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1. Introduction 

1.1 The Warburg effect (Fig.1) 

Cancer cells are eager to glucose and consume about 10 times more glucose than normal 
cells. Glucose transformation results in the formation of lactic acid, even in the presence of 
oxygen. This phenomenon named “aerobic glycolysis” was first observed by Otto Warburg 
in the 20s (Warburg, 1930), who considered later, it was the result of a defect of 
mitochondrial respiration, causing cancer (Warburg, 1956). The energy efficiency of aerobic 
glycolysis is low, since 2 ATP are produced, which represents eighteen times less than the 
complete degradation of glucose producing 36 ATP (Campbell & Smith, 2000; Lehninger 
1975; Stryer, 1981). However, because cancer cells find all nutrients in abundance in their 
environment, they would focus more on promoting metabolic ways needed for biosynthesis, 
rather than would search the most efficient energetic way (Grüning, 2010; Israël, 2004, 2005; 
Vander Heiden, 2009). Cancer cells not only consume glucose in excess (a great part of it, is 
diverted towards ribose synthesis), but also amino acids, especially glutamine, derived from 
muscle proteolysis. Glutamine, which is the preferential mode of transportation of blood 
nitrogen, provides amine groups for several biosynthetic processes, such as purine and 
pyrimidine bases synthesis (DeBerardinis, 2008, 2010; Eagle, 1956; Reitzer, 1979). At the 
same time, cancer cells might burn fatty acid through the mitochondrial ┚-oxidation, a very 
energetic pathway producing ATP. From the intermediate molecules provided by enhanced 
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glycolysis and glutaminolysis (and may be also by ┚-oxidation), cancer cells will synthesize 
most of the macromolecules required to duplicate their biomass and genome (proteins, 
nucleic acids, membrane lipids) (Grüning, 2010; Israël, 2004, 2005; Vander Heiden, 2009). 
Due to the frequent impairment of mitochondrial respiration resulting in a defective 
oxidative phosphorylation (OXPHOS), ATP production by mitochondria can be reduced. In 
that situation, glycolysis will provide a more significant part of ATP as OXPHOS will be 
defective (Lopez-Rios, 2007; Samudio, 2009; Simonnet, 2003; Xu, 2005). ATP, NAD+ and 
NADPH,H+ are required in large amounts in the cytoplasm of cancer cells. NAD+ is not only 
necessary for the functioning of the increased glycolysis at the glyceraldehyde 3-phosphate 
dehydrogenase (G3PD) level, but also for the action of the Poly ADP-ribose polymerase 
(PARP), which participates to the enhanced nucleotides synthesis (Grüning, 2010). 
NADPH,H+ is required for lipid synthesis and for the functioning of enzymes, such as the 
glutathione reductase, which reduce toxic reactive oxygen species (ROS) (3-7). LDH 
transforms pyruvate into lactate and regenerates NAD+. As aforementioned, this cofactor is 
crucial for the functioning of glycolysis at the G3PD level (Campbell & Smith, 2000; Israël, 
2004, 2005; Lehninger 1975; Stryer, 1981). To support a high glycolytic flux required to 
produce anabolic intermediates, the NAD+ pool must be continuously regenerated in the 
cytoplasm by several dehydrogenases such as the LDH. Because there is a “bottle neck” at 
the end of glycolysis due to the low activity of the pyruvate kinase PKM2 (see below), it is 
likely than an important part of the pyruvate used by LDH might come from glutaminolysis 
and transamination of alanine, produced by muscular proteolysis which is particularly 
enhanced in cachectic patients (Israël, 2004, 2005) but also from cytosolic citrate (Icard & 
Lincet, 2012, in press). It has been shown that lactic acid, more than a waste product, can be 
taken up by oxygenated tumor cells to restore pyruvate, sparing glucose for most the 
hypoxic tumor cells (Feron, 2009). Like NAD+, NADPH, H + must be also continuously 
regenerated, either through the pentose phosphate pathway (PPP) producing ribose and or 
by cytosolic enzymes, such as the malic enzyme, which converts malate into pyruvate. As 
seen later, malate is coming from oxaloacetate (OAA), and OAA results form the action of 
ATP-citrate lyase (ACLY) on citrate, giving acetyl-coA donor for the de novo fatty acid 
synthesis. Thus, citrate, coming from mitochondria, feeds fatty acid synthesis in one way, 
and the formation in pyruvate (and lactate) in another way. Finally, while reserves are 
normally used to produce nutrients, ketones bodies and glucose, cancer cells use these 
reserves for burning glucose and building new tumor substance. The eagerness of cancer 
tumors for glucose has been confirmed by PET scan, which is currently used to detect 
tumors and metastases (Caretta, 2000; Vander Heiden, 2009). The decrease in tracer uptake 
(2-deoxy-glucose-FD) is often considered as a good predictor of the effectiveness of 
chemotherapy (Eagle, 1956), while highly glycolytic tumors are generally considered as the 
most aggressive (proliferative and/or chemoresistant) ones (DeBerardinis, 2008, 2010; Eagle, 
1956; Reitzer, 1979).  

Because of the PKM2 bottle neck and the inactivation of pyruvate dehydrogenase, there is a 
disjunction between glycolysis and TCA cycle. Glycolysis serves to produce ribose for 
nucleotides synthesis, glycerol for lipid synthesis, whereas lactate is rejected. Proteolysis 
produces alanine which fed the LDH reaction whereas transaminations provide also 
aspartate serving to nucleotides synthesis. Glutaminolysis feeds the TCA cycle and results in 
the formation of OAA. Lipolysis produces acetyl-CoA (in place of glycolysis) which is 
condensed with OAA to form citrate through the action of the citrate synthase (CS). Then 
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citrate goes outside mitochondria to re-forms acetyl-CoA which is used for lipid synthesis 
whereas OAA is finally converted in pyruvate by malate dehydrogenase (MDH) and malic 
enzyme (ME). Finally proteolysis and lipolysis contribute to produce pyruvate in place of 
glycolysis, and this pyruvate is transformed in lactic acid, the LDH reaction forming NAD+ 
which is crucial for the functioning of glycolysis. 

