descriptions of that region and some studies of possible

precursory electric phenomena associated to several earthquakes of magnitude larger than

six (Flores-Márquez et al., 2007; Muñoz Diosdado et al., 2004; Ramírez-Rojas et al., 2007).

Recent studies focused on fractal and non linear properties of physical and biological times

series have revealed that this organization is strongly related to a complex interaction of

multiple components and mechanism across multiple scales. In particular, published studies

about the complexity of ground electric self-potential behavior have pointed out that changes

inthe fractal organization have been observed in a period prior to an important earthquake.

However, a clear evidence with statistical support about the mechanisms involved in these

changes, has not been presented, although some important suggestions and discussions have

been proposed to address this problem (Gotoh et al., 2003; 2004; Ida et al., 2005; 2006; Smirnova

et al., 2004; Telesca & Lapenna, 2006; Varotsos et al., 2008). One important feature of geoelectric

signals is the absence of regularity patterns. These fluctuations are embedded into noise

activity produced by the combined contribution of many high-dimensional processes, which

due to the central-limit theorem, are Gaussian-distributed. The direct application to this

kind of signals of nonlinear methods such as power spectrum, detrended fluctuation analysis

(DFA) and fractal dimension method reveals that different correlation levels are present in the

vicinity of a main shock. Very often the double log plot of scaling exponents obtained from

the aforementioned methods present a crossover behavior between different scales. On the

other hand, a long term relaxation-EQ-preparation-main shock-relaxation process has been

reported before some large EQ’s (Varotsos, 2005). From this point of view, one could expect

that a relaxed surface layer of earth’s crust corresponds to white noise in geoelectric signals

and the EQ-preparation process corresponds to a background white noise mixed with a kind

of correlated geoelectric signals expressed through a crossover behavior. However, this idea

must be taken as a speculative hypothesis which requires a more profound attention. Thus, in

this context is very important to incorporate a variety of methods to statistically distinguish

and evaluate these complex dynamics.

In this chapter, we report some complexity studies of geoelectric signals during a two year

period from Jun 1st. 1994 to May 31st 1996 in two sites (Acapulco and Coyuca stations)

located in southern Mexico. In particular, our study is related to an Ms = 7.4 earthquake

occurred on September 14, 1995 with epicentral distance of 110 km from Acapulco and 200

km from Coyuca, respectively. Previous studies have reported changes in the correlation

dynamics observed prior to this earthquake (Guzmán-Vargas et al., 2008; Ramírez-Rojas

et al., 2008; 2007; 2004; Telesca et al., 2009). However, the possible existence of seismic

precursors associated with this event has not been deeply explored. Here, we perform a

systematic study of DFA exponents and sample entropy to evaluate the level of irregularity

and correlations of geoelectric time series. We observe important changes in the entropy a

few months before the occurrence of the earthquake mentioned above. On the other hand,

we use a procedure to statistically estimate two DFA-scaling exponents and the crossover
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Some Complexity Studies of Electroseismic Signals from Mexican Subduction Zone 3

scale which are representative of changes in the underlying dynamics prior to the main

shock. Moreover, we perform a pattern synchrony analysis based on the computation of the

cross-sample entropy between the geoelectric signals from two channels, which represents a

modern approach to the study of geoelectric signals. The chapter is organized as follows. In

Sec. 2, a brief description of the entropy and the detrended fluctuation analysis methods are

presented. We also describe the geolectric time series. In Sec. 3, we present the results and

discussions. Finally, some concludings remarks are presented.

2. Methods and data

2.1 Entropy methods

The entropy of a single discrete random variable X is a measure of its uncertainty. In

the case of a stochastic process, the mean rate of creation of information is measured by

the Kolmogorov-Sinai (KS) entropy (Eckmann & Ruelle, 1985). However, the KS entropy

is not applicable to finite length real world series because only entropies of finite order

can be computed numerically and KS is underestimated as the order becomes large. An

alternative procedure to estimate the entropy of a signal was given by Grassberger et al.

