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1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative 

disease of the central nervous system (CNS), affecting more than 2 million people 

worldwide (Hirtz et al., 2007; McQualter & Bernard, 2007; Sospedra & Martin, 2005). 

Although it has been described for over two hundred years, it is not well characterized and 

no cure exists (Hirtz et al., 2007; McQualter & Bernard, 2007). For this reason, nowadays 

there is still considerable interest in the investigation of the pathogenesis of this disease, the 

improvement of diagnosis, the assessment of prognosis, and the discovery of new 

therapeutic agents.  

The CNS cannot easily be sampled, so to gain ideas about neuroinflammatory diseases, 

animal models are developed. Experimental research has been performed in many species, 

including monkeys (Genain & Hauser, 2001), however most of the studies use rodents, 

fundamentally mice (Campbell et al., 2001; Chandler et al., 2002; Dowdell et al., 1999; 

Johnson et al., 2004, 2006; Meagher et al., 2007; Mi et al., 2004, 2006; Sieve et al., 2004, 2006; 

Steelman et al., 2009, 2010; Welsh et al., 2004; Whitacre et al., 1998; Young et al., 2008, 2010) 

and rats (Anane et al., 2003; Bukilica et al., 1991; Correa et al., 1998; Dimitrijević et al., 1994; 

Griffin et al., 1993; Kuroda et al., 1994; Laban et al., 1995a, 1995b; Le Page et al., 1994, 1996; 

Levine et al., 1962; Núñez-Iglesias et al., 2010; Owhashi et al., 1997; Pérez-Nievas et al., 2010; 

Teunis et al., 2002; Whitacre et al., 1998). In these studies, similar clinical phenotypes are 

achieved via different routes, so it is probable that some heterogeneity exists in the 

pathways leading to MS. In general, the standard experimental models of MS include: 

myelin mutant models, toxic demyelination models, viral models, and autoimmune models, 

being the virus-induced and immune-mediated models the most common ones for MS.  

a. Myelin mutant models. Myelin mutants, such as the taiep rat and the Shiverer mouse 

(myelin basic protein (MBP) mutant), as well as gene knockout animals (e.g. myelin 

associated glycoprotein (MAG) knockout mouse) show axonal degeneration, altered 

neurotransmission, and in some instances clinical disease (Loers et al., 2004). Myelin 

mutant models have largely been used to study mechanisms of demyelination and 

remyelination. However, their relatively high cost has limited their widespread 

application (e.g. as preclinical drug screening tools).  
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b. Toxic demyelination models. Neurotoxicants such as lysolecithin, ethidium bromide or 
cuprizone are used to induce chemical lesions. In lysolecithin and ethidium bromide 
models, a focal lesion is induced by stereotactic injection of the compound into the 
rodent CNS. The toxic effect of lysolecithin is considered to be selective on myelin 
producing cells while ethidium bromide is toxic for all nucleolus containing cells 
(Woodruff & Franklin, 1999). The cuprizone model is widely used to study toxin 
induced demyelination. In this model, animals are fed with the copper chelator 
cuprizone (bis-cyclohexanone oxaldihydrazone) leading to demyelination, which is 
reversed after cessation of the toxin. This model is reliable and has the advantage of 
good reproducibility regarding the amount and site of demyelination (Matsushima & 
Morell, 2001).  

c. Viral models. Several viruses, including Semliki Forest Virus and Theiler’s Murine 
Encephalomyelitis Virus (TMEV), induce disease by neurotrophic infection of the CNS, 
specifically oligodendrocytes. Succinctly, virally-infected cells are attacked by T cells 
inducing important humoral responses, which finally lead to demyelination (Ercolini & 
Miller, 2006; Lavi & Constantinescu, 2005). The Picornavirus TMEV is a naturally 
occurring pathogen that was originally isolated from mice. In this species, strains of 
Theiler's virus (BeAn, DA, WW, Yale) cause a biphasic disease that includes an acute 
CNS inflammatory phase followed by a chronic neuroinflammatory/autoimmune 
demyelination phase with glial and microglial infection (Oleszak et al., 2004). The 
chronic phase of the disease has many similarities, both behaviorally and 
physiologically with progressive MS (Dal Canto et al., 1995; Lipton, 1975; Oleszak et al., 
2004; Tsunoda & Fujinami, 1996), so Theiler's virus-induced demyelination (TVID) is 
commonly used as an excellent animal model of MS (Dal Canto et al., 1995; Oleszak et 
al., 2004; Tsunoda & Fujinami, 1996) for studying: the pathogenesis, the disease 
susceptibility factors, the mechanisms of viral persistence within the CNS, and the 
mechanisms of virus-induced autoimmune disease (Welsh et al., 2009). 

d. Autoimmune models. Experimental autoimmune encephalomyelitis (EAE) has 
received the most attention as a model of MS. Clinical and histological features of MS 
can be actively or passively induced. Active EAE is accomplished through inoculation 
with spinal cord homogenate or with many different CNS proteins or peptides (such as 
myelin oligodendrocyte glycoprotein (MOG), myelin-associated oligodendrocyte basic 
protein (MOBP), oligodendrocyte-specific protein (OSP), proteolipid protein (PLP), and 
MBP) emulsified in adjuvant (e.g. complete Freund´s adjuvant (CFA), Pertussis toxin, 
alum, etc) (Tsunoda & Fujinami, 1996). Adjuvants potentiate immune reactions (Lavi & 
Constantinescu, 2005), ensure persistence of antigens at relevant sites (Lavi & 
Constantinescu, 2005), and influence stress response pathways inducing changes in 
levels of hormones such as ACTH (Selgas et al., 1997), so they can modulate the clinical 
course of EAE (Libbey & Fujinami, 2011). On the other hand, passive EAE is induced 
through adoptive transfer of myelin specific T cells into naïve animals (Tsunoda & 
Fujinami, 1996). Both models of EAE induction have been used extensively, with the 
active model most useful for studying the parameters involved in the initiation of EAE, 
and the passive model generally used in the study of the effector phase of EAE (Dittel et 
al., 1999). EAE is polygenic and the susceptibility and the clinical course (acute 
relapsing, chronic relapsing, relapsing-remitting, chronic progressive) can vary 
depending on the chosen EAE model and the strain/species of animal being 
investigated (Lavi & Constantinescu, 2005; Libbey & Fujinami, 2011; T. Owens, 2006). 
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Therefore, EAE is not a single model, but a number of models that have varying 
degrees of similarity to MS (Lavi & Constantinescu, 2005). 