 

Fig. 1. Reorganization of catabolic and anabolic pathways in cancer cells. 

ACC: acetyl-coA carboxylase, ACLY: ATP-citrate lyase, CPT: carnitine palmitoyl 

transferase, CS: citrate synthase, F1,6BPase: fructose 1,6 biphosphatase, F2,6BPase: 

fructose 2,6 biphosphatase, FAD: flavine adenine dinucleotide, FH: fumarate hydratase, 

GADPH: glyceraldehyde 3-phosphate dehydrogenase, GDH: glutamate dehydrogenase, 

GPD: glycerol 3-phosphate dehydrogenase, GS: glutamine synthetase, G6PDH: glucose 6-

phosphate dehydrogenase, G6P: glucose 6-phosphate, G3P: glycerol 3-phosphate, HAT: 

histone acetyl transferase, HK: hexokinase, LDH: lacticodehydrogenase, MDH: malate 

dehydrogenase, ME: malic enzyme, NAD+: nicotinamide adenine dinucleotide, 

NADPH,H+: nicotinamide adenine dinucleotide phosphate, PC: pyruvate carboxylase, 

PDH: pyruvate dehydrogenase, PEPCK: phosphoenolpyruvate carboxykinase, PFK: 

phosphofructokinase, PGK: phosphoglycerate kinase, PGM: phosphoglucomutase, PKM2: 

embryonic isoform of pyruvate kinase, R5P: ribose 5-phosphate, SDH: succinate 

dehydrogenase. 
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1.2 The mechanisms involved in the Warburg effect are complex 

The mechanisms involved in the Warburg effect generate an increasing interest (Bellance, 

2009; Grüning, 2010; Israël, 2004, 2005; Kroemer & Pouyssegur, 2008; Vander Heiden, 2009). 

Briefly, glycolysis would be truncated at its end because pyruvate kinase (PK) of cancer cells 

would function at a low activity. Indeed, PK is re-expressed in cancer cells in its embryonic 

form, PKM2, which is less active than the adult form PKM1 (Christofk, 2008a, 2008b; 

Grüning, 2010; Israël, 2004, 2005; Kroemer & Pouyssegur, 2008; Mazurek, 2002; Vander 

Heiden, 2009). This event creates a block or “ bottle neck” leading to the accumulation of 

intermediates upstream which are derived mainly towards the formation of ribose (through 

the PPP) and glycerol, respectively required for nucleotides and lipid biosynthesis. The 

reversion of PKM2 to PKM1 abrogates the Warburg effect (Christofk, 2008a, 2008b). As see 

above, others sources of pyruvate than glucose are stimulated, such as proteolysis providing 

alanine and glutaminolysis, which leads to the formation of acetyl-CoA furnishing citrate. 

Pyruvate feeds preferentially the LDH, because pyruvate dehydrogenase (PD) is blocked in 

cancer cells by pyruvate dehydrogenase kinase (PDK) (Kim, 2006). It is noteworthy that 

glycolysis, although poorly efficient in producing energy, might furnish an important part 

of ATP. It is a much faster way to product ATP than OXPHOS, which allows cells to adjust 

very quickly their consumption of glucose to their high energy requirement, like muscle 

during effort. Because several complexes of the respiratory chain could be defective in 

cancer cells, OXPHOS could be dysfunctional. In that case, glycolysis may become the 

principal mode, if not unique, of energy production (Lopez-Rios, 2007; Simonnet, 2003; Xu, 

2005). These alterations might occur from complex I to complex V (Lopez-Rios, 2007; 

Samudio, 2009; Simonnet, 2003; Xu, 2005), creating a second “bottle neck”, associated with 

ROS production. When the detoxification capacity of the cells is overwhelmed, ROS create 

mitochondrial and cellular damages, which aggravate in turn the cell and mitochondrial 

dysfunctions, leading to alterations in the first place of the respiratory chain and OXPHOS.  

A reprogramming of the signaling pathways would conduct these biochemical 
rearrangements through translational and transcriptional mechanisms (Bellance, 2009; 
Grüning, 2010; Israël, 2004, 2005; Kroemer & Pouyssegur, 2008; Vander Heiden, 2009). The 
over expression of oncogenes (PI3K/AKT/mTOR pathway, c-Myc and particularly of the 
activation of the hypoxia inducible factor-1┙ (HIF-1┙)) (Kim, 2006; Marin-Hernández, 2009), 
associated with mutation of suppressor genes (P53, P21, PTEN, PP2A, etc.) would support 
the special metabolism of cancer cells (Bellance, 2009; Grüning, 2010; Israël, 2004, 2005; 
Kroemer & Pouyssegur, 2008; Vander Heiden, 2009). For example, HIF-1┙ stimulates the 
overexpression of membrane glucose transporters (GLUT1, GLUT3) and of several enzymes 
of glycolysis (especially HK, PFK, PKM2, LDH) (Marin-Hernández, 2009), whereas it 
induces pyruvate dehydrogenase kinase (PDK) (Kim, 2006). This latter action counteracts 
the activity of pyruvate dehydrogenase (PDH), leading that pyruvate is preferentially 
derived to form lactic acid through the action of the LDH. This enzyme is not only induced 
by HIF-1┙ but also by a variety of oncogenes like c-Myc (Bellance, 2009; Feron, 2009; 
Grüning, 2010; Israël, 2004, 2005; Kroemer & Pouyssegur, 2008; Vander Heiden, 2009). LDH 
activation ensures a rapid consumption of pyruvate even when O2 is available and 
continuously regenerates NAD+ which sustains enhanced glycolysis (Grüning, 2010; Israël, 
2004, 2005; Vander Heiden, 2009). Through various mechanisms (decrease of the ratio cAMP 
/ cGMP, increase of NO, etc.), the process of cancer would be enhanced with activation of 
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mitosis, whereas the metabolic shift from OXPHOS to aerobic glycolysis (Warburg effect) 
would be promoted. It is likely that this special metabolism helps cancer cells to tolerate 
their hypoxic microenvironment, and contributes to viability, autonomous growth, 
migration and chemoresistance of cells, giving them also the ability to control ROS levels 
and to avoid apoptosis, all mechanisms which are hallmarks of cancer. 