(Grassberger & Procaccia, 1983). They proposed the K2 entropy to characterize chaotic

systems which is a lower bound of the KS entropy. Later, based on K2 definition, Pincus

introduced the Approximate Entropy (ApEn) to quantify the regularity in time-series (Pincus,

1991; 1995). Briefly, ApEn is constructed as follows: given a time series Xi = x1, ..., xN of

length N. First, m-length vectors are considered: um(i) = xi, xi+1, ..., xi+m−1. Let nim(r)
represent the number of vectors um(j) within r of um(i). Ci

m(r) = nim(r)/(N − m + 1)
is the probability that any vector um(j) is within r of um(i). Next, the average of Ci

m

is constructed as Φm(r) = 1/(N − m + 1)∑
N−m+1
i=1 ln Cm

i (r). Finally, ApEn is defined as

ApEn(m, r) = limN→∞

[

Φm(r)− Φm+1(r)
]

: which, for finite N, it is estimated by the statistics

ApEn(m, r, N) = Φm(r)− Φm+1(r). In words, the statistics ApEn(m, r, N) is approximately

equal to the negative average natural logarithm of the conditional probability that two

sequences that are similar for m points remain similar at the next point, within a tolerance

r (Richman & Moorman, 2000). It is obtained that a low value of ApEn reflects a high

degree of regularity. Even though the implementation and interpretation of ApEn is useful

to distinguish correlated stochastic processes and composite deterministic/stochastic models

(Pincus, 1995), it has been found there is a bias in ApEn because the algorithm counts each

sequence as matching itself (Richman & Moorman, 2000). The presence of this bias causes

ApEn to lack two important expected properties: (a) ApEn is heavily dependent on the

time-series length and is uniformly lower than expected for short series and, (b) it lacks

relative consistency in the sense that if the value of ApEn for a time-series is higher than

that of another, it does not remain so if the test conditions change (Pincus, 1995). Therefore,

the development of an alternative method was desirable to overcome the limitations of

ApEn. Based on K2 and ApEn methods, Richman and Moorman (Richman & Moorman,

2000) introduced the so-called Sample Entropy (SE), to reduce the bias in ApEn. One of the

advantages of SE is that does not count self-matches and is not based on a template-wise

approach (Richman & Moorman, 2000). SE(m, r, N) is precisely defined as

SE(m, r, N) = − ln
Um+1

Um
, (1)
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that is, the negative natural logarithm of the conditional probability (U) that two sequences

similar for m points remain similar at the next point, within tolerance r, without counting

the self-matches. SE results to be more robust than ApEn statistics when applied to short

time series from different stochastic processes over a wide range of operating conditions. For

instance, a lower value of SE indicates a more regular behavior of a time-series whereas high

values are assigned to more irregular, less predictable, time series (Costa et al., 2005). It applies

to realworld time series and, therefore, has been widely used in physiology and medicine

(Costa et al., 2005).

2.2 Cross sample entropy

Entropy can also be calculated between two signals, and this mutual entropy characterizes

the probability of finding similar patterns within the signals. Therefore, the cross-entropy

technique was introduced to measure the degree of asynchrony or dissimilarity of two time

series (Pincus, 1995; Pincus & Singer, 1996).

When calculating the cross-entropies, the patterns that are compared are taken in pairs from

the two different time series {u(i)} and {v(i)}, i = 1, . . . , N. The vectors are constructed as

follows:

xm(i) = [u(i), u(i + 1), u(i + 2), . . . , u(i + m − 1)] ,

ym(i) = [v(i), v(i + 1), v(i + 2), . . . , v(i + m − 1)] ,

with the vector distance defined as

d[xm(i), ym(j)] = max{|u(i + k)− v(j + k)| : 0 ≤ k ≤ m − 1}.

With this definition of distance, the SE algorithm can be applied to compare sequences from

the template series to those of the target series to obtain the Cross Sample Entropy (CE). It is

usual that the two time series are first normalized by subtracting the mean value from each

data series and then dividing it by the standard deviation. This normalization is valid since

the main interest is to compare patterns.

It is quite possible that no vectors in the target series can be found to be within the distance

r to the template vector and then the value of CE is not defined. One important property

of CE is that its value is independent of which signal is taken as a template. In particular,

the Cross Sample Entropy is used to define the pattern synchrony between two signals, where

synchrony refers to pattern similarity, not synchrony in time, wherein patterns in one series

appear (within a certain tolerance) in the other series. Moreover, CE assigns a positive number

to the similarity (synchronicity) of patterns in the two series, with larger values corresponding

to greater common features in the pattern architecture and smaller values corresponding to

large differences in the pattern architecture of the signals (Veldhuis et al., 1999). When no

matches are found, a fixed negative value is assigned to CE to allow a better displaying of the

results.