Some authors have doubts about the validity of experimental models of MS. However, at 
present it is accepted that although the preclinical research in MS is merely exploratory, it is 
also very necessary because it has contributed to elucidating key targets in the pathogenesis 
of MS. They have helped in the discovery of numerous cytokines and chemokines and the 
characterization of T helper cell subsets, thus playing a key role in understanding basic 
principles of immune function and autoimmunity (Gold et al., 2006). On the other hand, 
diagnostic, prognostic, and therapeutic aspects of MS have been cleared and resolved by 
means of experimental models (Pahan, 2010; Steinman & Zamvil, 2006). In this way, studies 
on EAE have culminated in three MS therapies (Steinman & Zamvil, 2006). For example 
glatiramer acetate, which was approved in 1996 for treatment of relapsing-remitting MS, 
currently is one of the most popular medications for treatment of relapsing-remitting MS, 
and more than 100,000 individuals with MS worldwide have received glatiramer acetate 
treatment (Sela, 2006). Besides, nowadays one of the exciting directions in the development 
of therapy for MS is consideration of various combinations of medications, and once again 
EAE models have demonstrated to be a valuable tool. They have shown potential synergies 
between drugs (statins and glatiramer), which show efficacy when used at doses that are 
suboptimal for these drugs when used alone (Greenwood et al., 2006; Stüve et al., 2006).  

2. Stress and multiple sclerosis 

The etiology of MS remains unknown, but studies have implicated both genetic and 
environmental factors (Noseworthy et al., 2000; Sospedra & Martin, 2005). The notion that 
psychological stress may be related to MS dates back to the time of Charcot, who suggested 
that the onset of MS is often preceded by grief or vexation, as well as by other socially 
undesirable circumstances (Charcot, 1877). Many studies since then have found that MS 
patients, as compared to healthy people or patients with other neurological disorders, report 
more stressful experiences prior to initial symptomatology. In the 1980s, two controlled 
studies were published on this issue. Their results showed that MS patients experienced 
remarkable life stress more frequently than the control subjects in the year (or six months) 
prior to MS onset (Grant et al., 1989; Warren et al., 1982). In addition to MS onset, relapses 
have also been found associated with stressful events (Ackerman et al., 2002; Brown et al., 
2005, 2006; Franklin et al., 1988; Golan et al., 2008; Grant et al., 1989; Li et al., 2004; Mohr et 
al., 2004; Sibley, 1997). Franklin et al. (1988) in a longitudinal prospective study on 55 MS 
patients, with a clinical evaluation every 4 months for about 2 years, found that patients 
who reported significant negative or stressful life events were 3.7-times more likely to have 
an exacerbation than those free of such events. Sibley (1997) also found a significant 
association (p<0.02) between conjugal or job stress and MS relapses; in the same way that 
Mohr et al. (2004) in a systematic meta-analysis of 14 prospective studies, published from 
1965 to 2003, found that there was a significantly increased risk of exacerbation associated 
with stressful life events (effect size of d=0.53; C.I.=0.40 to 0.65). In line with previously 
related studies, this relation has been further cleared by imaging techniques (magnetic 
resonance imaging) with the marker of acute focal brain inflammation, gadolinium (Goodin 
et al., 1999). In this way, Mohr et al. (2000) studied a group of 36 MS patients, finding that 
the occurrence of stressful life events was associated with a significantly increased risk of 
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new gadolinium-enhancing (Gd+) brain lesions. Taken together, these findings and similar 
observations discovered in animal investigations (Campbell et al., 2001; Chandler et al., 
2002; Johnson et al., 2004; Laban et al., 1995a; Meagher et al., 2007; Mi et al., 2004, 2006; 
Núñez-Iglesias et al., 2010; Pérez-Nievas et al., 2010; Sieve et al., 2004, 2006; Steelman et al., 
2009, 2010; Teunis et al., 2002; Welsh et al., 2004; Young et al., 2008, 2010) confirm the 
necessity of applying preventive and tailored interventions, behavioral and 
pharmacological, in stressed patients with MS (Golan et al., 2008). 

Despite all studies previously commented, some researchers have doubted about the 

association between the occurrence of stressful life events and the subsequent development 

of MS disease activity. Pratt (1951) and Gasperini et al. (1995) have not found significant 

differences between MS patients and control subjects, as far as their experienced stressful 

events were concerned; and even Nisipeanu and Korczyn (1993) have suggested that 

psychological stressors could have a “protective effect”. Initially it was said that this 

discrepancy might be the result of a number of research design problems, including 

infrequent monitoring of patients, small patient samples, subjective reporting bias, type of 

statistical analysis used, lack of adequate controls, etc (Golan et al., 2008; Goodin, 2008; 

Martinelli, 2000). However, nowadays it is accepted that the relationship between MS and 

stressful life events is complex (Brown et al., 2005; Mohr et al., 2000). The type, the timing, 

and duration of the stressor as well as the animal strain and sex, and the chosen 

experimental model of MS (Mohr et al., 2004) are factors which determine the result: 

a. Type (Table 1): Johnson et al. (2004) observed that if social stress is applied concurrently 
with Theiler’s virus infection, disease severity is reduced compared to infected, non-
stressed animals. In contrast, if restraint stress is applied concurrent with infection, the 
disease is again exacerbated (Campbell et al., 2001; Sieve et al., 2004). Likewise, Bukilica 
et al. (1991) indicated that whereas 19 daily sessions of inescapable tail-shock (80, 5 s, 1 
mA) have no effect when administered prior to EAE induction, stressor exposure 
following EAE induction has a protective effect. Specifically, tail-shock reduces the 
incidence and duration of EAE, delays disease onset, and decreases the severity of 
clinical and histological symptoms.  

b. Timing and duration (Table 1): Repeated moderate stressors suppress clinical signs 
when they are given before EAE induction, whereas acute severe stressors enhance the 
progression of disease after its induction (Heesen et al., 2007). Alternatively, acute stress 
applied prior to induction of EAE increases the severity of the disease (Teunis et al., 
2002), and the contrary (i.e. a protective effect) is observed if the stressor is chronic 
(Levine & Saltzman, 1987; Levine et al., 1962; Whitacre et al., 1998). 