1.3 If do we block glycolysis, do we stop cancer cell proliferation? 

Whatever are these complexes and intricate mechanisms supporting this reprogramming 
metabolism, if we block aerobic glycolysis, do we stop cell growth or kill cells?  

With this hypothesis we worked within the Biology and Therapies for Locally Aggressive 
Cancer (Bioticla) of the Normandy Regional Study Group on Cancer (GRECAN), on 
cultured cells of human cancers and on nude mice bearing human mesothelioma. We chose 
to work preferentially on this cancer, because our region is particularly affected by this 
cancer due to local industries which have used largely asbestos since long date. We report 
herein a synthesis of various works that have been carried out at our laboratory, showing 
the interest of using anti-glycolytic molecules such as 2-deoxyglucose (2-DG), 3-
bromopyruvate (3-BrPA) and citrate (Lu, 2011; Zhang, 2006, 2009a, 2009b). Because citrate 
have demonstrated several interesting anti-cancer actions, and because none toxicity have 
been reported about this physiologic molecule (Diaz, 1994; Vagianos, 1990), toxicity studies 
were performed about it and presented in this review. 

2. Materials and methods  

2.1 In vitro  

12 lines of human cancers of various origins (liver, ovaries, brain, colon, head and neck, 

mesothelioma) were initially used to check the validity of our hypothesis, namely that the 

blocking of glycolysis led to the arrest of the growth or to the death of cancer cells. For 

that purpose, cells were exposed to 5mM of 2-deoxyglucose (2-DG), a glucose analogue 

that is not metabolized (Zhang, 2006). Then, we focused our work on malignant 

mesothelioma, studying two human cell lines (MSTO-211H and NCI-H28), which 

appeared representative of other lines tested in the laboratory (NCI-H2052, IST-Mes3). 

These lines were acquired from the American Type Culture Collection (ATCC). The 

doubling time of MSTO-211H was about 24 hours, whereas NCI-H28 cells proliferated 

more slowly. We observed that NCI-H28 cells were resistant to high dose (one injection at 

a dose of 20 μg per ml) of cisplatin, in contrast to MSTO-211H cells which were sensitive 

to this high dose, but resistant to a lower dose (5μg per ml). At such dose, MSTO-211H 

demonstrated only a transient slowing of their proliferation, the recovery of their growth 

being observed from the 5th day after the injection of cisplatin.  

2.2 In vivo 

We used Swiss mice/Nude CD1 females aging from 4 to 6 weeks, weighing about 25 g 
(Charles River France). These mice developed peritoneal carcinomatosis after receiving an 
intra-peritoneal (ip) injection of 2x107 MSTO-211H cells in 1 ml. This peritoneal carcinomatosis 
was visible from the 15th day, and caused death of animals in about 30 days. Using this 
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method, the taking tumor was generally excellent, reaching 100 %. Peritoneal carcinomatosis 
was made of mesothelioma tumor nodules, which were confirmed by histological examination 
(Pr Françoise Galateau-Sallé, Department of Anatomical Pathology, CHU de Caen). We 
favored this model of peritoneal carcinomatosis because it was easier to reproduce than a 
pleural model and because it allowed repeated therapeutic injections, that were impossible or 
otherwise very difficult to realize with a pleural model, due to the risk of pneumothorax. 
Furthermore, involvement of the peritoneum is also a common feature either in the course of 
advanced pleural mesothelioma, or as primary localization (about 5 % of cases). 

2.3 Anti-glycolytic agents 

2-DG is an analog of glucose, described as an inhibitor of the first step of glycolysis, because 
it would be not metabolized.  

3-BrPA is theoretically an inhibitor of all reactions involving pyruvate. Furthermore, it has 
been reported as an inhibitor of HK II (Danial, 2003; Pastorino, 2008; Pedersen, 2002), that 
demonstrated a very good efficacy in rabbits and mice bearing hepatocarcinoma 
(Geschwind, 2004; Ko, 2004). 

Citrate is a well-known physiological inhibitor of phosphosfructokinase (PFK1), the key 
enzyme regulating glycolysis. Inhibition of PFK1 is total when citrate is abundant (Stryer, 
1981). This allosteric enzyme, converts fructose 6-phosphate in fructose 1-6 bisphosphate, 
and acts as a true gauge of energy inside the cell. It is inhibited by ATP when it is in excess, 
whereas it is activated by ADP, when the cell lacks of energy. By this feedback, the flow of 
the glycolysis is adjusted to the ATP requirements (Campbell & Smith, 2000; Lehninger 
1975; Stryer, 1981). The fact that PFK1 is also inhibited by citrate, which is produced by the 
first step of the tricarboxylic acid cycle (TCA cycle), adjusts very quickly the flow of 
glycolysis with that of the TCA cycle, because citrate diffuses rapidly outside the 
mitochondria, in contrast to ATP which necessitates a complex system carrier. Other actions 
of citrate will be presented in the discussion. 