The conceptual difference between pattern synchrony, as measured by the CE, and

correlations, as measured by the cross-correlation function, can be expressed as follows: let

us suppose that we have two time series {x(k)} and {y(k)}. The CE deals with patterns: a

sequence of data points of a certain length m is taken from the template time-series {x(k)}

274 Earthquake Research and Analysis – Seismology, Seismotectonic and Earthquake Geology
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and this pattern is searched for in the target time-series {y(k)} within a tolerance r. However,

the CE does not collect the time-stamp of the matching sequence in the time series {y(k)},

but counts the number of sequence matches of lengths m and m + 1. On the other hand,

the objective of the cross-correlation function is to find the time lag τ for which the whole

time series {x(k)} resembles {y(k)}, but the time series are not decomposed in sequences

of points. Therefore, the CE analysis is complementary to the cross-correlation and spectral

analysis since it operates on different features of the signals (see the Appendix of Ref. Pincus &

Singer (1996)).

2.3 Multiscale entropy analysis

Recently, Costa et al. (Costa et al., 2002) introduced the multiscale entropy analysis (MSE)

to evaluate the relative complexity of normalized time series across multiple scales. This

procedure was proposed to give an explanation to the fact that, in the context of biological

signals, single-scale entropy methods (SE and ApEn) assign higher values to random

sequences from certain pathological conditions whereas an intermediate value is assigned

to signals from healthy systems (Costa et al., 2002). It has been argued that these results

may lead to erroneous conclusions about the level of complexity displayed by these systems

(Costa et al., 2005). The MSE methodology shows that long-range correlated noises as the

output of healthy systems are more complex than uncorrelated signals from some pathological

conditions. Briefly, the the MSE method consists of: given a time series Xi = x1, ..., xN , a

coarse-grained procedure is applied (Costa et al., 2005). A scale factor τ is introduced to

perform a moving average given by yj = 1/τ ∑
jτ

i=(j−1)τ+1
xi, with 1 ≤ j ≤ N/τ. Note that

the length of the coarse-grained time series is given by N/τ, that is, for scale one the original

time series is obtained. To complete the MSE procedure the SE algorithm is applied to the

coarse-grained time series for each scale. Finally, the entropy value is plotted against the scale

factor. Typically, under MSE analysis, the entropy values for a random noise monotonically

decreases whereas for long-range correlated noise (1/ f -noise) the entropy remains constant

for several scales, indicating that 1/ f -noise is structurally more complex than uncorrelated

signals (Costa et al., 2005).

2.4 DFA method

The power spectrum is the typical method to detect correlations in a time series. For example,

consider a stationary stochastic process with autocorrelation function which follows a power

law

C(s) ∼ s−γ, (2)

where s is the lag and γ is the correlation exponent, 0 < γ < 1. The presence of long-term

correlations is related to the fact that the mean correlation time diverges for infinite time series.

According to the Wiener-Khintchine theorem, the power spectrum is the Fourier transform of

the autocorrelation function C(s) and, for the case described in Eq. 2, we have the scaling

relation,

S( f ) ∼ f−β, (3)

where β is called the spectral exponent and is related to the correlation exponent by γ =
1 − β. When the power spectrum method is used to estimate the presence of correlations

275Some Complexity Studies of Electroseismic Signals from Mexican Subduction Zone
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in real nonstationary time series, as in the case of heartbeat interval signals, it may lead

to unreliable results. In past decades, alternative methods have been proposed to the

assessment of correlations for stationary and nonstationary time series. A method which

is very appropriated to the assessment of correlations in stationary and nonstationary time

series is the detrended fluctuation analysis (DFA). This method was introduced to quantify

long-range correlations in the heartbeat interval time series and DNA sequences (Peng et al.,