c. Animal strain (Table 1): Certain inbred mouse strains, including SJL and DBA/2, are 
very susceptible to persistent CNS infection with TMEV and to the development of 
TVID, whereas other strains are intermediately susceptible (C3H, AKR, and CBA), and 
others are still able to clear the virus from the CNS, being resistant to the demyelinating 
phase of the disease (BALB/c and C57BL/6) (Sieve et al., 2004, 2006; Welsh et al., 1990). 
For example, Sieve et al. (2004, 2006) have observed important differences between CBA 
and SJL mice. Concretely: first, SJL mice show symptoms of the chronic phase of disease 
earlier (at 35 days pi) than CBA mice (at 150 days pi); second, SJL mice gradually 
develop late disease, whereas CBA mice have a sudden onset of severe symptoms; 
third, the incidence of the chronic phase is higher in SJL than in CBA mice (100% of the  
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Study Model of MS 
Stressor characteristics 
(type, timing, and 
duration) 

Results 

Acute 
stressor* 

Chronic stressor** 

Pérez-Nievas et 
al., 2010 

DA rats, EAE 
(MOG/CFA) 

Restraint stress started 
the same day of 
induction. Duration: 12d 
or 21d  

 
Exacerbation (12d) 
Protective (21d) 

Núñez-Iglesias 
et al., 2010 

Lewis rats, EAE 
(MBP/CFA) 

Noise stress started 5d 
prior to induction. 
Duration: 19d or 39d 

 
Exacerbation (19d 
or 39d) 

Young et al., 
2010 

SJL/JCrHsd 
mice, Theiler 
(BeAn strain) 

Restraint stress started 
the day prior to infection. 
Duration: 28d 

 Exacerbation 

Steelman et al., 
2010 

C57BL/6 mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 7d or 4w 

 --- 

Steelman et al., 
2009 

SJL mice, Theiler 
(BeAn strain) 

Restraint stress started 
the day prior to infection. 
Duration: 8d 

 Exacerbation 

Young et al., 
2008 

CBA mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 4w 

 Exacerbation 

Meagher et al., 
2007 

Balb/cJ mice, 
Theiler (BeAn 
strain) 

Social disruption stress 
started 1w before 
infection. Duration: 7d 

 Exacerbation 

Mi et al., 2004, 
2006 

CBA mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 2 or 7 d 

Exacerbation Exacerbation 

Sieve et al., 2006 
CBA mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 4w 

 Exacerbation 

Johnson et al., 
2004 

Balb/cJ mice, 
Theiler (BeAn 
strain) 

Social disruption stress 
started: 
* 1w prior to infection or  
* the day of infection  
Duration: 7d 

 

Exacerbation (stress 
applied prior to 
infection) 
Protective (stress 
applied concurrent 
with infection) 

Sieve et al., 2004 
SJL mice, Theiler 
(BeAn strain) 

Restraint stress started 
the day prior to infection. 
Duration: 4w 

 Exacerbation 

Welsh et al., 2004 
CBA mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 4w 

 Exacerbation 

Anane et al., 
2003  

Lewis rats, EAE 
(MBP/CFA) 

Physical stress 
(microwaves) started the 
day of induction. 
Duration: 21d 

 ---  

Chandler et al., 
2002 

SJL/J mice, EAE 
(PLP/CFA) 

Restraint stress was 
performed on days 2 and 
3 post-induction. 
Duration: 2d 

Exacerbation  
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Study Model of MS 
Stressor characteristics 
(type, timing, and 
duration) 

Results 

Acute 
stressor* 

Chronic stressor** 

Teunis et al., 
2002 

Wistar rats, EAE 
(MBP/CFA) 

Neonatal maternal 
deprivation was 
performed aprox. 7w 
before induction. 
Duration: 24h 

Exacerbation  

Campbell et al., 
2001 

CBA mice, 
Theiler (BeAn 
strain) 

Restraint stress started 
the day prior to infection. 
Duration: 4w  

 Exacerbation 

Dowdell et al., 
1999  

B10.PL mice, EAE 
(MBP/CFA) 

Restraint stress started 
the day prior to 
induction. Duration: 21d 

 Protective  

Whitacre et al., 
1998 

Lewis rats, EAE 
(MBP/CFA) 

Restraint stress started 5 
days prior to induction. 
Duration: 23d 

 

Protective (9h of 
stress/d) 
Exacerbation (1 or 
12h of stress/d) 

Correa et al., 
1998 

Wistar rats, EAE 
(MBP/CFA) 

Varied stress (swimming, 
predator odor, water 
deprivation, crowding, 
restraint, high-intensity  
sound, and cage 
inclination) was 
performed for the 14d 
before or after induction. 
Duration: 2w  

 

Protective (stress 
before induction) 
Exacerbation (stress 
after induction) 

Owhashi et al., 
1997 

Lewis rats, EAE 
(MBP/CFA) 

Water bath (44ºC) was 
performed for the 10 or 
13d before or after the 
induction. Duration: 10 or 
13d 

--- (stress 
before 
induction) 
Protective 
(stress after 
induction) 

 

Le Page et al., 
1996 

Lewis rats, 
adoptive EAE  

Physical exercise was 
performed the 2d before 
or after the adoptive 
transfer of EAE. 
Duration: 2d 

--- (stress 
before 
induction) 
Scantily 
protective 
(stress after 
induction) 

 

Laban et al., 
1995a  

DA rats, EAE 
(SCH/CFA) 

Neonatal handling or 
gentling was performed 
8w before induction. 
Duration: 4w  

Exacerbation  

Laban et al., 
1995b  

DA rats, EAE 
(SCH/CFA) 

Maternal deprivation was 
performed 8w before 
induction. Duration: 28d 
Early weaning was 
performed for 5-6w 
before induction. 
Duration: 1-2w 

 

Protective 
(maternal 
deprivation 
Exacerbation (early 
weaning) 
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Study Model of MS 
Stressor characteristics 
(type, timing, and 
duration) 

Results 

Acute 
stressor* 

Chronic stressor** 

Le Page et al., 
1994 

Lewis rats, EAE 
(SCH/CFA) 

Physical exercise was 
performed for the 10 days 
after induction. Duration: 
10d 

 Protective  

Dimitrijević et 
al., 1994 

Lewis and DA 
rats, EAE 
(SCH/CFA) 

Neonatal sound stress 
was performed 2 or 3w 
before induction. 
Duration: 1h 

Exacerbation 
(Lewis) 
Protective 
(DA) 

 

Kuroda et al., 
1994  

Lewis rats, EAE 
(SCH/CFA) 

Restraint stress was 
performed 1 or 8d after 
induction. Duration: 3d 

--- (1d) 
Protective (8d)

 

Griffin et al., 
1993 

Lewis rats, EAE 
(MBP/CFA) 