These agents were provided by Sigma Aldrich. 

2.4 Toxicity studies about citrate 

Acute and chronic toxicity (in various organs such as liver, heart, lung, kidney, etc.) were 
determined in mice after ip injection of sodium citrate. We chose to study primarily this way 
of administration, considering futures clinical applications. Experiments were performed in 
the Department of Clinical Pharmacology of the University Hospital of Caen (directed by Pr 
Antoine Coquerel). For determining acute toxicity, increasing doses of citrate buffer were 
administered by ip injections to mice (5 to 8 animals per group), since the dose of 50 mg per 
kg to the maximum dose of 12 g per kg. Chronic toxicity was studied on mice (10 animals 
per group) which received either 5 ip injections per week of 200 mg per kg of sodium citrate 
during 3 weeks, or 3 ip injections per week of 500 mg per kg of sodium citrate during 5 
weeks. Several groups of mice received also daily oral administration of citrate (500 mg/kg 
5 day/ 7). Clinical examinations were repeated until sacrifice (day 90) whereas organs (liver, 
kidneys, lungs and heart) were taken for histological analysis in the Pathological 
Department of the hospital (Dr Maria Paciencia) checking for histological signs of toxicity 
such as edema, necrosis, inflammation, fibrosis.  
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3. Results  

Our works have resulted in several publications (Lu, 2011; Varin, 2010; Zhang, 2006, 2009a, 
2009b):  

- we observed first that inhibition of glycolysis by exposure of cells during 7 days to 5 
mM of 2-DG, led to a clear inhibition of cancer growth cells (varying from 63.7% to 
94.3%) of 12 different lines of various cancers we tested. Significant cell death apoptosis 
was observed in some strains (Zhang, 2006). This study showed the interest of 
counteracting cancer cells development by anti-glycolytic agents.  

- focusing our studies on mesothelioma, we observed that ip injections of 2-DG had no 
effect on survival of nude mice bearing human mesothelioma. In contrast, survival of 
animals (12 animals per group) was very significantly lengthened (p <0.0001) when 
they were treated since day 21, with two series of four weekly ip injections of 3-
Bromopyruvate (3-BrPA). This drug was administered at a dose of 2.67 mg per kg (0.8 
ml to 500 microM) per day (4) (Fig. 2a). With our protocol (two series of injection), 17 % 
(2 / 12) of mice treated with 3-BrPA as the sole treatment demonstrated complete tumor 
response (Zhang, 2009). In contrast, a sole series of 4 ip injections of 3-BrPA or a sole ip 
injection of cisplatin at 21 days (at a dose of 4 mg per kg), had no effect. Interestingly, 
the association of drugs was very effective, leading to a highly significant prolongation 
of survival (p = 0.002) (Zhang, 2009b) (Fig. 2b).  

- in cultured cells, a low dose of cisplatin (5 μg per ml), administered after three days of 
exposure to citrate 10 mM, led to complete death of MSTO-211H cells (Zhang, 2009a). 
This death involved the mitochondrial apoptotic pathway, and no secondary recurrence 
of proliferation was visible until the 14th day of culture. In contrast, exposure to citrate 
10 mM alone had only a cytostatic effect, whereas exposition to cisplatin alone caused 
only a temporary slowing of the proliferation (Fig. 3 a and b).  

- in MSTO-211H cells, we observed that citrate induced an early diminution of the 
expression of the anti-apoptotic protein Mcl-1 (Fig. 3 c), which is a protein member of 
the Bcl-2 family playing a key role, with Bcl-xL, in the chemoresistance of malignant 
cancers, especially of mesothelioma, as we showed (Varin, 2010). Indeed, concomitant 
inhibition of these two anti-apoptotic proteins by specific siRNA (directed against Mcl-1 
or Bcl-xL) caused complete cell death of MSTO-211H cells, whereas inhibition of only 
one of these two anti-apoptotic molecules, even combined with cisplatin at a low dose 

(5 g per ml), was not sufficient to eradicate cultured cells (34). This anti Mcl-1action of 
citrate was confirmed on two lines of gastric cancer, exposed for 3 days to 10 mM (Lu, 
2011) and recently on several ovarian cancer lines (data not shown). 

- For trying to better understand the different behavior of our two mesothelioma cell 
lines, we studied their mitochondrial respiration. MSTO-211H cells, which may 
undergo apoptosis, had a functional mitochondrial respiration, which was reactive to 
succinate, a substrate of the complex II of the respiratory chain (Zhang, 2009b). In 
contrast, the robust NCI-H28 cells, insensitive to high doses of cisplatin, seemed to be 
destroying only by a mechanism of necrosis death, when exposed to 3-BrPA or citrate at 
higher concentration, beyond 200 microM or 20 mM respectively (data not shown). We 
showed these cells have no functional mitochondrial respiration, insensible to succinate 
(28). Therefore, we wondered if they were able to undergo apoptosis? We showed they 
could, if they were treated by two specific siRNA directed against Mcl-1 or Bcl-xL 
associated with a low dose of cisplatin (5g per ml) (Varin, 2010).  
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Fig. 2. Effect of 3-BrPA on survival of nude mice carrying a peritoneal carcinomatosis 
obtained by injection of human mesothelioma cells MSTO-211H. 
A: This experiment showed the efficacy of the association of a cisplatin injection at 21, 
followed by a series of 4 intra-peritoneal injections of 3-BrPA. In contrast, these agents were 
inefficient when administrated alone.  
B: This second experiment showed that the association of drugs was efficient, whereas 
cisplatin alone was inefficient in prolonging survival of mice. When a second series of 3-
BrPA injections was performed, 3-BrPA alone was efficient in prolonging survival. 
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Fig. 3. Effect of citrate, cisplatin and combinaison of drugs on human MSTO-211H cells. 
A: Western blot after 24h exposure to citrate (10mM) on anti-apoptotic proteins Mcl-1 and 
Bcl-xL. B: Kinetic evolution of cell viability (blue trypan exclusion test) in response to 
continuous 72h initial exposure of citrate (10mM), cisplatin injection at day 3 ( 5μg/ml), and 
combinaison of treatment on MSTO-211H cells. C : Aspect of cell flask cultures on day 14. 
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3.1 Acute and chronic toxicities of citrate 