1995a;b). The DFA is briefly described as follows: First, we integrate the original time series

to get, y(k) = ∑
k
i=1 [x(i)− xave], the resulting series is divided into boxes of size n. For each

box, a straight line is fitted to the points, yn(k). Next, the line points are subtracted from the

integrated series, y(k), in each box. The root mean square fluctuation of the integrated and

detrended series is calculated by means of

F(n) =

√

√

√

√

1

N

N

∑
k=1

[y(k)− yn(k)]
2, (4)

this process is taken over several scales (box sizes) to obtain a power law behavior F(n) ∼ nα,

with α an exponent, which reflects self-similar and correlation properties of the signal. The

scaling exponent α is related to the spectral exponent β by means of α = (β+ 1)/2 (Peng et al.,

1995a). It is known that α = 0.5 is associated to white noise (non correlated signal), α = 1

corresponds to 1/ f noise and α = 1.5 represents a Brownian motion. This exponent is also

related to the autocorrelation function exponent by α = 1 − γ/2 where the autocorrelation

function is C(τ) ∝ τ−γ with 0 < γ < 1 (Makse et al., 1996).

2.5 Data

The time series considered in this study were collected during a two year period, from June

1994 to May 1996, in two electroseismical stations located at Acapulco (16.85 N, 99.9 W) and

Coyuca (18.35 N, 100.7 W), both located in the South Pacific coast in Mexico (Ramírez-Rojas

et al., 2004). The electrical signals consist of the electric self-potential fluctuations V between

two electrodes buried 2 m into the ground and separated by a distance of 50 m. Each pair

of electrodes was oriented in one direction: North-South and East-West, as it is indicated by

VAN methodology (Varotsos & Alexopoulos, 1984a;b). Two time series were simultaneously

recorded at each electroseismic station (N-S and E-W channels). Due to technical adjustments,

two different sampling rates were used in different time intervals along the mentioned period,

t = 4 s in Coyuca and t = 2 s in Acapulco (Yépez et al., 1995). In Figure 1 representative time

series of potential differences for one year period (Jan. 1st. to Dec. 31st. 1995) in Acapulco

station are presented. During the period of study, two EQs with M > 6 occurred with

epicenters within 250 km of the two monitoring stations. The first EQ occurred on September

14, 1995 with M = 7.4 and epicenter with coordinates (16.31 N, 98.88 W), with focal depth of

22 Km; the hypocenter was at d = 112 km from Acapulco and d = 146.6 km from Coyuca.

The second EQ occurred on February 24, 1996 with M = 7.0 and epicenter with coordinates

(15.8 N, 98.25 W), with focal depth of 3 Km; and hypocenter at d = 220.02 km from Acapulco

and d = 250.01 km from Coyuca. As can be seen from Figure 2, the two earthquakes had

epicenters located closer to the Acapulco station. The analyzed noisy time series were not

preprocessed and non significant nonstationary features affecting the correlation properties

276 Earthquake Research and Analysis – Seismology, Seismotectonic and Earthquake Geology
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Fig. 1. Representative geoelectric time series from Acapulco station for one year period (Jan.
1st to Dec. 31st., 1995). (a) N-S channel and (b) E-W channel.

Fig. 2. Location of the monitoring stations and the epicenters of the earthquakes occurred
during the studied time period.

of a signal mentioned by Chen et al. (Chen et al., 2002), were present in a remarkable way in

our data. When comparing these two signals, different kind of fluctuations can be identified.

An important question here is to evaluate the level of irregularity across multiple scales and

its relation with the presence of long range correlations. We evaluate the changes in the

variability by means of SE, which estimates the amount of new information arriving at any

time, the cross sample entropy and the presence of correlations by using the DFA method.
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Fig. 3. Plot of MSE analysis for 1/ f β-noises with 0 ≤ β ≤ 1, that is, for noises with
power-law correlations. We used the Fourier filtering method to generate time series of 32000
points. In this plot, each point represents the average of 10 independent realizations. The
value of SE is given according to the color panel. Note that as the spectral exponent increases
the entropy value remains high even for large time scales .

3. Results and discussion

3.1 MSE results

First, in order to get a better estimation of entropy values for Gaussian noises with power

law correlations, we performed simulations of noises with power spectrum of the form 1/ f β

with 0 ≤ β ≤ 1. We generated time series with 32000 points by means of the Fourier filtering

method (Makse et al., 1996). We applied the MSE analysis to the generated data for several

values of β in the interval 0 ≤ β ≤ 1 and a range of time scales. In Fig. 3, the results for

entropy are presented according to the color panel. Notice that for β = 0 and β = 1, the main

results described in (Costa et al., 2002) are recovered. We observe that as the spectral exponent

β increases , that is, as long-range correlations are present, SE decreases moderately but at the

same time remains constant for several time scales. This behavior indicates that, in the context

of simulated signals, the amount of new information arriving at any time is “regulated” by

the presence of correlations.