Restraint stress started 5d 
before induction. 
Duration: 23d 

 Protective  

Bukilica et al., 
1991  

DA rats, EAE 
(SCH/CFA) 

Electric stress or sound 
stress was performed the 
19d before or after 
induction. Duration: 19d 

 

Protective (electric 
stress after 
induction and 
sound stress) 
--- (electric stress 
before induction) 

Table 1. Animal studies (published from 1991 to 2010) on the effects of stress on disease 
manifestation. Studies are classified according to the type of stressor used: acute or chronic. 
*Acute stressor, stressor lasting less than 1 h and for less than 5 days; **chronic stressor, 
stressor lasting longer than 1 h and more than 5 days (although in most instances they were 
not presented all through the day). Abbreviations. CFA, complete Freund's adjuvant; d, day; 
DA, Dark August; EAE, experimental autoimmune encephalomyelitis; h, hour; MBP, myelin 
basic protein; MOG, myelin oligodendrocyte glycoprotein; PLP, proteolipid protein; SCH, 
spinal cord homogenate; w, week. 

SJL mice develop severe symptoms of the chronic phase of the disease, versus to 70% 

(at most) of the CBA mice) (Friedmann & Lorch, 1985; Oleszak et al., 2004; Simas & 

Fazakerley, 1996). Susceptibility to TMEV persistence and TVID has been linked to 

genetic differences between strains of mice (Bureau et al., 1993; Monteyne et al., 1997; 

Oleszak et al., 2004; Rodriguez et al., 1990), which could explain the variability in their 

responsivity to stress and their different immunological background. In relation to EAE, 

it has also been shown that the susceptibility varies depending on the strain. So, 

whereas ABH and SJL mice develop relapsing EAE to disease induced by whole 

myelin, C57BL/6 mice are resistant (Lavi & Constantinescu, 2005). 

d. Sex: A very discussed topic has been the sex impact in the disease process (Hill et al., 

1998; Kappel et al., 1990; Lipton, 1975; Sieve et al., 2004, 2006). In some studies, female 

SJL mice are known to have greater susceptibility to disease as compared to males, a 

pattern that is similar to that found in human MS patients (Hill et al., 1998; Kappel et al., 

1990; Sieve et al., 2004); on the contrary, other studies indicate that male mice develop 

more severe symptomatology of disease than females (Alley et al., 2003). It has been 

suggested that these apparently contradictory results may be due to different study 
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designs and criteria used such as housing conditions or strain of Theiler’s virus (Sieve et 

al., 2004). However, the sexual dimorphism of the immune system, the stress systems or 

the bidirectional communication between the reproductive system and the stress 

systems are reasons which may also explain, at least in part, this discrepancy (Gaillard 

& Spinedi, 1998; Whitacre et al., 1999). On the other hand, it is important to emphasize 

that the pattern of sex differences found can be complex. Sometimes, there are no sex 

differences in the early viral infection, existing on the contrary, greater behavioral signs 

in males than in females in later disease (Sieve et al., 2004). 

e. Experimental model of MS (Table 1): Several authors have observed that stress 
exacerbates the early viral infection (Campbell et al., 2001; Sieve et al., 2004) and the 
later demyelinating disease (Sieve et al., 2004) in Theiler’s virus infection. However, this 
does not coincide with studies using EAE, which show no effect of stress prior to 
disease induction, and a suppression during disease induction (Bukilica et al., 1991; 
Dowdell et al., 1999; Griffin et al., 1993; Levine & Saltzman, 1987; Levine et al., 1962). 
The differences in how stress affects EAE and Theiler’s virus infection may lie in their 
immunological mechanisms of demyelination and neuronal destruction. However, the 
observed discrepancy between these two experimental models of MS can also be 
attributed to the fact that the stressor is applied during different phases in the 
immunological response of the disease process (Sieve et al., 2004). 

3. Effects and mechanisms of action of benzodiazepines on models of MS 

Benzodiazepines (alone or in association with other therapies) have long been used to 
relieve or resolve symptoms and signs associated with MS (Arroyo et al., 2011; Bush et al., 
1996; D'Aleo et al., 2011; Hung & Huang, 2007; Meythaler et al., 1991; Rode et al., 2003; 
Solaro et al., 2010; Stork & Hoffman, 1994; Velez et al., 2003; Yerdelen et al., 2008). For 
example, Hung and Huang (2007) have observed that a combination of lorazepam and 
diazepam may be considered to release catatonic features in patients with MS, although the 
prescription of benzodiazepines associated with electroconvulsive therapy is another 
therapeutic option commonly used (Bush et al., 1996; Hung & Huang, 2007). Likewise, 
painful spasms, tremors or seizures (with or without associated anxiety symptoms) are 
treated with benzodiazepines such as clonazepam (Rode et al., 2003; Yerdelen et al., 2008), 
diazepam (D'Aleo et al., 2011; Meythaler et al., 1991; Rode et al., 2003) or tetrazepam (Rode 
et al., 2003); and even, Velez et al. (2003) have observed that patients with dramatic 
opisthotonic posturing and vermiform tongue fasciculations respond well to intravenous 
doses of lorazepam. 

Benzodiazepines are used clinically as tranquilizers, muscle relaxants, anticonvulsants, 
anxiolytics, and sedative-hypnotics. These effects are mediated primarily via the central 
benzodiazepine receptors (CBR) located in the CNS (Heiss & Herholz, 2006); however, in 
addition to binding of GABAA receptors in the CNS, benzodiazepines bind to another site in 
peripheral tissues. This second type of recognition sites was mistakenly termed “peripheral 
benzodiazepine receptor” (PBR) for many years (Table 2). However, at present scientists 
prefer using the nomenclature: translocator protein (18 kDa) (TSPO) (Papadopoulos et al., 
2006a). The TSPO is different from the CBR in terms of function, structure, expression, and 
pharmacological action (Gavish et al., 1999; Woods & Williams, 1996), so their study must be 
performed separately. 
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3.1 Effects mediated by the CBR 

To date, only one study has been conducted to examine the influence of central 
benzodiazepine agonists on the development of animal models of MS (Núñez-Iglesias et al., 
2010). Núñez-Iglesias et al. (2010) have observed that alprazolam decreases the clinical 
(paralysis, paraplegia, piloerection, etc) and histological (perivascular inflammatory 
infiltrate) manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. 

The molecular mechanisms mediating the clinical effects of central benzodiazepines in 
animal models of MS are unknown. However, it is thought that stress response mediators 
might play an important role in them.  