Citrate was toxic only at high doses: the 50 % lethal dose (LD) in mice was 4 g per kg, the 
minimum LD was 2 g per kg, whereas the mortality reached 100 % for 8 g per kg. At 
autopsy we observed an intra-abdominal bleeding and or the presence of ascite. We 
observed signs of clinical acute toxicity at doses > 500 mg / kg, which were in chronological 
order: immobility, tachypnea with cyanosis of the extremities, bristling hair, tremors and 
convulsions. The latter signs occurred within 3 to 8 minutes after the ip injection. The 
occurrence of convulsions in high doses of citrate and the known properties of calcium 
chelating of this acid led us to treat animals receiving lethal doses of citrate by calcium 
chloride, injected immediately after the ip injection of citrate, with an equivalent molar dose. 
All animals survived.  

None chronic toxicity was observed with the protocol tested. All animals were in good 
health before sacrifice at day 90. Histological studies revealed none chronic signs of toxicity 
in the organs, except in the lungs where we observed diffuse or multifocal alveolar 
hemorrhage and bronchial lymphocytic infiltrate in all animals including in all controls. 

4. Discussion 

Chemoresistance made the seriousness of cancer, because in absence of an effective 
chemotherapy, others treatments (surgery, radiotherapy) are often doomed to failure. Even 
when tumors are diagnosed at an early stage, where surgical resection is feasible, survivals 
are generally less than 50% at 5 years for many solid cancers (lung, liver, pancreas, stomach, 
colon, ovaries, etc.). When metastases are present, survival does not exceed a few months in 
general, despite chemotherapy and/or radiotherapy treatments. For mesothelioma the 
survival is generally poor (the median duration of survival is often less than one year), due 
to its high resistance to chemotherapy. Therefore, it is fundamental to understand the 
mechanisms of drug resistance and to find new treatments overcoming such resistance.  

Chemotherapy cause intracellular damages (such DNA adducts after cisplatin treatment 
blocking mitosis) and results in an overproduction of ROS (Reactive Oxygen Species) toxics 
for the cells. These damages lead to cell death apoptosis, when the capacities of cells for 
repairing damages and for detoxifying ROS are exceeded (Bellance, 2009; Gogvadze, 2009; 
Grüning, 2010; Israël, 2004, 2005; Kroemer & Pouyssegur, 2008; Olovnikov, 2009; Vander 
Heiden, 2009). Cells may also develop drug resistance by over expressing anti-apoptotic 
proteins (Burz, 2009; Green, 2004; Yip, 2008), or by over expressing the transporter P-
glycoprotein 170, a protein which expels the chemotherapy drug outside at their membrane. 
This membrane carrier belongs to the family of the ATP transporters associated with the 
Multi Drug Resistance phenotype (MDR) (Comerford, 2002). All these mechanisms leading 
to drug resistance occur either primarily as it is usual for mesothelioma, or secondarily, as 
often see for ovarian cancer, a cancer disease actively studied in our laboratory.  

When active, chemotherapies lead to apoptotic death of cancer cells (Burz, 2009; Green, 
2004; Yip, 2008). Apoptosis is a physiological mechanism used for modeling the form of the 
embryo or for eliminating damaged or aged cells during life (Green, 2004). Apoptosis results 
from the leakage of the mitochondria outer membrane where pores open and release 
various molecules into the cytoplasm, such cytochrome c oxidized. Then caspases are 
activated in the cytosol. The activation of caspases (9 and 3 in particular) leads to 
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fragmentation of the nucleus (as evidenced by the cleavage of PARP) and by the 
transformation of the cells into debris, which are eliminated by the macrophages. Apoptosis 
is controlled by genes that encode for pro-apoptotic (Bid, Bax, Bak, BH3-only…) and anti-
apoptotic proteins (Bcl-2 type, Mcl-1, Bcl-xL…). It ultimately results in the imbalance 
between these two kinds of proteins, all belonging to the Bcl-2 family (Burz, 2009; Green, 
2004; Yip, 2008). It seems that pro-apoptotic proteins such as Bak and Bax need to trigger 
apoptosis, to be first translocated from the cytoplasm to the mitochondria. This translocation 
occur after these pro-apoptotic proteins have inhibited the anti-apoptotic proteins located on 
the surface of mitochondria either by direct contact or through indirect mechanisms 
involving the subfamily of pro-apoptotic proteins BH3-only, such as Noxa, Puma, Bad 
(Willis, 2005). As it was shown in our laboratory (Varin, 2010), concomitant inhibition by 
specific siRNA directed against Mcl-1 and Bcl-xL proteins was sufficient to destroy all 
MSTO-211H cells in culture, whereas the robust NCI-H28 cells, were destroyed in the same 
way by the adjunction of a low dose of cisplatin. So, anti-apoptotic strategies are thought to 
play an important role in next future to overcome drug resistance of cancers (Burz, 2009).  