In order to apply the MSE procedure to the geoelectric time series we considered non

overlapped time windows of 5,400 data points each, corresponding approximately to 3 hours

of records Guzmán-Vargas et al. (2009). First, the data points of the original signal are divided

by its standard deviation and SE is calculated for each time scale according to the MSE

method. We repeated the MSE procedure for the corresponding shuffled version of each

window. In all the cases presented here, we used the following values for parameters r and
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Region I Region IIIRegion II

E−W channel

Shuffled

E−W channel

N−S channel

N−S channel

Shuffled

a)

b)

c)

d)

EQ

EQ

Fig. 4. MSE analysis of geoelectrical time series from Acapulco station. (a) MSE results for
E-W channel, three main regions can be identified according to the changes of SE for different
scale factors. Note that Region II is mostly characterized by a high entropy value even for
large time scales. (b) Entropy results for N-S channel. In this case, Region I and III also
display white noise profile whereas Region II shows high regularity for short scales. (c), (d)
As in (a) and (b) but for randomized data. Note that in these shuffled cases the data display
mostly white noise profile (Guzmán-Vargas et al., 2009).

m: r = 0.15 and m = 2. In Fig. 4, the results of SE for both channels of Acapulco station are

presented. The color panel represents the values of SE in the interval 0.5 to 2.5.

For the period from June 1994 to October 1994 we define Region I and we observe that during

this period and in both channels, SE shows a high value for scale 1 and rapidly decreases as

the scale factor increases as it occurs with white noise dynamics (Figs. 4(a) and 4(b)). We also

identify region III from November 1995 to May 1996 where entropy values show a similar

profile as in region I, that is, mostly white noise dynamics. For the period from November

1994 to October 1995, we define region II which is characterized by a complex behavior. For

E-W channel, we observe that for a short interval at the beginning of this period, SE shows a

low value for scale one and a small increment for large time scales is observed, followed by

a new short period with complex behavior. After this transient behavior, the entropy is small

for short scales, that is, a high regularity in the original data is observed . Interestingly, for

the period comprising April 1995 to October 1995, the entropy profile reveals that SE remains

279Some Complexity Studies of Electroseismic Signals from Mexican Subduction Zone

www.intechopen.com



10 Will-be-set-by-IN-TECH

Shuffled

Shuffled

E−W channel (Coyuca)

N−S channel (Coyuca)

E−W channel

N−S channel

a)

b)

c)

d)

EQ

EQ

Fig. 5. MSE analysis of geoelectric time series from Coyuca station. (a) MSE results for E-W
channel, we observe that entropy value is high for short scales and rapidly decreases such
that for scales larger than τ = 6 it shows high regularity, except for short periods with a low
entropy at short scales. (b) Entropy results for N-S channel. (c), (d) As in (a) and (b) but for
randomized data. Note that in these cases the data display mostly white noise profile
(Guzmán-Vargas et al., 2009)

high even for scale τ = 5, indicating a presence of complex dynamics probably related to the

presence of long range correlations (Fig. 4(a)).

For N-S channel (Fig. 4(b)), the entropy is small for scale one and shows a small increment as

the scale factor increases, that is, more regularity in the fluctuations is present in the original

time series. This behavior is observed for almost the whole period in region II, except for

a short interval at the beginning where a transient very similar to the one identified in E-W

channel is observed.

In Figs. 4(c) and 4(d) results for the corresponding shuffled versions are presented. For

E-W data, we observe that for almost the whole two year period a pattern similar to white

noise is present, except for a high value, corresponding to scale one, which is identified in

the period of complex dynamics. For N-S channel, the entropy shows a profile similar to

white noise. For Coyuca Station and for both channels, we observe that SE-values are high

for short scales indicating a high variability in the signals (see Figs. 5(a) and 5(b)). Another

important features observed in both channels are the presence of multiple short periods with a
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low entropy value across multiple scales and that entropy values rapidly decrease as the scale

factor increases, indicating more regularity for large scales. When these results are compared

to their corresponding surrogate sequences, the entropy profile is similar to white noise and

the short periods with low entropy values are changed to uncorrelated dynamics (see Figs.