 

 CBR TSPO 

Structure Part of a macromolecular 

complex that also contains a -
aminobutyric acid (GABAA) 
receptor site and a chloride ion 
channel (Heiss & Herholz, 2006). 

Part of a hetero-oligomeric complex comprised 
of the voltage-dependent anion channel and an 
adenine nucleotide carrier (McEnery et al., 
1992; Papadopoulos et al., 2006a). 

Subcellular 
localization 

Plasma membrane of neurons 
(Heiss & Herholz, 2006). 

Mitochondrial outer membrane (Gavish et al., 
1999; Heiss & Herholz, 2006). 

Nonmitochondrial localization: plasma 
membrane (Gavish et al., 1999; Olson et al., 
1988), nucleus, and perinuclear area (Gavish et 
al., 1999; Kuhlmann & Guilarte, 2000). 

Localization Central: medial occipital cortex, 
cerebellum, thalamus, striatum, 
pons (Heiss & Herholz, 2006). 

 

Peripheral: kidney (Gavish et al., 1999), lung 
(Gavish et al., 1999), skeletal muscle (Gavish et 
al., 1999), liver (Gavish et al., 1999), heart 
(Gavish et al., 1999), uterus (Gavish et al., 
1999), testis (Gavish et al., 1999), ovaries 
(Cosenza-Nashat et al., 2009; Gavish et al., 
1999), haematogenous cells (Cosenza-Nashat et 
al., 2009; Olson et al., 1988; Ruff et al., 1985), 
and the steroid hormone-producing cells of the 
adrenal cortex (Gavish et al., 1999).  

Central (low concentrations): principally non-
neuronal cells: ependymal lining of the 
ventricles, choroid plexus (Mattner et al., 
2005), and glial cells (astrocytes and microglia) 
(Cosenza-Nashat et al., 2009; Mattner et al., 
2005). Some studies also suggest that neurons 
may express TSPO (Jayakumar et al., 2002).  

 

Table 2. Benzodiazepine binding sites. Main differences between CBR (central 

benzodiazepine receptor) and TSPO (translocator protein (18 kDa), also known as: 

peripheral-type benzodiazepine binding site, peripheral benzodiazepine receptor or 

mitochondrial benzodiazepine receptor).  
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3.1.1 Psychoneuroimmunoendocrinology and MS  

Stress affects host defenses comprising neuronal, endocrine, and immune reactions. This 
complex network of bi-directional signals plays a vital role in determining the outcome of 
the stress response, since when the balance among these systems is altered, the risk of 
disease increases (Masood et al., 2003). 

Figure 1 shows how stress impairs both natural and specific immune responses, which 
could influence morbidity associated with MS. Changes in the absolute number of 
lymphocytes, T-lymphocytes, T-helper, and T-suppressor cells have been reported (Freire-
Garabal et al., 1991, 1997). Stress also interferes with several immune responses such as 
splenic cytotoxic activities, mediated by NK cells and cytotoxic T lymphocytes (Núñez et al., 
2006), the activity of phagocytosis (Freire-Garabal et al., 1993a, 1993b), the delayed type 
hypersensitivity (DTH) response (Freire-Garabal et al., 1997; Núñez et al., 1998; Varela-
Patiño et al., 1994), the blastogenic response of spleen lymphoid cells (Freire-Garabal et al., 
1991, 1997), and T-dependent antibody responses (Fukui et al., 1997). 

Research into the mechanisms by which the stressors are translated into impaired 
immune function and vulnerability to disease has focused primarily on two pathways: the 
hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic branch of the autonomic 
nervous system (ANS) (Figure 1). Whereas increased sympathetic adrenal activity appears 
to play a major role in immune changes observed after acute stress, HPA axis-activity 
together with sympathetic mechanisms are mainly responsible for the inhibition of 
cellular and humoral immune responses following chronic stress exposure (Glaser & 
Kiecolt-Glaser, 2005). The importance of these systems is so high that when 
neuroendocrine hyper- or hypoactive responses of the HPA axis or the sympathetic 
nervous system (SNS) to stress occur, they function as risk factors of specific diseases, 
such as neurodegenerative diseases. Concretely, Gold et al. (2005) highlight the relevance 
of the functional status of the HPA axis in the control of EAE. During the experimentally 
induced disease in animals, the endogenous levels of glucocorticoids are elevated and the 
recovery from the disease is clearly dependent on this endocrine change (MacPhee et al., 
1989). This endocrine response is immunologically mediated so it is mainly the result of 
the stimulation of the HPA axis by cytokines (such as IL-1) produced during the immune 
response that induces the autoimmune disease (Del Rey et al., 1998). In EAE models, the 
negative feedback system mediated via the glucocorticoid receptors seems to be disturbed 
(Gold et al., 2005), with the stressors favoring the perpetuation of this disregulation, as is 
shown by increased corticosterone levels in stressed rats relative to unstressed animals 
(Núñez-Iglesias et al., 2010). The importance of an increased HPA axis activity is 
supported by the observation that this phenomenon is related to the clinical disease 
course (Then Bergh et al., 1999). 

The most basic literature regarding the HPA axis in pharmacology studies has been 
obtained in rats. More recently the mouse has been used due to the availability of genetically 
manipulated mice. The mouse is a model species of choice for genetic engineering because: 
a) its genes have an equivalent in humans; b) its genome is easy to modify by homologous 
recombination; c) it allows the creation of relevant animal models of human disease; d) 
numerous biological and biochemical functions of the mouse are similar to those of humans; 
e) it is easy to breed, less expensive to feed than rats and lives in smaller cages. These 
genetic models have allowed the determination of genes involved in anatomic and 
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Fig. 1. Biological pathways mediating stress-induced modulation of immune function. The 
hypothalamic-pituitary-adrenal (HPA) axis and the neocortical-sympathetic-immune (NSI) 
axis are the main neural efferent pathways through which stress can affect the activity of the 
immune system. Stress-induced impairments in immunity can influence morbidity 
associated with neurodegenerative diseases. Abbreviations: ACTH, adrenocorticotropic 
hormone; CRH, corticotropin releasing hormone; EPI, epinephrine; NE, norepinephrine; 
SNS, sympathetic nervous system. Own production. Source: Friedman & Lawrence (2002) 
and Godbout & Glaser (2006).  
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functional alterations of brain circuits critical for stress regulation. Furthermore, they have 
contributed to understanding genetic vulnerability to anxiety and its pharmacological 
treatment (Gardier et al., 2009).  

3.1.2 Benzodiazepines for control of stress associated with MS 

Several mechanisms could explain the effects mediated by central benzodiazepines on 
attenuated manifestations of MS: 

a. Inhibitory influence on the activity of the HPA axis.  