Whatever the mechanisms involved in the drug resistance (MDR, resistance to apoptosis, 

enhancement of detoxification and of damage repairing process, etc.), all these processes 

require large amounts of ATP and cofactors such NAD+ or NADPH, H+. If the damages are 

significant, DNA repairing enzymes, like PARP, are highly activated, requiring large 

amounts of ATP and NAD+. The functioning of the P-glycoprotein 170, associated with the 

MDR phenotype needs also great amounts of ATP to expulse drugs outside (Comerford, 

2002). In definitive, ATP is required for all process of life, and higher level is required by 

cancer cells for surviving cellular damages caused by chemotherapy. Therefore, we may 

hypothesize that if we diminish the level of ATP and of the cofactors inside cells, we will 

facilitate the action of chemotherapy, cells lacking of ATP and cofactors necessary to repair. 

The intensity of the ATP depletion would result in cell death apoptosis which requires ATP, 

or in necrosis, when ATP depletion will be severe enough or brutal inside cells (Leist, 1997; 

Lelli, 1998).  

Our results show that blocking glycolysis, can effectively trigger apoptosis or necrosis and 
sensitize cells to chemotherapy. The mechanism leading to cell death remains to be studied: 
energy depletion ?, blockade of ribose formation derived from glucose transformation ?, 
other actions? 

We chose to work on mesothelioma, but we think any significant results obtain in this 
highly chemoresistant cancer, should be reasonably extrapolated for others solid cancers. 
Our results confirm the therapeutic benefit against cancer cells that could be taken when 
glycolysis is slowed down or blocked using anti-glycolytic agents (Geschwind, 2004; Ko, 
2004; Xu, 2005). When death occurs, it happened either by apoptotic or by necrotic 
mechanisms, a type of death that could be related to the intensity of ATP depletion. When 
studying the effects of 3-BrPA and citrate, we observed that cell death effect was dose and 
time dependant. When the dose was high, necrosis was dominant. Our studies (Zhang, 
2009b) confirm the anti-cancer action of 3-BrPA (Geschwind, 2004; Ko, 2004) and 
demonstrated in vivo the interest of this agent to sensitize cells to cisplatin, which has been 
observed in vitro (Ihrlund, 2008). We showed similar anti-cancer action of citrate which 
demonstrated also interesting anti-Mcl-1 properties (Zhang, 2009a; Lu, 2011). It is 
noteworthy that these anti-glycolytic molecules might have a crucial role for destroying 
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robust cells like our chemoresistant NCI-H28 cells, which are presumably the most hypoxic 
ones, lacking functional mitochondrial respiration (Xu, 2005). Cells which cannot adapt such 
severe environmental conditions spontaneously died, forming necrosis, as it is often see in 
the core part of large tumors, such as non squamous lung cancers. For surviving these 
severe hypoxic conditions, cells should have necessarily adapt a robust defense system 
supported by an enhanced glycolysis providing ATP, in place of OXPHOS because of the 
lack of O2. It is tempting to link the high chemoresistance of these cells to their altered 
mitochondrial respiration (Zhang, 2009a) and may be also to the overexpression of the anti-
apoptotic molecules Mcl-1 and Bcl-xL on the outer membrane of mitochondria as we showed 
(Varin, 2010). High concentrations of 3-BrPA or citrate were able to kill these cells by 
necrosis, which would occur when ATP depletion would be severe beyond a threshold 
(Leist, 1997; Lelli, 1998). Interestingly, we showed however that these NCI-H28 cells can 
undergo apoptosis, if both anti-apoptotic molecules Mcl-1 or Bcl-xL are inhibited by specific 
siRNA. In that case, a small dose of cisplatin becomes efficient (Varin, 2010). Of particular 
interest also to overcome chemoresistance, should be the association of agents like 3-BrPA or 
citrate to cisplatin, as we observed either in vitro or in vivo studies (Zhang, 2009a, 2009b).  

In contrast to NCI-211H, we may reasonably suppose that cells like MSTO-211H could be 

located in the well oxygenated peripheral part of tumors, where they proliferate rapidly. 

The sole inhibition of glycolysis by 3-BrPA or citrate 10 mM did not lead to complete 

destruction of cells, but only a slowdown or an arrest of the proliferation. This could be due 

to their functional mitochondrial respiration with an OXPHOS providing the most part of 

ATP. Therefore, the sole glycolysis inhibition is not sufficient to arrest the ATP production 

and to cell death. In such type of cells, 3-BrPA or citrate should be used primarily to 

sensitize cells to chemotherapy, as we observed in vitro and in vivo (Zhang, 2009a, 2009b). 

Our study confirms the anti-cancer action of 3-BrPA already reported (Geschwind, 2004; Ko, 

2004), this molecule being able to sensitive cells to cisplatin (Ihrlund, 2008). 

It should be tempting to inhibit concomitantly with glycolysis, glutaminolysis but also ┚-

oxidation (Hatzivassiliou, 2005; Paumen, 1997; Wang, 2010).  

The mechanisms of action of 3-BrPA and citrate remain largely hypothetical:  

- 3-BrPA might inhibit glycolysis by interfering with all reactions involving pyruvate 
such LDH, PC, or PDH, and such inhibitions eventually lead to a blockage or a 
slowdown of the metabolism (pyruvate is at the crossroad of various metabolic 
pathways), resulting in a loss of ATP inside the cell and or in a blockage of molecules 
required for the proliferation. Furthermore 3-BrPA would also inhibit HK II resulting in 
apoptosis, because HK II is linked to the apoptotic pathway (Danial, 2003; Geschwind, 
2004; Ko, 2004; Pastorino, 2008; Pedersen, 2002; Xu, 2005). HK II is located on the outer 
membrane of mitochondria, where glucose is converted in glucose 6-phosphate. HK II 
is associated with the VDAC (voltage dependent anion channel), and would be part of 
the PTP (permeability transitory pore) (Danial, 2003; Pastorino, 2008). The inhibition of 
HK II by 3-BrPA would lead to the release of HKII from the outer membrane, and 
would lead to the removal of the anti-apoptotic Bcl-2 proteins inhibition, leading to the 
channel opening and release of cytochrome c, activating caspases (Burz, 2009; Green, 
2004; Yip, 2008). Moreover, 3-BrPA might also increase the production of ROS, toxic for 
the cell (Ihrlund, 2008). Recently, it has been shown that the main of action of 3-BrPA 
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should be an alkylation of the GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) 
(Ganapathy-Kanniappan, 2010). 