5(c) and 5(d)).

3.2 DFA results

To obtain further insights in the evaluation of the complex dynamics observed in some periods

of the records and its relation with the presence of correlations, we apply the DFA method

(Peng et al., 1995b). The DFA is applied to segments of the same length as in the case of entropy

calculations (Guzmán-Vargas et al., 2009) . Representative cases of F(n) vs. n for some periods

during 1995 (from Region II defined in Fig. 4(a)) are shown in Fig. 6. As we can see in these

plots, two different scaling exponents can be defined to describe correlations. To get a better

estimation of α-values and the crossover point, we consider the following procedure: given the

fluctuation values F(n), a sliding pointer is considered to perform linear regression fits to the

values on the left and to the elements on the right. At each position of the pointer, we calculate

the errors in the fits (el and er) and we monitored the total error defined by et = el + er.

We define two stable exponents when et reaches its minimum value and the position of the

crossover point is within the interval 6 ≤ n ≤ 500. The results of DFA exponents for two

regimes (separated by the crossover point n×) from Acapulco and Coyuca are presented in

Figs. 7 and 8.

For both channels in Acapulco station, as it occurred in MSE analysis, we identify three

different regions which are characterized by different correlation dynamics. For region I,

we see that α1 and α2 are quite similar each other with values around 0.5 which indicates

a white noise behavior (see Fig. 7(a),(b)). For region III, defined from November 1995 to May

1996, we observe that the signals also display mostly white noise dynamics. Interestingly,

for region II, that is, for a period comprising November 1994 to October 1995, the dynamics

can be described by two values distinctly different, both of them higher than 0.5 and close

to 1, indicating long-term correlations. A more detailed observation of the scaling exponents

within this region in E-W channel (Fig. 7(a)) reveals that, from November 1994 to March 1995,

α1 is close to the Brownian motion value (αBM = 1.5) whereas α2 oscillates and stabilizes

around the white noise value. In the immediate period from April until October 1995, both

scaling exponents are close to 1, indicating the presence of power-law correlations. For N-S

channel, a more remarkable crossover behavior is identified for the whole region II. In this

case, for short scales α1 ≈ 1.5 and for large scales α2 ≈ 0.5.

Also, for this period and both channels, we find that these two scaling exponents are

splitted by the average crossover point n× ≈ 14, which corresponds to 28 seconds, that is,

approximately a half minute in time scale. We also performed the same crossover analysis to

the data from Coyuca station (see Fig. 8).
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Fig. 6. Representative plots of log F(n) vs. log n for segments from Acapulco station during
1995. We observe that two scaling regimes can be defined to describe correlations. We
calculated α1 and α2 according to the procedure described in the text. We find that there is an
approximate typical characteristic time at which the crossover is present in these four cases.
Notice that the data from June 1995 (E-W channel, open circles) show a weak croosover with
both scaling exponents close to 1, indicating long-term correlations whereas data from N-S
channel (open squares) lead to a clear crossover with a value close to a random walk
(α1 ≈ 1.3) for short scales and uncorrelated fluctuations (α2 ≈ 0.5) over large scales
(Guzmán-Vargas et al., 2009).

3.3 Cross sample entropy results

3.3.1 Simulated signals

Figure 9 shows the CE profile for the simulated signals with power spectral density of the

form f−β, with 0 ≤ β ≤ 1. For each value of the spectral exponent, ten independent

realizations were performed and averaged to obtain the displayed results. As can be seen,

CE stays well-defined for longer sequences when longer-range correlations become present in

the signal (increasing β). Specifically, we observe that for values of β close to the white noise

fluctuations (β = 0), the pattern synchrony shows a high value and persists for a sequence

length of around 8 samples whereas for values of β close to one, the CE is sligthly lower than

for the uncorrelated case but it persists for a larger sequence length such that for β = 1 it is

around 12 samples.
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Fig. 7. Time evolution of averaged DFA-exponents for Acapulco station. The results of E-W
channel are presented in Figs. 7(a) and 7(b). We also identify three main regions as in entropy
results (Fig. 4(a)). For regions I and III defined in Fig. 4(a), we observe that both scaling
regimes are quite similar each other with a value close to white noise behavior. In contrast,
Region II display significant alterations in both scaling exponents. At the beginning of this
region both exponents show an increment such that α1 is close to the Brownian motion value,
after this period both exponents are close to one, indicating the presence of long-term
correlations. For N-S channel, Regions I and III also show values close to white noise level in
both short and large scales, except because the presence of a few peaks. Remarkably, Region
II reveals a clear crossover with αNS

1 ≈ 1.5 and αNS
2 ≈ 0.5 (Guzmán-Vargas et al., 2009).