GABA and benzodiazepines reduce levels of HPA axis hormones, including CRF 
(corticotropin releasing hormone) and ACTH (adrenocorticotropic hormone) and 
corticosterone (Arvat et al., 2002; Bizzi et al., 1984; M.J. Owens et al., 1989) acting on 
CBR. Central pharmacological effects related to CBR acting by facilitating inhibitory 
GABA neurotransmission in the CNS, may regulate the release of neuroendocrine 
hormones involved in the immune response to stress. 

b. Platelet activating factor (PAF) antagonist properties. 

Activation and control of the coagulation cascade, modulated by antigen-specific 

mediators of cellular immunity, appear to be of prime importance in the animal models 

of MS (Inoue et al., 1996). Susceptibility and resistance to EAE in rodents correlate with 

the induction of procoagulant and anticoagulant activities. Geczy et al. (1984) observed 

that anticoagulants produced by cells from nonsusceptible EAE rodents suppressed the 

common coagulation pathway by inhibiting trombin and factor Xa activities.  

Central benzodiazepines such as alprazolam have PAF antagonist properties. It was 

found that in washed human platelets the alprazolam potently inhibits PAF-induced 

changes in shape, aggregation, and secretion, with the effects being specific for PAF 

activation (Kornecki et al., 1984). Likewise, Ng and Wong (1988) also showed that 

alprazolam can inhibit the [3H]PAF binding to the human peripheral blood 

mononuclear leukocytes. In this context, it is interesting to point out that PAF plays a 

role in the activation of the HPA axis and glucocorticoid secretion and can serve as a 

mediator in the interactions of the immune system with the CNS. Concretely, PAF is an 

activator of the HPA axis in the rat. Its activation, which causes significant stimulation 

of hypothalamic CRH, pituitary ACTH, and adrenal corticosterone secretion, is 

inhibited by alprazolam. In addition, the PAF stimulates ACTH secretion by dispersed 

rat pituicytes, which is also inhibited by the alprazolam (Bernardini et al., 1989). The 

specific antagonism of PAF action by psychotropic drugs suggests that PAF or PAF-like 

phospholipids may play a role in neuronal function (Kornecki et al., 1987). 

c. Inhibitory activity on proinflammatory cytokines. 

Besides the mechanisms previously described, downstream effects of the alprazolam on 
immunological and inflammatory parameters important for EAE must be underscored. 
Secondarily recruited inflammatory cells account for the vast majority of infiltrating 
cells in MS lesions and they play a pivotal role in CNS tissue damage (Ransohoff, 1999). 
The detailed mechanisms by which inflammatory cells enter the CNS compartment are 
not completely understood. However, evidence suggests that cytokines are essential for 
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this process (Karpus & Ransohoff, 1998). Enhanced expression of proinflammatory 
cytokines in the CNS, such as the monocyte chemoattractant protein 1 (MCP-1), has 
been demonstrated both in animal models of MS (Juedes et al., 2000) and in human case 
series (D'Aversa et al., 2002), and Karpus et al. (1997) have showed that the severity of 
manifestations is reduced by anti-MCP-1 antibodies. Additionally, mice that lack C-C 
chemokine receptor 2 (CCR2), the major receptor on monocytes for MCP-1, fail to 
develop the disease after active immunization (Fife et al., 2000) and are resistant to 
induction of it by the adoptive transfer of primed T cells from syngenic wild-type mice 
(Izikson et al., 2000). The effect of alprazolam on the expression levels of cytokines has 
been studied (Chang et al., 1992; Oda et al., 2002). Oda et al. (2002) have noted a potent 

inhibitory activity of this benzodiazepine on IL-1-elicited MCP-1 production in T98G 

cells. Likewise, alprazolam inhibits the production of cytokines IL-1 and MCP-1 in 
LPS-stimulated mouse macrophage cells (Oda et al., 2002) and reduces the production 
of IL-2 by murine splenic T-cells (Chang et al., 1992). These findings suggest that 
alprazolam might prevent the infiltration of specific regions by an excess of 
proinflammatory cytokines. Since the excess production of proinflammatory cytokines 
exacerbates MS or EAE (Karpus & Ransohoff, 1998), the above-described action of 
alprazolam might explain the improvement of manifestations associated with EAE in 
non-human species or patients treated with this drug. 

3.2 Effects mediated by the TSPO 

Microglia play a significant role in the pathogenesis of MS (Venneti et al., 2006). They serve 
housekeeping functions and maintain homeostasis of local environments (Davalos et al., 
2005; Nimmerjahn et al., 2005). In response to CNS insults, microglia change from a resting 
to an activated state to function as phagocytic macrophages (Chan et al., 2003; Fetler & 
Amigorena, 2005). This transition of microglia into an activated state includes a change in 
their morphology, migration towards the site of neuronal damage, proliferation until they 
quadruplicate in number (Davalos et al., 2005; Fetler & Amigorena, 2005), overexpression of 
cell markers (Agnello et al., 2000; Banati et al., 1997, 2000; Debruyne et al., 2003; Gavish et 
al., 1999; Kuhlmann & Guilarte, 2000; Versijpt et al., 2005; Vowinckel et al., 1997), and release 
of a widespread variety of substances or molecules (Chao et al., 1992, 1995a, 1995b; Colton et 
al., 1993; D'Aversa et al., 2002; Giulian et al., 1986, 1990; Heyes et al., 1996; McManus et al., 
1998; Murphy et al., 1995; Righi et al., 1989). These findings demonstrate that microglia 
(together with perivascular macrophages -Guillemin & Brew, 2004-) represent a first line of 
the immune defense system of the brain (Davalos et al., 2005; Fetler & Amigorena, 2005; 
Nimmerjahn et al., 2005), and justify their description as a “sensor for pathological events in 
the CNS” (Kreutzberg, 1996). Parallel to this protective function, microglia can also 
contribute to aggravating the underlying neuronal damage via the synthesis and release of 
neurotoxins (Chao et al., 1992, 1995a; Colton et al., 1993; Giulian et al., 1990; Heyes et al., 
1996), cytokines (Chao et al., 1995b; Giulian et al., 1986; Righi et al., 1989), and chemokines 
(D'Aversa et al., 2002; McManus et al., 1998; Murphy et al., 1995). Taking into account these 
results, it is concluded that microglia can exist in different states of activation depending on 
the microenvironment, with some states favoring the secretion of substances damaging 
neurons and other states favoring a protective phagocytic role (Morgan et al., 2005).  