- Citrate is a powerful indicator of energy production, which inhibits PFK1, the key 
enzyme regulating the entrance of glycolysis. This inhibition leads to an accumulation 
of glucose-6-phosphate upstream, which will inhibit HK II, by negative feedback, 
leading to apoptosis through the mechanism aforementioned (Danial, 2003; Pastorino, 
2008; Pedersen, 2002). Citrate inhibits also PKF2 (Chesney, 2006), the powerful allosteric 
activator enzyme system of PFK1 (Campbell & Smith, 2000; Lehninger 1975; Stryer, 
1981; Yalcin, 2009). PKF2 produces fructose 2-6 bisphosphate (F2,6P), which 
physiologically may override the inhibition of PFK1 by ATP when glucose is abundant. 
This is the case in cancer cells, due to the activation of membrane glucose transporters 
(GLUT1 and GLUT3) and of HK II, by HIF-1┙, myc, ras activations and loss of p53 
(Bellance, 2009; Feron, 2009; Grüning, 2010; Israël, 2004, 2005; Kim, 2006; Kroemer & 
Pouyssegur, 2008; Marin-Hernández, 2009; Olovnikov, 2009; Vander Heiden, 2009). 
F2,6P is considered as a key intracellular signal in cancer cells (Yalcin, 2009), enhancing 
glycolysis by activating PFK1, while inhibiting gluconeogenesis by inactivating 
fructose1,6-bisphosphatase (3-5). Therefore, citrate inhibits PKF2 and counteracts its 
effects on PFK1.  

- Citrate also inhibits pyruvate kinase (PK), at least indirectly, because it decreases the 
powerful activation exerted by fructose 1-6 bisphosphate on PK, which in normal cells, 
allows an immediate adjustment of the activities of PFK and PK, thus closely adjusting 
flux at the entrance and at the exit of glycolysis (Campbell & Smith, 2000; Lehninger 
1975; Stryer, 1981). Citrate regulates and adjusts also the flux of the tricarboxylic acids 
cycle (TCA cycle): it inhibits PDH (Taylor, 1973), the complex enzyme which produces 
acetyl-CoA from pyruvate, a step that allows the final product of glycolysis, to enter in 
the TCA cycle. Citrate inhibits at the end of the cycle, succinate dehydrogenase (SDH) 
(Hillar, 1975), which converts succinate to fumarate. SDH is part of complex II, located 
in the inner membrane, and is the sole enzyme that participates in both the TCA cycle 
and OXPHOS. Through SDH inhibition, citrate would reduce ATP production by 
OXPHOS.  

Citrate stimulates fatty acid synthesis by providing acetyl-CoA which is required in 

abundance for this synthesis whereas it is an allosteric activator of the cytoplasmic Acetyl-

Co Carboxylase (ACC), the main enzyme of this pathway consuming great amounts of ATP, 

and NADPH,H+ (Campbell & Smith, 2000; Lehninger 1975; Stryer, 1981). At the same time, 

citrate inhibits indirectly ┚-oxidation, because the first product of ACC, malonyl CoA, 

inhibits the carnitine acyl transferase I (CPTI), located on the outer mitochondrial membrane 

(Campbell & Smith, 2000; Lehninger 1975; Stryer, 1981).  

Finally, the level of citrate is a main indicator of the energy inside cells, enabling cells to 

adjust their metabolism to their reserve and requirement. By regulating enzymes located at 

strategic places of the biochemical pathways, this molecule allows a close adjustment of the 

fluxes of glycolysis and of the TCA cycle. When the production of ATP is sufficient, citrate 

inhibits the ATP-producing catabolic pathways, blocking the catabolic pathways at their 

entrances (glycolysis, ┚-oxidation), whereas it stimulates biosynthetic pathways 

(neoglucogenesis and lipid synthesis). Consequently, if citrate is administered in excess to 

cancer cells that require a high production of ATP for their biosynthesis, it would fool the 
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cell's energy level inside cells. While it would block all ATP-producing pathways, it would 

activate at the same time biosynthetic pathways consuming ATP, a situation that would 

quickly lead to a severe depletion of ATP, NADH,H+ and NADPH,H+, inside cells.  

4.1 Other actions of citrate 

The mechanism of action of citrate is not unique. In addition to the widely accepted 

biochemical effects of citrate (inhibition of PFK, activation of fructose1,6-bisphosphatase and 

of ACC) (Campbell & Smith, 2000; Lehninger 1975; Stryer, 1981), this molecule might have 

other actions, either on histone acetylation or on calcium homeostasis inside cells, that 

should have anti-cancer properties: - it could exert an action on the nuclear histone 

acetyltransferases (HATs), which use acetyl-CoA to acelytate the histones (Wellen, 2009). 

Indeed, citrate provides acetyl for HATs, after it is transformed by the ATP-citrate lyase 

(ACLY) in acetyl-CoA and OAA. Knowing that histone deacetylation plays a key role in the 

re-expression of genes (especially embryonic) and or in expression of oncogenes (Israël, 

2004, 2005), citrate would favor the re-acetylation of histones, and might have an anticancer 

activity similar to that of the inhibitors of histone deacetylation (Mutze, 2010).  