In addition, Figure 9 shows the results of the CE between signals with different spectral

exponents β1 and β2, for different sequence lengths. As can be seen, the pattern synchrony

between signals with correlations of longer range (for β → 1) persists for longer sequences.

3.3.2 Acapulco data

The results of the CE calculation for the original and shuffled data from the Acapulco

monitoring station are shown in Figure 10.

We observe regularity in the CE profile for region I. Moreover, the CE profile for the original

data is not significantly different to the one obtained for the shuffled data, except that the

CE reaches systematically higher values for the shuffled data. For the original data there is

a period of time within June 1994 and towards the end of the region I for which the pattern

synchrony remains for long sequences.

Moreover, in order to assess the effect of the data shuffling on the CE calculation, we obtain

the distribution of the maximum sequence length for which the CE is well-defined (for which

there is pattern synchrony), in each calculation window. In other words, for each calculation

window we obtain the value of the longest data-points sequence (pattern) for which there is

pattern synchrony, such that for longer sequences the value of CE is not well-defined. The
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Fig. 8. Time evolution of DFA-exponents for Coyuca station. For both channels and for short
scales (Figs. 8(a) and 8(c)), we observe that the exponents are close to the white noise value:
αEW

1 = 0.52 ± 0.26 and αNS
1 = 0.49 ± 0.20. In contrast, for large scales the averaged exponents

in both channels are bigger than 0.5 (Figs. 8(b) and 8(d)) (Guzmán-Vargas et al., 2009).

majority of the calculation windows shows presence of pattern synchrony for sequences up to

7 data-points, although for the original data we observe that there are calculation windows for

which the pattern synchrony is present for longer sequences. This suggests that the pattern

synchrony between the channels in this region resembles the one exhibited by white noise-like

signals. This result is connected to previous works Guzmán-Vargas et al. (2008; 2009), on

which we have found that for region I the signals in each channel exhibit a variability and

correlations profile similar to the one for white noise.

On the other hand, we observe more variability in the CE profile for region II. In particular,

notice the significant variation of the CE that occurred between January and April 1995.

Also, notice that there is certain variability of the CE profile towards the end the region.

From our previous studies on correlations and variability for the signals in separate channels

Guzmán-Vargas et al. (2008; 2009), the geoelectrical signals for region II exhibit long-range

correlations behavior; and the present results suggest that not only the channel signals

individually exhibit long-range correlations, but also there is pattern synchrony between

channels that persists longer than for the other regions.

3.3.3 Coyuca data

The CE results for the geoelectrical signals collected by the Coyuca monitoring station are

shown in Figure 11. We observe regularity in the CE profile for region I. Notice that the original

data from Coyuca in region I exhibits pattern synchrony for longer sequences than for the
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Acapulco station, where the CE profile for the original data resembles the one obtained for the

shuffled data.

On the other hand, for region II we notice the significant variation of the CE that occurs mainly

between April and June 1995. Moreover, the variability of CE continues for the remaining part

of the region. Comparing to the results for Acapulco station (see Figure 10), it can be seen

that this signature occurred later for the Coyuca station, which was farther away from the EQ

epicenter than Acapulco.