Microglia must maintain the balance between neurotoxicity and neuroprotection in injury, 
but the complex network of factors which governs their responses is only beginning to be 
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deciphered (Biber et al., 2007; Glezer et al., 2007). Certainly, it would be interesting if some 
components of the network of microglial control could be manipulated for prognostic or 
therapeutic purposes of MS (Rock & Peterson, 2006). In this regard, TSPO plays a very 
important role. TSPOs are involved in the regulatory processes and metabolic functions of 
the tissue in which they are present. Outside the CNS: i) it is thought to aid in the transport 
of cholesterol from the outer to the inner mitochondrial membranes and thus be vital in 
steroid synthesis (Papadopoulos et al., 1997); ii) as a constituent of the mitochondrial 
permeability transition pore, TSPO is believed to regulate cell death (McEnery et al., 1992) 
and mitochondrial respiration (Hirsch et al., 1989); iii) evidence for an immunomodulatory 
role for this receptor includes the ability to: modulate chemotaxis and phagocytosis in 
peripheral monocytes and neutrophils (Marino et al., 2001; Ruff et al., 1985), induce cytokine 
expression and superoxide generation (Zavala et al., 1990), regulate macrophage functions 
(Pawlikowski, 1993), and stimulate formation of antibody-producing cells (Zavala & 
Lenfant, 1987), among others (Gavish et al., 1999); iv) TSPO is also thought to play a role in 
cell proliferation and differentiation (Camins et al., 1995), in protein and ion transport 
(Casellas et al., 2002; Gavish et al., 1999), and in bile acid synthesis (Lacapère & 
Papadopoulos, 2003; Woods & Williams, 1996). On the other hand, the functions of this 
receptor within the CNS are less known. It is suggested that it is involved in neurosteroid 
synthesis (Papadopoulos et al., 2006b), regulating mitochondrial function (Casellas et al., 
2002), and modulating neuroinflammation in microglial cells (Wilms et al., 2003). The fact 
that TSPO knockout mice die at an early embryonic stage (Papadopoulos et al., 1997) 
strongly suggests that TSPO is involved in basic cell functions and is essential for embryonic 
development.  

The main findings derived from the study of TSPO in MS patients or animal models of MS 
are detailed next: 

a. TSPO as in vivo marker of neuronal damage in MS.  

Reactive gliosis based on morphological examination is a microscopic finding in brain 
tissue sections and can only be obtained from invasive biopsy or postmortem autopsy. 
Therefore, the development and validation of an in vivo biomarker of glial damage is a 
major advance in the neurology field. In this way, the visualisation of the TSPO has 
received great importance in MS patients.  

TSPO is expressed in the undamaged CNS at only a low level (Agnello et al., 2000; 
Banati et al., 2000; Gavish et al., 1999); however, its expression is dramatically increased 
(mainly on microglia and in minor importance on astrocytes) in inflammatory diseases 
such as MS (Banati et al., 2000; Debruyne et al., 2003; Versijpt et al., 2005; Vowinckel et 
al., 1997) and animal models of MS (Agnello et al., 2000; Banati et al., 2000; Gavish et al., 
1999; Vowinckel et al., 1997). This up-regulation, which reflects an activation of resident 
microglia, can be visualized and measured using in vitro receptor autoradiography and 
binding assays as well as in vivo imaging techniques, such as PET (Maeda et al., 2004). 
So, in recent years a number of PET ligands with affinity to the TSPO have been 
developed and tested (e.g. Ro5-4864, PK11195, DAA1106, and vinpocetine) (Junck et al., 
1989; Maeda et al., 2004). This has propitiated that nowadays TSPO cellular expression 
can be considered a reliable biomarker for neuroinflammation and gliosis with neuronal 
damage (Banati et al., 2000; Debruyne et al., 2003; Mattner et al., 2005; Versijpt et al., 
2005; Vowinckel et al., 1997). 
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b. Neuroprotective function: anti-inflammatory and anti-apoptotic properties.  

Recent evidence suggests that TSPO may play an important neuroprotective role in MS 
patients, both for its anti-inflammatory and its anti-apoptotic properties. 

b.1 Anti-inflammatory properties.  

Some investigations point to the possibility that the TSPO may participate actively in 
neuroinflammation and may thus itself be a target for therapeutic intervention. In this 
way, it has been demonstrated that TSPO ligands (Choi et al., 2002; Ryu et al., 2005) and 
some benzodiazepines (Wilms et al., 2003) possess anti-inflammatory properties. The 
PK11195 ligand inhibits increases in cyclooxygenase-2 levels in cultured human 
microglia (Choi et al., 2002), decreases expression of pro-inflammatory cytokines (IL-1ǃ, 
IL-6, TNF-ǂ) (Choi et al., 2002; Ryu et al., 2005) and reduces neuronal death in the 
quinolinic acid–injected rats (Ryu et al., 2005). Likewise, Wilms et al. (2003) have 
observed that midazolam, clonazepam, and diazepam interfere with the synthesis and 
release of proinflammatory (TNF-ǂ) and neurotoxic (nitric oxide -NO-) molecules 
generated by activated microglia in vitro. The anti-inflammatory action associated to 
TSPO is not exclusive for microglial cells, it has also been shown on human blood cells 
(Bessler et al., 1992; Lenfant et al., 1986; Zavala et al., 1990). It is known that PK11195 
and Ro5-4864 inhibit IL-3-like activity secretion in human peripheral blood 

mononuclear cells, and that IL-2, IL-1, TNF-, and IL-6 production is inhibited by Ro5-
4864 (Bessler et al., 1992; Lenfant et al., 1986). Likewise, treatment of mice with Ro5-4864 
markedly reduces the capacity of macrophages to produce key mediators of 
inflammation such as reactive oxygen intermediates, IL-1, TNF, and IL-6 (Zavala et al., 
1990). In particular, TNF is considered an important pharmacological target for the 
therapy of MS and drugs able to inhibit TNF-synthesis, such as the phosphodiesterase 
inhibitors, have been reported to ameliorate EAE (Sommer et al., 1995). Taken together, 
these findings are very promising, specially if we bear in mind that diazepam has been 
undoubtedly demonstrated to be neuroprotective in experimental models of other 
diseases (Schwartz-Bloom et al., 2000). 