Citrate led also to an early inhibition of the antiapoptotic protein Mcl-1, which plays a key 

role with the protein Bcl- xL in chemoresistance of cancers (Burz, 2009; Warr, 2008; Willis, 

2005; Yip, 2008), especially of mesothelioma cancers (Varin, 2010). Citrate could be usefully 

associated with Bcl-xL inhibitors, since inhibition of these two key anti-apoptotic protein is 

necessary to obtain a strong cytotoxic effect, as we showed for mesothelioma (Varin, 2010).  

Interestingly, addition of citrate to Bcl-xL-expressing cells leads to increase protein N-alpha-

acetylation and sensitization of these cells to apoptosis(Yi, 2011). It has been suggested that 

cytosolic acetyl-CoA might influence the apoptotic threshold in multiple oncogenic contexts. 

In turn, Bcl-xL would be able to control the levels of acetyl-CoA and protein-N-acetylation, 

this providing a clear example of a linkage between metabolism and apoptotic sensitivity.  

Knowing that, there are few or any available specific inhibitors of Mcl-1 (Warr, 2008), 

whereas inhibitors of Bcl-xL are currently under clinical evaluation (as BH3 mimetic 

compounds such antimycin A3 or the inhibitor of LDH, gossypol), this anti-Mcl-1 action of 

citrate reinforces the interest of this agent.  

Citrate is also a known well known chelating agent of Ca2+. Because it might reduce the pool 
of ATP required by Ca2+ ATPases, this inhibition might reduce or suppress the cell’s ability 
to do work by increasing the cytosolic concentration of Ca2+. When the increase of this 
concentration is beyond a threefold, it might lead to necrosis or to apoptosis in relation with 
calcium-dependent concentration. By diminishing also Mcl-1 at the outer membrane, which 
inhibits mitochondrial Ca2+ elevation, citrate would favor also mitochondrial apoptosis 
(Bergner, 2008).  

4.2 Are 3-BrPA and citrate toxic? 

3-BrPA should be not toxic for normal cells (Ihrlund, 2008), and none toxicity has been 
observed in animals in vivo studies reporting its anti-cancer action (Geschwind, 2004; Ko, 
2004). To our knowledge, clinical studies should be currently performed at the John 
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Hopkins Hospital in Baltimore, to evaluate the beneficial effect of 3-BrPA in the treatment of 
human hepatocarcinoma. 

Citrate is a physiological product, which does not seem toxic, except at very high dosages. 
Neither experimental studies nor literature data have reported toxicity, except the 
occurrence of hypocalcemia after massive blood transfusion (Diaz, 1994), which was 
reversed by intravenous infusion of calcium (Vagianos, 1990). No accidental ingestion of 
high doses of citrate has been reported to our knowledge. The LD 50 of 4 g per kg after ip 
injection we observed in mice was consistent with data reported in the literature, ie 4 g per 
kg for mice and 6 to 11 g per kg for rats (see, citric acid in International Chemical Safety 
Cards : ICSC 0704). We observed signs of clinical acute toxicity at doses > 500 mg / kg, with 
convulsions occurring within 3 to 8 minutes after the injection, which were reversed by ip 
calcium chloride injection at equimolar dose. Then, all animals survived. Therefore lethality 
and clinical signs observed in animals receiving lethal doses of citrate where interpreted as 
indirect evidence of severe hypocalcemia. Reversions of convulsions and of heart failure 
have been reported in animals treated with intra-vascular administration of calcium 
(Vagianos, 1990). Hypocalcemia after administration of citrate has also been documented 
after massive blood transfusions associated with liver failure following transplantation, the 
liver being responsible of the metabolism of citrate. In such cases the administration of 
calcium chloride restored normal calcium baseline levels and suppressed the cardiovascular 
toxicity that was related to this hypocalcemia (Vagianos, 1990). We did not find any sign of 
chronic toxicity in organs with the protocol we tested (ip doses ranged up to 500 mg per kg, 
administered either by peritoneal injections or by oral gavages for several weeks. By 
extrapolating, the daily dose in an adult male weighing 70 kg should be 28 g, a dose that 
could be administered through a peritoneal or pleural catheter. 

Because citrate is a physiological molecule, it is likely there exist a range of elevated doses, 

where citrate might become cytostatic or toxic for proliferating cancer cells (as in our studies 

in vitro), without it would have no significant side effects for normal cells, which are most 

often in a quite steady state, and do not require an intense production of ATP for sustaining 

enhanced metabolism. Interestingly, an author has recently reported that a patient with 

primary peritoneal mesothelioma was improved after taking citric acid orally at a daily dose 

up to 45 gr per day (Halabé Bucay, 2011). However, because, as we have shown (Zhang, 

2009a), there are clones of cells that can be only totally destroyed by the combination of 

citrate and cisplatin, we think future studies should focused more on testing citrate as a 

sensitizer of current chemotherapy.  

Finally, association of these antiglycolytic agents with chemotherapy should be particularly 
considered for treating patients suffering advanced cancer disease, such as pleural or 
peritoneal carcinomatosis.  

5. Conclusions 

In conclusion, the understanding of the biochemical pathways involved in cancer cells helps 
to propose models of the reprogramming of the cell’s metabolism and to imagine new 
strategies for counteracting cancer development. It can be easily understood that cancer cell 
death could be induced, at least experimentally, by molecules blocking glycolysis, 
glutaminolysis, the malate shuttle, ┚-oxidation, or by stimulating PDH. Because key 
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regulator enzymes are generally located at the entrance of the metabolic pathways, 
strategies for blocking or activating such enzymes should be particularly investigated such 
as we showed using citrate, and combined together in “pluritherapies”, since cancer cells 
may find new routes for escape any blockage. Citrate and 3-BrPA should be considered for 
clinical studies, and association of these agents with cisplatin should be tested as local 
therapy particularly in patients suffering pleural or peritoneal carcinomatosis.  
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