Finally, for region III we see that the CE profile at the beginning of the region shows pattern

synchrony for long sequences, with some gaps towards the middle and the end of the region,

on which the CE is defined for shorter sequences. Again, we observe that the CE profile for the

shuffled data still shows pattern synchrony on a non-negligible number of cases for relatively

long sequences, with a more even distribution. Comparing to the results from Acapulco, for

the Coyuca station we observe that the effect of the shuffling reduced less the persistence of

the pattern synchrony than for the Acapulco station. Again, this difference could be due to

the different local properties of the crust.
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3.4 Discussion

The MSE, CE and DFA analyses suggest the existence of a relaxation−EQ−preparation−main

shock−relaxation process along the June 1994 − May 1996 period. This process is

approximately expressed for the sequence of white noise and correlated fluctuations, in the

range of short and large scales. According with our findings, both scales showed important

alterations along the period of observation. Remarkably, we observed correlated dynamics

a few months before the main shock, especially in Acapulco station which is the nearest

station to the epicenter (notice that the epicentral distance of Acapulco and Coyuca stations

were 110 km and 200 km, respectively). These alterations were observed by means of MSE

and DFA analyses; both methods consistently reveal that the changes in the geoelectrical

potential observed prior to the main shock can be characterized by a complex and correlated

behavior. In fact, MSE analysis incorporates a qualitatively visual manner to detect correlated

fluctuations and it can be used as a complementary tool to characterize a complex behavior in

noisy geolectric time series. From this point of view, is a very important task to identify the

transition from white noise to correlated fluctuations, that is, the time at which a correlated

signal is added to the white noise signal leading to the apparition of complex fluctuations and

crossovers in the correlation scaling exponents. A more detailed observation of this transition
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located at the beginning of region II (Figs. 7a,b) reveals that, for short scales, α1 decreases

below the white noise level (αWN = 0.5) and immediately increases displaying fluctuations

in the range of correlated behavior with values close to 1.5. In contrast, for large scales, the

transition occurs in the opposite direction, that is, the white noise level is altered to a value

close to the Brownian motion and, after a transient period, it stabilizes around a value slightly

bigger than 0.5. We have identified this transient period for E-W channel from November

1994 to March 1995 (see Fig. 4a). We remark that this transition can be understood as a

sequence of erratic fluctuations ranging from anticorrelated to correlated dynamics. The fact

that seemingly the precursory behavior of geolectric signal are more clear in Acapulco station

agrees with the empirical threshold proposed by Hayakawa et al. (Hayakawa et al., 2007)

for ultra-low-frequency (ULF) geomagnetic signals given by 0.02R ≤ M − 4.5, where R is the

distance between the station and the epicenter and M is the EQ magnitude. We also remark
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that this kind of long duration anomalies has been reported for geolectrical signals changes

(lasting 56 days) for an M = 6.6 EQ in Japan (Uyeda et al., 2000).

4. Conclusions

We have explored geoelectrical signals from two sites in southern Mexico, to evaluate the

changes in variability and correlations by using MSE, CE and DFA methods. We have

found different entropy values and correlation levels for these signals. In particular, the

Acapulco station displays three different patterns of complex dynamics along the two year

period which are clearly identified in E-W channel. This behavior can be interpreted as the

geolectric expression of a relaxation-EQ preparation-mainshock-relaxation long-term process.

The results for Coyuca station reveal that, for short scales, the entropy values and DFA

exponents are close to the white noise behavior whereas, for large scales, these quantities

reflect regularity resembling a random walk. The results of both stations are qualitatively

compatible with previous reports based on spectral analysis (Ramírez-Rojas et al., 2004).

The conceptual difference between the Sample Entropy and, as measured by the SE, and

correlations, as measured by the autocorrelation function, can be expressed as follows for

a time series {x(k)}. The SE deals with patterns: a sequence of data points of a certain

length m is taken from {x(k)} and this pattern is searched for in whole time-series looking

for matches within a tolerance r. However, the SE does not collect the time-stamp of the

matching sequence in the time series, but counts the number of sequence matches of lengths

m and m + 1. On the other hand, the objective of the autocorrelation function is to investigate

the degree of dependence of future values of the time-series on present ones along the whole

time series, but the time-series is not decomposed in sequences of points. Therefore, the SE

analysis is complementary to the autocorrelation and spectral analysis since it operates on

different features of the signals (see the Appendix of Ref. Pincus & Singer (1996)). Based on

this, our results on the computation of the entropy and the correlation features (DFA) are

complementary since they reveal different properties of the geoelectric signals in periods with

different features as captured by each monitoring station.

In summary, MSE, CE and DFA-correlation analyses reveal important information about

the complex behavior of these fluctuations and the consistent use of both methods are

important complementary tools in the search of possible geoelectric precursory phenomena

of earthquakes
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