The true meaning of increased TSPO expression in microglia is unknown, however 
Wilms et al. (2003) have postulated that the presence of a high density of TSPO in 
human MS might be an adaptive response to neuronal damage with subsequent 
decreased release of neurotoxic microglial mediators. This hypothesis is supported by 
findings of Lacor et al. (1999) and Costa et al. (1994). They demonstrated that TSPO 
density is highly increased after peripheral nerve injury, with TSPO returning to normal 
levels when regeneration is complete or with TSPO remaining elevated in the absence 
of regeneration. A possible source of endogenous ligands of TSPO are astrocytes, which 
release substantial amounts of endozepines (Patte et al., 1999). These findings suggest 
that TSPO may be a trophic factor in recovery from brain injury. 

A lot has been speculated about the mechanisms by which TSPO specific ligands confer 
protection. However, associations between TSPO activation and stimulation of 
neurosteroid synthesis have been noted (Lacapère & Papadopoulos, 2003; Le Goascogne 
et al., 2000). For example, Le Goascogne et al. (2000) have shown that TSPO activation 
in astrocytes promotes the synthesis of neurosteroids (Le Goascogne et al., 2000), which 
possess neurotrophic and neuroprotective activity (Le Goascogne et al., 2000) and are 
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inhibitors of TNF production (Di Santo et al., 1996). A similar increase is obtained with 
anxiolytic benzodiazepines known to bind to both classes of benzodiazepine receptors 
(diazepam). On the contrary, ligands selective for the GABAA receptor (clonazepam) 
have no effect on steroid synthesis (Papadopoulos et al., 1992). On the other hand, 
Cascio et al. (2000) have shown a correlation among TSPO expression, steroid synthesis, 
myelination, and oligodendrocyte differentiation, thus reasserting the trophic function 
of TSPO in recovery from brain damage.  

b.2 Anti-apoptotic properties. 

The association of TSPO with the mitochondrial permeability transition pore suggests a 
role in the regulation of cell survival in microglia (McEnery et al., 1992). The 
participation of the TSPO in apoptotic processes has been demonstrated neither in MS 
patients nor in animal models of MS. However, studies that have induced 
overexpression of TSPO in cells different from those microglial ones suggest its 
implication in cell death regulation (Carayon et al., 1996; Everett & McFadden, 2001; 
Johnston et al., 2001; Rey et al., 2000; Stoebner et al., 2001). Interestingly, forced TSPO 
overexpression in myxoma poxvirus-infected macrophages blocks apoptosis (Everett & 
McFadden, 2001), in the same way that forced TSPO expression in neurons in vivo and 
Jurkat cells in vitro also protects these cells from apoptosis (Johnston et al., 2001; 
Stoebner et al., 2001). Likewise, it has been shown that TSPO upregulation in testicular 
Leydig cells (Rey et al., 2000) and in blood phagocytic cells (Carayon et al., 1996) 
preserves them from cytokine- and oxidant-induced cell death, respectively. TSPO 
expression in microglia may thus protect them from various toxins, thereby 
contributing to longer microglia life spans in the brain. 

c. Neurotoxic effects.  

A wealth of literature suggests that the TSPO overexpression , in addition to playing a 
protective role, can contribute to tissue destruction and disease progression (Block et al., 
2007; Kreutzberg, 1996; Rothwell & Hopkins, 1995). When microglia enter an 
overactivated state, they synthesize and release a battery of potent neurotoxins 
(including free radicals (Block et al., 2007; Chao et al., 1995a), NO (Chao et al., 1992), 
proteinases (Colton et al., 1993), eicosanoids (Heyes et al., 1996), and excitotoxins 
(Giulian et al., 1990), cytokines (IL-1 (Giulian et al., 1986), IL-6 (Righi et al., 1989), and 
TNFǂ (Chao et al., 1995b)), and chemokines (such as MIP-1ǂ (Murphy et al., 1995), MIP-
1ǃ (McManus et al., 1998), and MCP-1 (D'Aversa et al., 2002)) that cause neurotoxicity, 
influencing the viability and function of neurons and exacerbating neuronal injury. Two 
major possible neurotoxic secretion products of microglial cells are NO and TNF-ǂ 
(Wilms et al., 2003). NO is neurotoxic due to inhibition of complex 1 and 2 of the 
respiratory chain. Moreover, it reacts with superoxide anion to generate peroxynitrite, a 
highly reactive molecule capable of oxidizing proteins, lipids, and DNA. The cytokine 
TNF-ǂ is an important factor in the regulation of neuronal apoptotic cell death, which is 
expressed by astrocytes and microglial cells in brain lesions of MS patients (Wilms et 
al., 2003).  

The inhibition of microglial activation by a pharmacological approach, using non-
steroidal anti-inflammatory drugs or minocycline, has been hypothesized to reduce 
neuronal damage in animal models of neurodegenerative diseases (Du et al., 2001). 
Furthermore, activation of microglia also inhibits neurogenesis in the rat hippocampus, 
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and hippocampal regeneration is restored by blocking microglial activation with either 
indomethacin (Monje et al., 2003) or minocycline (Ekdahl et al., 2003). These studies 
suggest that activation of microglia could perpetrate neurodegeneration through 
several mechanisms. 

4. Conclusion 

Animal models of MS are a very beneficial tool, which have led to a better understanding of 
MS. New clues to the pathogenesis of MS and new potential markers for the diagnosis and 
prognosis of MS have been gained from research in animal models. Likewise, they have 
helped in the development of therapeutic approaches that are currently being used. 

The susceptibility to MS is modulated by interactions among many factors. In this context, it 
has been hypothesized that disease onset, progression, and relapses in MS are associated 
with stressful life events, and this alleged relation has been confirmed by sophisticated 
medical techniques. However, it is necessary to bear in mind that stressor characteristics are 
key factors in determining the effects of stress on MS symptom development. 

Drugs known to affect the immune system have become the primary focus for managing 
MS. However, the most recent findings suggest that benzodiazepines might be an add-on 
option for MS treatment because they can modify the stress-induced manifestations of EAE 
by interacting with CBRs. Concretely, it has been demonstrated that alprazolam reduces the 
latent period and inflammatory lesions of the SNC and delays the onset of the disease. 
Several mechanisms have been hypothesized to explain the effects of this type of drugs, 
which influence hormonal, immune, endocrine, and/or inflammatory parameters associated 
with the HPA axis and the sympathetic branch of the ANS. 

Recent evidence suggests that TSPOs might play a dual role in MS patients and perform 
neuroprotective and neurotoxic functions. On the other hand, because TSPO is dramatically 
up-regulated in MS, TSPO cellular expression is considered a reliable marker for diagnosis 
of the disease progression and of the therapeutic response. 
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